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Abstract

A covariant Poisson bracket and an associated covariant star product in the sense of
deformation quantization are defined on the algebra of tensor-valued differential forms
on a symplectic manifold, as a generalization of similar structures that were recently
defined on the algebra of (scalar-valued) differential forms. A covariant star product of
arbitrary smooth tensor fields is obtained as a special case. Finally, we study covariant
star products on a more general Poisson manifold with a linear connection, first for
smooth functions and then for smooth tensor fields of any type. Some observations
on possible applications of the covariant star products to gravity and gauge theory are
made.

1 Introduction

Due to several convincing arguments arising from the quantum theory and the Einstein’s
theory of gravity, it is generally believed that the manifold structure of spacetime does not
exist at distances equal and shorter than the Planck length and that the correct description
of spacetime should be somehow noncommutative. Field theories defined on noncommuta-
tive spacetimes have been extensively studied during the last decades (for some reviews see
[T, 2]). The canonically noncommutative spacetime structure, generated by the coordinate

commutation relations
[z, 2] = 0" (1.1)

with a constant antisymmetric #*, and its Moyal star product have received most attention.
Also the Lie algebraic structure, the quantum space structures and the symplectic and Poisson
manifolds have been considered as possible descriptions of noncommutative spacetime. We
consider the last two cases where the §#¥(%) is a generally Z-dependent bivector field.

The main effects of the noncommutativity of spacetime on the theories of particle physics,
most notably the standard model, are well understood. Understanding gravity on noncom-
mutative spacetimes has proven to be a challenging effort. This is due to the difficulty to
accommodate both the gravitational and the noncommutative structures of spacetime — the
classical geometrical large-distance structure and the noncommutativity of coordinates at
short distances.

One of the standing issues of noncommutative gravity is the general covariance of the
star product under spacetime diffeomorphisms. The diffeomorphism-covariance of a star
product can be achieved in many ways. One way is to construct a star product that is by
definition covariant under conventional spacetime diffeomorphism. This is the approach we



will consider in this work. More specifically we consider spacetime as a symplectic manifold
— later as a more general Poisson manifold — and seek to quantize such a spacetime by
introducing a (noncommutative) covariant star product. This is done in the light of two recent
approaches [3, 4, 5] to the quantization of a symplectic spacetime manifold. We construct
a diffeomorphism-covariant Poisson bracket and an associated star product of tensor-valued
differential forms on such spacetime. A covariant star product of tensor fields is obtained as
the special case of tensor-valued zero-forms. Possible applications of the obtained covariant
star product to gravity and gauge theory are discussed.

Deformation quantization of more general Poisson manifolds with a torsion-free linear
connection has also been studied recently [6] and a universal covariant star product of func-
tions has been constructed. We define a covariant Poisson bracket on a smooth manifold
with a linear connection and propose an associated covariant star product of tensor fields
on the Poisson manifold. The constraints that the connection is imposed to satisfy by these
structures are studied. The possibility to relax the torsion-freeness condition of [6] in the
case of a star product of functions is also considered.

For a recent review of deformation quantization see [7].

2 On covariant derivative of tensors and differential
forms

The intent of this section is to review the concepts of connection and covariant derivative on
smooth manifolds, providing some of the definitions and results that are used in the following
sections, and to discuss some misunderstandings found in recent literature regarding these
things.

2.1 Connections and covariant derivatives

We consider a smooth manifold M and a linear connection on the tensor bundle T'(M) of
M and the associated covariant derivativel| The linear connection is given by a covariant
derivative V that is a linear map

vV TR(M) — THY (M), (2.1)

where T*!(M) is the vector space of smooth tensor fields of type (k,) on M, i.e. the space
of smooth sections of the tensor product bundle @*T'M ®' T* M

TH(M) = T(QTM &' T*M) , (2.2)

where T'M and T*M are the tangent bundle of M and the cotangent bundle of M, respec-
tively, @*T'M denotes the k-th tensor power of TM and I' denotes the space of all smooth
sections of the argument fiber bundle. We shall denote the algebra of tensor fields on M by

T(M) =& T"(M). (2.3)

k,l=0

'We could equally well talk about an affine connection instead of a linear connection. See [§], Chapter 3,
Theorem 3.3, for their relation.



The covariant derivative Vx along a vector field X € X(M) =T'(T'M) is a linear derivation
that preserves the type of tensors

Vx : TH (M) — THH(M) (2.4)
and it is related to the connection (2.1) by
(VXA)(OQ, ce ,O[k,Xl, P ,X[) == (VA)(X, p,y ... ,O./k7X1, e ,Xl) y (25)

where the vector field X in the covariant derivative Vx A of A € T*!(M) takes the place
of the additional vector argument in VA € T (M) provided by (see [§], Chapter 3,
Section 2)E| This together with the requirements that Vx commutes with all contractions
and acts on functions as the vector X (directional derivative)

Vxf=X(f), fe F(M)=T(M xR) (2.6)

ensures that V satisfies the properties of a covariant differentation on 7 (M )E| The covariant

derivative (2.5)) can be written
(VxA)(Oél, ce ,Oék,Xl, NP ,Xl) = V)((A(Oél, ce ,Oék,Xl, NP ,Xl>)

k
—;A(al,...,VXOéi,...,Oék,Xl,...,X1> (27>

l
_ZA(Oélw"7ak‘aXla"'7VXXia"'7Xl)a
i=1

which follows from Vy being a derivation that commutes with all contractions (see [§],
Chapter 3, Proposition 2.10). Thus the second covariant derivative of A € T*!(M) is

(VQA) (X, Y; ) = VX(VyA) - VVXyA, (28)
where each term is in T!(M) (see [§], Chapter 3, Proposition 2.12). The n-th covariant

derivative can be obtained inductively.

Differential forms The vector space of differential forms of degree p on M is the space of
smooth sections of the p-th exterior power of the cotangent bundle,

QP(M) =T (NPT*M) . (2.9)
The algebra of differential forms on M — with the exterior product A as multiplication —

is the direct sum of the spaces of p-forms of all degrees p and it shall be denoted by

dim M

QM) = P o(M). (2.10)

2The additional argument X in the (2.5)) is the first one, because we want to have the arguments of VA
in the same order as the corresponding tensor indices in the component notation V, A" " #* . .
3The linearity of a tensor VA in its arguments guarantees that Vix = fVx and Vxiy = Vx + Vy, for

arbitrary f € F(M) and X,Y € X(M).



The covariant derivative of a differential form on M is defined similarly as for any other
tensor field on M (see above). However, the algebra (M) is not closed under a covariant
differentation V. For example restricting the domain of V to (M) we have

YV T(APT*M) — T(T*M ® APT*M) , (2.11)

where the range is the space of covector-valued p-forms. Thus we have to consider tensor-
valued differential forms.
The vector space of (k,[)-tensor-valued differential forms of degree p shall be denoted by

QF (M, THY = T(@"TM &' T*M & NPT* M), (2.12)

where T*! abbreviates the tensor product bundle @*TM &' T* M f_r] Note that Q°(M, TH!) =
THY(M) and QP(M,T%) = QP(M). The algebra of all tensor-valued differential forms is
defined as

dimM oo

UM, T)= @ P (M, TH), (2.13)

p=0 k=0

with the multiplication given by the generalized exterior product
A QP(M, TR < QI(M, T™™) — QPY(M, TH @ T™™) = QPFra(M, TFm™Hmy - (2.14)

The covariant derivative V maps (k,[)-tensor-valued p-forms to (k,l + 1)-tensor-valued p-
forms
Vo QP(M,TFY — QP (M, T (2.15)

We also define an exterior covariant derivative D that is the natural extension of the exterior
derivative d : QP(M) — QPTY(M) and V on Q(M,T). It maps tensorial p-forms to tensorial
(p + 1)-forms of the same type

D : QP (M, TFY — QPHY (M, T, (2.16)

which we shall discuss more shortly (see also [§], Chapter 2, Section 5).

Local smooth frames, the connection one-form, the torsion and the curvature
two-forms and the exterior covariant derivative A connection one-form w?, of V is

associated to a local smooth frame {e, }3m of the tangent bundle TM over an open set U
of M over which T'M is trivial. It is defined by

Ve, =w ® e, . (2.17)
The connection V on T'M (restricted over U) is given by
Vo = (d¢* + w¢") @ eq, (2.18)

where ¢ = ¢%, € I'(T'M) over U and d is the exterior derivative. On the cotangent bundle
T*M, the dual bundle of TM, we can setup a local smooth frame {e®}dmM oyer U that is

4We shall also refer to elements of QP(M,T*!) as (k,)-tensor-valued p-forms.
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dual to the frame of T'M, (e*, e,) = 0f. Thus the connection on T*M over U is given by
Vet = —w% @ e’ and
Vip = (dhy — whibe) ® € (2.19)

where ¢ = ¢,e® € T'(T*M). Extension to the tensor bundle T'(M) is straightforward ] e.g.
for A= A""%,  Leq @ - ®eq @M @@ € T(@TM @' T*M) over U we have

k l
. al--ag a; a1-Q;—1CA541 A} _ c ai--ag
VA= (dA b1--by + z :w CA b1--by z :w biA bl"'bi—lcbi+1"‘bl>

=1 i=1

R @ Reg, @M @@, (2.20)

All the other local smooth frames of T*M and T'M can be obtained through local linear
transformations

i

e =A%, el =ey(ATY), (2.21)

where in the general case A € GL(T,M) = GL(dim M,R), but additional structures on M
can restrict the local symmetry group to a subgroup of GL(dim M,R). The components of
tensor fields transform as

"ay-a a a c1ec — —1\d
A ! kbl...bl = A lcl T A kaA ' kdl...dl (A 1)d1b1 e (A 1) lbl (222)
and the connection one-form has the transformation rule
W' = A% we (AT, — dA® (ATY)e, . (2.23)

For tensor-valued differential forms we use notation where the tensor indices are visible
and the antisymmetric form components are hidden, e.g. A € QP(M, T*!) is written

1
Amak o 0ok eTN - Ner . 2.24
b1-+-b;

p' by--brer-cp

The torsion two-form 7T* and the curvature two-form R% of the connection are defined by
T% = De” = de” +w? A e, (2.25)
Rab = dwab + wac /\ wcb y (226)

where D is the exterior covariant derivative (2.16|) that is defined for a tensor-valued differ-
ential form ([2.24]) as the linear map

k
ai-ag _ ai--ag a; a1+ —1CAi41 Ak
DA™, o= dATTE 3w A A b

=1 (2.27)

l
_ § : c ai--ag
Wy, NA b1-+bi—1¢bit1-+by
=1

5V has the standard Leibniz rule, V(A ® B) = VA® B + A® VB, and similarly for the exterior product,
V(AANB)=VAAB+ AANVB.



Unlike the exterior derivative dA™ ™, by the exterior covariant derivative (2.27]) has the
correct tensor transformation rule (2.22) under local frame transformations (2.21). The

second exterior covariant derivative consist of contractions with the curvature two-form ([2.26))

k l
2 qa1---ap o a; ay1-Q;—1CA;4 1A C ai--ag
DA bty = E R NA bty E R NA bybs_vcbis1 by - (2.28)

i=1

Taking exterior covariant derivatives of (2.25)) and (2.26)) yields the Bianchi identities

DT® = R% A e’ (2.29)
DR =0. (2.30)

Local coordinates Introducing a local coordinate system {x“}dlmM on the open set U
of M enables us to use the full component notation of tensor calculus — the formalism
conventionally used in physics. It enables us to locally write the covariant derivative
of a tensor field A € T*!(M) along the basis vector ;2. as

O+
k
VAT = O AT Y w S AT
= (2.31)

l
o c a--ay
§ :wu biA bi-+bi—1¢biy1-by

where w % da" = w®, Ve, = w e, and Vet = —wﬂabeb. This is the local form of (2.7)).
Since the fibers of T'M and T*M over each p € M are the tangent space T,M and

the cotangent space T;M of M at p respectively, the local frames of TM and T*M over

each p € M are smoothly related to the coordinate bases 57 and dz* of T,M and T;M

8 iz
respectively through (orientation preserving) linear transformations
e-e“a e = e dat (2.32)
@ Qxr’ » ’ ’

where e/ as a matrix is a GL"(dim M,R)-valued smooth function on M and e?, is the
inverse of e e, ”e = 0%, e e, = 55.@ The functions e, and e, enable us to transform
components of tensors between the coordinate and noncoordinate bases.

A (k,1)-tensor-valued p-form behaves as a (k, [+ p)-tensor field under the covariant

derivative (2.20))

ai-a 1 ar-a c c
VA = (VuA™ % ey ) €7 A A (2.33)

where the expression inside the parenthesis is given by (2.31]).

SGL*(dim M,R) = {g € GL(dim M,R) : det g > 0}



Using a coordinate basis for T (M) We can even choose the local frames of T'M and

T*M to coincide with a coordinate basis of tangent spaces, e, = %, and cotangent spaces,

e’ = dx®*. When this choice is made, we conventionally choose to work with one kind of
indices, a — p etc., and rename the connection one-form w® — I'Y and the connection
coefficients w,%, — I",,. The covariant derivative is now defined by

V. TH(M) — TR (M), (2.34)

k

vaMlmukyl--.yl - aMAulmukyl--.yl + Z Fgé_Aﬂl"',Ui—lo',ui-kl"'/’“ﬂylmyl

i=1

l (2.35)
— Z FZZ/Z'Aulm#klﬂ---Vi,10Vi+1---Vl X
i=1
General coordinate transformations, © — 2’ = 2/(z), are a specific class of frame trans-
formations (2.21]) with the local transformation matrix

/
ox H
v Qav

AP

(2.36)

2.2 Criticism

It is important to understand that the algebra of differential forns (M) is not closed under
the covariant derivation V (equivalently under V, in a coordinate basis). The covariant
derivative Vw of a p-form w is a smooth section of the product bundle T*M ® APT*M. In
other words V,w is a (0, 1)-tensor-valued p-form. This is not acknowledged in [4], where the
covariant derivative V,w of a p-form w along the basis vector e, is incorrectly considered to
be a p-form, which leads to some serious problems.

Differential forms are frame-independent objects that exist independent of any coordinate
system. V,w is clearly a frame-dependent object that transforms as a component of a covector
under general coordinate transformations.

The convention “V, acts nontrivially only on the bases e, and dz*” in [4] is inconsistently
executed. The property is violated, when some of the contractions are differentiated
with V. As an example we consider the covariant derivative of the contraction of a bivector
6" and two covariant derivatives V,a and V, 3 of differential forms o and g,

Y, (0"7°V,aV,B3) = (V,0"°)V,aV 3 + 0" (V,V,aV,8 + V,aV,V,8) . (2.37)

Clearly we cannot write V,0"? = 0,0"?, as is done in similar calculations of [4] (see, [4] Ap-
pendices B.5 and C for these calculations), without trivializing the connection. The tensorial
nature of R* is correctly recognized in these calculations (see also the Appendix A of [4]),
but the bivector 6#" is treated as a function.

Moreover, in 4] the second covariant derivatives V,V,a of a p-form « are incorrectly
calculated, so that the commutator of second covariant derivatives of «,

p
[vlﬂ VV]apl"'Pp = _Tauuvﬂapl"ﬁp - Z Rapi;wapl--'pz‘71UP¢+1---pp ) (238)

i=1



contains only the curvature contributions, but not the torsion contribution[] This is an
implication of the failure to fully recognize the additional argument vector provided by the
covariant derivative.

Due to these problem in the covariant derivative of [4], the star product proposed in [4]
is neither truly associative nor covariant. The associativity property of the star product is
found to be satisfied only because the covariant derivatives in the double Poisson brackets
like {{«, B},~} are calculated incorrectly.

These problems with the covariant derivative found in [4] have been recently corrected in
[3], where the formalism of [4] is reconsidered by using correct definitions. In [3] the covariant
derivative V, is correctly taken on tensor fields of any type and one does not try to extend
the algebra of differential forms by the covariant derivatives.

3 Generalization of the Poisson structure and the star
product of differential forms to the algebra of tensor-
valued differential forms on a symplectic manifold

3.1 Poisson algebra of differential forms

Consider the graded differential Poisson algebra of differential forms on a symplectic manifold
M studied in [9], 4 [3, [10].
The Poisson bracket of functions f,g € F(M) is defined by

{f: g} = Q(dfa dg) = Ouyaufaug . (31>
The Jacobi identity of the Poisson bracket requires that the Poisson bivector satisfies
> 070,6" =0, (3.2)
)

where the sum is over cyclic permutations. The Poisson bivector 6 is assumed to be nonde-
generate, so that it has an inverse w that satisfies w,,0"” = ¢f. It can be shown that is
equivalent to w being a closed form, dw = 0 [9]. The closed nondegenerate two-form w on M
is called the symplectic form.
The Poisson bracket of a function and a differential form o € Q(M) (of degree one at first
and then of any degree)
{f,a} =Vx,a=0"0,fV,«a (3.3)

is a covariant derivation of a and therefore defines a linear connection on M. By using
the connection coefficients I}, we can define two connections V and V with the connection
one-forms

I =T%,da" and IV =17, dz" (3.4)
respectively, which are different when the torsion ([2.25)),

TP =T)Ada” = da" AT, (3.5)

“If one wants to use the above mentioned convention for V., one should calculate the second covariant
derivative of a as V,(dz” ® (V,a)).



does not vanish, 77, , = 2’ [pm # 0. The Leibniz rule of the Poisson bracket, d{f, g} =

{df,g} + {f,dg}, implies that the connection V satisfies

V07 = 8,0 +T% 07 +- %0 =0, (3.6)

i.e. V is a symplectic connection Together (3.2) and (3.6) imply two covariant versions of
the Jacobi identity

ST 0V, =0 and Y 04077, =0. (3.7)

(1sv,p) (p,v,p)

Imposing either V0”7 = 0 or 7%, = 0 would lead to a single torsion-free symplectic connec-
tion V = V, but this is not necessary. The curvature two-forms (2.26) of V and V are given
by

R*, =dIW+TUATY and RF, =dl% +TWATY (3.8)
respectively, and we use the Poisson bivector " to raise their lower index, e.g.

o (3.9)

The curvature two-form of a symplectic connection V is symmetric R* = R”“H Note that,
unlike V,,, the covariant derivative V, does not commute with the raising of indices with
0" because V is not symplectic. Indeed (3.6 implies

V07 =T, 077 + T, 0" . (3.10)

The unique Poisson bracket of differential forms «, 5 € (M) of nonzero degrees that is
consistent with the graded differential Poisson algebra has been defined in [4, [3]

{a, B} = 0"V, a AV, B+ (1) R Aj,a NiyB (3.11)

where deg(a) denotes the degree of a and i, is the interior product of o with the p-th
basis vector. Covariant derivatives of contractions like , including multiple covariant
derivatives, are present when several Poisson brackets are taken, e.g. {o,{5,7}}. In
order for the Poisson bracket to satisfy the graded Jacobi identity the connections have
to satisfy the following additional constraints

Ry =0, (3.12)
Vo™, =0, (3.13)
> R AR =0, (3.14)

(sv5p)

where the last constraint (3.14: is, however, implied by the two former constraints, the Leibniz
rule and the Jacobi identity (3.2)) [10, B][™

8We call a connection V symplectic if wyy or equivalently 6 is covariantly constant under the covariant
derivative.
9(B.6) implies: 0 = [V, V,]0" = —TAWVAG’“’ + R“/\paﬁ)"’ + R”/\pgﬁf‘)‘ =—R",, +R"Y,,.
1003.12)) is implied by the Jacobi identity for two functions and one one-form and (3.13) by the Jacobi
identity for one function and two one.forms [9].




3.2 Poisson algebra of tensor-valued differential forms

We want to extend the graded differential Poisson algebra of differential forms by the covariant
derivation V. This is achieved by generalizing the Poisson bracket for tensor-valued
differential forms. In other words the Poisson bracket should be generalized to accept forms
whose components have additional tensor indices. Then Poisson brackets like {V ,a, 5} will
be naturally defined. This would enable us to define the related star product for all tensor-
valued differential forms, which enlarges the applicability of the formalism. The curvature
two-forms R* and R and the torsion two-form T* are examples of such forms. Such star
product could indeed be useful for defining noncommutative deformations of gravitational
theories, whose actions involve the curvature two-form(s). Next we propose such a formalism
that generalizes the approach of [4, [3], and also corrects the misunderstandings found in [4].

The algebra of tensor-valued differential forms

We choose to work in a local coordinate system {x“}ii:mlM of M. This approach can, however,
be repeated by using any local smooth frame of Q(M,T), with the frame transformations
defined to be compatible with the symplectic structure of M.

The exterior product of two tensor-valued differential forms A € QP(M,T"!) and

B € Qi(M,T™m),
1

A'Lu.“”kuy--w - ZT!A'L““.Hkur--l/lpl”'f’pdxpl ARERRA dxpp ) (315)
1
Bﬂlmumm---lm - aBﬂl".#mlll-'-l/nﬂl"'f’qupl Ao A dquq ’ <316>

is a tensor-valued differential form A A B € QPY4(M, THF™!H7) defined by

1

M1 k4, _ K1 Hk4m P1 e Pp+
(AN B) et = g )] (AN B) retmprepypg QLT A A dPPra
1
_ JERy Hhkt1 " Hk+m PL A L. Pp+a
B p!Q!A Vl“‘VlPI'“PpB Vz+1"'Vl+an+1“'Pp+qu A Adz
. AM1IpE Hk+1"Hk+m
= Amme, A B v - (3:17)

The exterior product (3.17)) satisfies the following properties for arbitrary tensor-valued dif-
ferential forms A, B and C:

1. ANB =0if deg(A) + deg(B) > dim(M).

2. Degree:
deg(A A B) = deg(A) + deg(B). (3.18)
3. Symmetry:
D o dee(A) dee(B D
Am #kylmyl A BPLP i = (_1) g(A)deg(B) gp1--p i A AM ukylmyl‘ (3_19)

4. Associativity: (AANB)ANC =AAN(BAC).

10



It is necessary to write A "# _ instead of just A in the exterior product when the
order of the factors is changeable , because the tensor product is generally noncommu-
tative, A® B # B® All]

The interior product of tensor-valued differential forms can be defined so that it recognizes
only the form part of tensor-valued differential forms. The interior product of A € QP(M, T*!)
with the coordinate basis vector % is the map

iy QP(M,THY — QP (M, TR

1 (3.20)

) AHLHE - M1 o2 A L. o
ZPA vieyp (p — 1)'14 V1---Vzp<72---crpd‘r A A dzP .

It satisfies

i, (A#l"'ﬂk A BP1Pm ) — Z’pAﬂl"'#k A BP1Pm

vy 010n Vi) O10n
3.21
+ (_1)deg(A)Au1---ukUl”w A Z'me---pmalman ( )
and 4,1, A = —i,4,A. Zero-forms vanish under the interior product .

The exterior covariant derivative D ([2.16)) is used instead of the exterior derivative, be-
cause the latter maps tensorial differential forms to nontensorial ones. The exterior covariant

derivative (2.27)) is now written

k
DA'ul.““qu...l/l = dA'ulmukm...vl + Z Fgl N Aﬂl"'l"i—lﬂl‘i-!—l"'l‘kylmyl
i=1
l (3.22)
B Z Ffji A Am.”MV1---W71PV¢+1"'W )
i=1
where the exterior derivative d is given by
1
dA'ulmule.ul/l - Hao-A'ulmukm...uzpl.gppdl'g A dxpl VANRIERIVAN dxpp . (323)
D satisfies the same Leibniz rule as d,
D (A'ulmukz/l---ul A Bplmpmal---an) = DAM-..ule'"Vl A Bplmpmal'"o" (3 24)
+ (_1)deg(A)AM1--~ukV1mw A DBP1-~-pmalmgn ' .

The exterior covariant derivative D of the other connection is defined analogously by using
the connection one-form I'* instead of I'%.
A connection also provides the covariant derivative on Q(M,T)

V. QP(M, T — Qr(M, T (3.25)

"One can write (3.19) equivalently as A A B = (—1)des(A)dee(B)(B A A) o o(k,1), Where the map oy )
moves the first & covector arguments and the first [ vector arguments over the rest of the arguments
of each type, O'(k’l)(al, N ,Oz]H_m,Xl, ce aXH-n) = (Ozk+1, ey Oy, Oy e ey ak7Xl+17 ce 7Xl+’n7X17 . ,Xl).
We, however, prefer to keep track of the order of the arguments with the tensorial indices.
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that is defined in (2.31]) and ([2.33]) (see also ([2.34)—(2.35]) for the present case of a coordinate

basis). The covariant derivative of a tensor-valued differential form can be written in a
compact form as

k
K1 ik — K1 ik Hi AHL Hi—10Hit1 B
V,A oy, = OpA vy T E e A

o vy
l i=1 (3.26)
o Z FZV;‘Aulmukl/1-..w—10w+1"'Vz o FZ A iUAMlkaVl"'Vl )
i=1
where we denote
(%A’” Mkylu-Vl - HaﬂA“l Mkul'“VlPL.-ppdepl VANEIVAN dl’pp . (327>

Defintion for the other covariant derivative @u is analogous (replace I', with I'), and f’ﬁ
with I'7)). When the second covariant derivative V,V,AM™# - is taken, the subscript o
is treated as a covariant tensor index. The commutator of second covariant derivatives reads

k
= 7T M1 Bk i K1 i — 1 A i1 B
=-T1",,V,\A A E R, A v,
—1
! Z (3.28)
_E A M1 _ pA ToA i AWk
R z/ipo-A V1 Vi 1 W11 R Tpadx A ?,)\A
i=1

[Vp, VU]AMWM

V1Y

vyeevp st

The covariant derivative has the Leibniz rule
V. (ANI'“UkV - A BP1Pm = V, AF1HE A BP1Pm

V1w O10n,
4+ APMTHE A v/\Bm"ﬁmg (3'29)

1 0'1"'0'n)

V1Y 1°0n °

We can find a useful relation for D and V, by multiplying the latter (3.26) with da”A
from left

da? NV, ARTHE = DARTES L = TP N AR (3.30)
We can even write it as a local operator identity
D=da" ANV, +T" Niy, . (3.31)
Once again a similar relation holds for the other connection
D=da" AV, —T"Ai,. (3.32)

We shall occasionally refer to both V and D as the connection — similarly for V and D.

The Poisson bracket
Now we can extend the Poisson bracket (3.11]) for tensor-valued differential forms

{Au1-~~uk BPI"'PmUlmUn} _ GATVAA#l"'//"kVIMVZ A VTBm'"pm

+ (_1)deg(A)R)\T A i)\Aﬂl”'uk

i g1on (3.33)
A i, BPTPm

V1Y O10n °

12



If either A#v=#k  or BPPem - (or both) is a tensor field of zero form degree, the

Poisson bracket is defined by

{Amme, L BPem Y = TV A T B (3.34)

vy-evp)

which is also consistent with (3.1) and (3.3) [}
The Poisson bracket (3.33]) of tensor-valued differential forms satisfies the following prop-

erties of the graded differential Poisson algebra. For A € QF(M,T*!) and B € Q4(M,T™")
and C € Q" (M, T*) we have:

V1Y 01°:0On

1. Bracket degree
deg<{ A Bm...pmal,_ﬂn}> — deg(A) + deg(B), (3.35)

is implied by the following properties. The covariant derivative does not change
the degree of tensor-valued differential forms, deg(V,A) = deg(A). The interior prod-
uct (3.20) reduces the degree by one, deg(i,A) = deg(A) — 1. The exterior product
(3-17) has the degree (3.18).

2. Graded symmetry

{Aﬂl“‘#k BPrPm } - (_1)deg(A) deg(B)+1 {Bp1~~pm
01 On

Am"'”kuy--ul}’ (3.36)

Vi) o10n?

follows from the symmetricity property of the exterior product (3.19) and from the
antisymmetry of #*” and the symmetry of R*” under u < v.

3. Graded product

R p1-Pm A1 A
{A viey N B 01---0n’C 7'1“'7']'}

— AMLHE A {Bp1~~pm

oMN
V1Y 01+0n? T Tj

C)\l--.)\i } A BPLPm

vyevp) T1Tj

+ (_1)deg(B) deg(c){Aﬂl“'Mk (337)

O1+0n

follows from the Leibniz rule for V,, (3.29) and the similar property for i, (3.21) and
the symmetricity property of the exterior product (3.19)).

4. Leibniz rule
D {Amm“k Bplmpmm...crn} = {DAMMMCVP'VZ’ Bpl...pm"l""’"}

+ (_1)deg(A) {Aiu'l"'tuk DBpln.pma_lmo_n} ,

vyevp?

(3.38)

vy

12We essentially consider that the interior product of a zero-form is zero.
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By applying the Leibniz rule (3.24)) to the left-hand side of (3.38) we obtain

D {Aur"uk BPrPm } = DO A \VAVA SR

Vi) o10n

oy V. BrLeem
O (DY A BO

o10m
o1-0n
+ (_1>deg(A)vAAH1m“kyl...l,l A DVTB"“"”"UI”_UJ
+ (=1)% 8D DR A A
+ (—1)%sW RAT A (Dz',\A’“"'“kV oy N B

A i, BPrPm

o10n

1 01 0n

4 (= 1)der )15 g /\DiTBpl“'pmalmgn) (3.39)

V1Y

Then we use (3.31) to calculate the relation of DV Ak =
First we calculate

pa ik
., and VyDA B

DV, =dz" AV, V,+T" Ni,V, (3.40)

and
V.D=da" ANV, V, +V, T Ni, + T NV i, (3.41)

and find out that V, and 7, commute (follows from (3.20)) and ([3.26) by direct calcu-
lation, recalling i,4, = —i,i,)

i, VAR = Vi AR (3.42)
which then together imply
DV,=V,D+dz" AN[V,,V,] =V, T" Ni,. (3.43)
Thus we obtain the relation
DV Atk = NADAM T da? AV, VAR (3.44)

— VTP A, Al i

vyt

This result can as well be derived directly from the definitions (3.22)) and ({3.26]), but
it is a lengthy calculation. By using the definitions (3.22)) and (3.20) we obtain the
relation of Diy A #e and iy DA# " HE

vieeypd

(Diy 4 iyD) A1 = V) Arhe +0\TP N, A (3.45)

vy vy vieyp?

where we have also used (3.23), ([3:26) and iy7* = T'; — T'. Introducing the results

14



(3-44) and (3.45)) into (3.39) yields
D {Aﬂl"'#k Bp1-~~pmglman} — {DAur-ﬂlemW Bp1~-~pmolman}
de A 1 1 Pm
+ (_1) g ( ){A“ “’“yl...yl,DBp p al---an}
+ DQ/\T A VAA,ul---uk AV BP1pm
+(=1)des@) (DR” + RPN iy T + RM A z‘¢TT> A iy AP

vy--vp)

vy T 01 0n

o1
vy Nz B o1

+ 6% (R{z, - v(m) NiyARTE A B,

vy o10n

=+ (_1)deg(A)g>\¢ <RT¢ _ V¢TT) AV AF ik A i, BPrPm

viy o1°0n

+ 49>‘de¢ A ([v¢’ v/\]Aurw;c A Y. BPrPm

vy T 01 0n
+ V)\Alilwukulmyl A [V¢> VT]BPL..pmJlmUn) ’ (346)

where some regrouping and simplfications have been done. For further simplification
we calculate

DRM™ + R™ Ni,T" + R* Ni, T = dR™ + T A R +T% A R
— DR™ =D (0“PR”p> (3.47)
= D9 AR,

where ([2.30) has been used in the last equality. As a final step we introduce (3.28)
into the right-hand side of (3.46) and combine the contributions of the first and the
last term of (3.28]) to the third, fifth and sixth term of (3.46)). In the third term of the
resulting expression we calculate

DO™ + 6 T" + 675 T = DO | (3.48)

Thus we obtain the result

D {Am---ukw“w Bm---pmg1 o } - {DAMMMW---W Bm---pmglman}
+ ( deg {A‘“ Mul s DBm---pmalman}
+ D@” AN AR R NN B
+ (_1>deg(A)D9A¢> A er) A ,l')\Aﬂl"'ﬂkylmyl A Z'TBpl---pmglman
+ 0o (1?2A — VT + iR A d:vx) NiyAR N B
(~1)X D0 (R, = VT + iR A drX) AVAAS S5, NG BO0

k l
i K1 Hi—1 QM1 N 30 K1 p
Z ZAR b A\ A Vi — ZZ)\R vi A\ A ! kyl...ui1¢yi+1...yl> A

=1

AN BPPn AR A

O10n Vi
n
A (Z /iTRui(b A Bp1---p¢71¢>Pi+1---pm01mgn . ZiTR¢vi A Bpl...pma'l"‘a'i1¢0’i+1'“0’n>

i=1 i=1
(3.49)
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Hence for the Leibniz rule (3.38)) to hold for arbitrary tensor-valued differential forms,
we have to introduce the following constraints:

1. The connection D is symplectic
Do = <V 9“”) da” = 0. (3.50)

2. The interior product of the curvature of V vanishes
iR, =0. (3.51)

This implies that the curvature of V has to vanish, R”, = %dx“ NiyRY, = 0.

3. The curvature two-forms and the torsion two-form satisfy
Rt —V,T" +i,R* Adaf =0. (3.52)
Taking (3.51]) into account we obtain

Rt =V,T". (3.53)

It would be quite tempting to require that the other connection D satisfies a similar
Leibniz rule as . Such property would impose additional constraints on the con-
nections and further restrict the geometry. However, we do not require such property
for D, because the Poisson bracket ( - ) has been deﬁned with V, not with V, which
makes D the natural choice for the Leibniz rule

5. Graded Jacobi identity

D A1)
{A//J ukyl...yﬂ {Bpl p Ul~~'0'n7c ! T1"'Tj}}
+ (_1)deg(A)[deg(B)+deg(C)} {Bm---pmalm%j {Ch.--AiTlmTj, Am--.ukmmw}} (3.54)

A1 P _
+ (_1)[deg(A)+deg(B)] deg(C) {C 1 - {Aﬂl Mle"'Vl’ BP1P 01~~~0n}} — 07
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First we calculate the Poisson bracket

WL pLp A1

= 9¢1X1VXl9¢2X2v¢1Ammuku1...w N V¢2Bmmpmo1--.an A szCAlm)\i

+ pP1x1gP2x2 <v¢1 Amm#kyl...yl A v)a V¢2 BPrPm

D, AN
+ v¢ Alil Mkmww A V¢ Bpl P 01:0On N VX1VX2C ' Tl"""J’)
+( )deg @¢1X1V R¢2X2 A V<¢> AML R

Ty Ty

A1 A
A V)(26’ ' T

T10n

. D1 Pm . A1)
A l¢2B 01 0On A ZXZC '

vy

Nig,Vy B

Ty Ty

+ go1x1 RPx2 (( )deg V¢ AHTTEE A Z'XQCM-")\Z-

. D . BB
V1Y A Z¢2Bpl P o10n A 1X2VX1O '

d . D IYEDY
+ <_1) *&(4) i QAM “kul---zq /\szvfbprl P o10n /\VX1C '

vy 01 0n T1 T

+( )deg v¢ AHL R

Ty Ty
Ty Ty

V1Y

(= 1)des(Atdea(BYy Ak AN BOYOR A z‘XQVXICAl"“zl...T].>
+ (_1)deg(3)—1fi¢1X1 A ix1R¢2X2 A Z'¢1AM1~'/%

. pPipm ISRy
vy A Z¢2B g1:0n A ZX2C T1 T

deg(A)+deg(B) B . . O . A
+ (_1> eg(A)deg( )R%Xl AR¢2X2 A <Z¢>1Au1 #km---uz /\Z><17'¢2Bp1 P 01+0n /\ZXQC ! LT

+ (—1)deg(B)+1i¢1Aul"'“kyl...w A ,L'@Bpl..-pmolmgn A Z.Xl/éXQC)\l.“)\iTl‘“Tj> , (3.55)

where we have used (3.42). Cycling through A#=#e - BP=em and oM

On T1T5)

using the symmetry property (3.19) of the exterior product and introducing the expres-
sion ([3.28)) for the commutators of second covariant derivatives, gives the left-hand side
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of the graded Jacobi identity (3.54) as

P AL
{Alﬂ Mkl/l"'w’ {Bpl ’ 01°0n? o Tl"'Tj}}
+ (_1)deg(A)[deg(B)+deg(C)} {Bpl.“pmo'l...o'n7 {CAlm)\iTl-..q—j 9 Aﬂl“‘ﬂkulmw }}

e e e A1 D,
4+ (_1)[d g(A)+deg(B)] deg(C) {C 1 . {A“l ule"'Vl’ BriP 01---an}}

— |:9¢1X1 (VX16)¢2X2 _ 9¢2¢TX2X1¢) + 9¢2x1 (vx1ex2¢1 _ QXWT%XW)

+ gxexa <VX19¢1¢2 _ 9¢1¢T¢2Xlw>] VmAmmukylmyl A V¢2Bpl"'9m : A V%C«Ar-v\iﬁ”

010 “Tj

k l
i Bie i1 i1 b i p
+9¢1X19¢2X2 [<Z B! ¢¢1¢>2A 1 e kl/1"-l/z o ZR V¢¢>1¢>2A ' le---ViﬂlJl/Hl---l’l) "

i=1 i=1

AN B AN O Vg APRE A

vy

k l
pi P1Pi—1YPit1Pm ) pPLPm
A <ZR ¢X1¢2B o1 0n ZR Uz’X1¢2B 01“'01'—1¢Ui+1"~0n> A
i=1

i=1

A vx2 C/\l“‘)\i + v¢1AH1"'Hk A V¢2 BPrPm A

01 0On

k l
Ai AL A1 Aigr g _Z W A
A (ZR ¢X1X20 T1Ty R fr,-XlXQC LT 1 Tig 1 T
i=1 i=1

= R0 A (i A

T Ty V1Y

p1pm
wirba NV, B

+ (- 1)deg(A)+1VX1 ARk

vy O1++0

AL
n /\ VXQC 1 Tj

. P11 Pm A1
vy A Z’l/JB g1 0n A VX2C’ LTy

+ (—1)deerdeaBryg Amn AN BPSPRA z'wch"“;l...Tj)]

. p1p . A1
vy A 7’¢2B m01~~an /\ 7’X2C

+ 0¢1X1VX1é¢2X2 A <(_1)d6g(B)V¢IAM1'“Mk

+ (= 1)deg(A)+deg(B)+1Z'X2 ARk

T1 T

D . A1
N v¢1Bp1 P n A Z¢2C ' T Tj

AL A
e V@C ' Tl"'TJ')

vy 010

o (—1)dee g, ANy, BT

1 010

+ (_l)deg(B)—l <R¢1X1 A Z'X1R¢2X2 + R¢2X1 A l'XlRXszl + RX2X1 A Z'X1R¢1¢2> A

A ,L'¢1AM1"'/Lk A l‘@BPr-.me . A Z'XQC)\l...)\iTlmTj ) (356)

Since the graded Jacobi identity (3.54]) requires that the right-hand side of (3.56|) van-
ishes, we have to introduce the following constraints:

vy 100

1. A covariant version of the Jacobi identity for the Poisson bivector
S 0 (V00— 0 77,) = 3 4rpn T, — 0, (3.57)
(1sv,p) (p,v,p)

where (3.10)) has been used in the first equality. This constraint is already satisfied
BD.

18



2. The curvature tensor of the connection V vanishes (3.12]).

3. The curvature two-form of the connection V is covariantly constant under V,
V,.R"=0. (3.58)

This is equivalent to the curvature tensor of V having the same property (13.13)).
4. The curvature R* satisfies ([3.14).

Comparing the constraints needed to satisfy the graded differential Poisson algebra of
tensor-valued differential forms to the constraints and f for differential forms
obtained in the literature, we find that there is no need for new constraints. There are new
conditions , and on the connections, but they are all satisfied due to the
vanishing of the curvature of the connection V (3.12)), the definition of the two connections
in terms of the same set of connection coefficients and the covariant Jacobi identities
H Thus this generalization to tensor-valued differential forms does not require any
additional constraints on the connections.

It has been shown [9] that due to the constraints and there exists a local
coordinate system {®*} where the connection coefficients are given in terms of the invertible
Poisson bivector 9 = {® &} as

5 = 0%05ws, . (3.59)

Here we refer to these coordinates by the first part of the alphabet «, 8, v, . ... The form (|3.59)
of the connection coefficients I'g is covariant under the group of affine transformations of
the coordinates ¢,

O — NP +V*, (3.60)
where N%; and V* are constants, since both sides of transform like tensors under such
affine transformations. The torsion tensor and the (nonvanishing) curvature tensor are, of
course, also given by the Poisson structure in these coordinates, e.g. T, = 00 Osws,. An-
other special basis is provided by the one-forms P,5d®”, with respect to which the connection
V is trivial, that simplifies many calculations. Most importantly one finds that the Poisson
bivector is quadratic in the coordinates ®* by solving the identity }?{aﬁvé = 05T, for the
torsion and then the torsion T, %7 = 9,0°7 for 629

a «a 1~ a a a
9% = (>, dF} = 5hs Po190 + foPT 4 goF (3.61)

where R, 575, fﬁﬁ and g are constants (all antisymmetric under o <+ 3). This is somewhat
analogous to the Darboux’s theorem for symplectic geometry.

We provide some further analysis on the constraints imposed on the connections. First
we calculate the vanishing covariant derivative V,, of Rve by using the formula
that is implied by the symplecticity of V:

VL0 = 9, (07, = (07 + 770 B, + 09,0, =0, (362)

13See [9, 3] for how the condition is implied by the definition of the two connections (3.4), the
vanishing of the curvature of the connection V and the so called first Bianchi identity in its
tensorial form.

4Here we have used 0“° and w,p to raise and lower indices respectively. See [J] for details.

19



Multiplying by the symplectic form w,, (sum over v), introducing the constraint (3.53]) and
renaming some of the indices yields

(T2 w0 +T°,,) VoT? + V,V,T? = 0. (3.63)

Thus the second covariant derivatives of the torsion can be written in terms of first covariant
derivatives of the torsion multiplied by the torsion, the Poisson bivector and the symplectic
form.

Let us consider the antisymmetric and the symmetric parts of with respect to the
indices p and v. According to (3.28) and the vanishing of the curvature of the connection V

([3.12) we have [V, V,] = -T*, V,. Hence we can decompose

1
V.V, =V,V, + V[uvy] =VuVy — §TPWVP' (3.64)
Thus the antisymmetric part of (3.63)) is
1 TO [ea
> ((T)‘Mwm — T W) 07 + T W) V, 17 =0. (3.65)
Assuming (3.53]) does not vanish, (3.65)) implies
(T pwon — T pwn) 07 + 17, =0 (3.66)

or equivalently

> T%,we, = (3.67)

(w,v,p)
Together (3.7)) and (3.67) impose a fairly strict set of conditions on the torsion — though not

enough to fix it completely.
The symmetric part of (3.63]), which can be written

Vi ViT? = = (T° pwyo + Tzwye) V17 (3.68)

N | —

does not provide such an interesting result.

3.3 Star product
The star product for tensor-valued differential forms can be defined similarly as in [3]

AMBE % BP1Pm — AM1HE A BPLPm

V1Y 01:0n vy 01°0n

3.69
SO (A B ) O

where C,, are bilinear covariant differential operators of at most order n in each argument,
which are constructed from the covariant derivatives V,,, the Poisson bivector ¢, the torsion
tensor and the curvature tensor(s). Further the operators C,, are chosen so that the star
product satisfies the following properties:
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1. The star product is associative

o AN
AM 'ule"'Vl * (Bpl P S * OM 7'1“'7']')
= (Aprme Lk BP) ok C>\1~-->\i7—1.“7_j . (3.70)
2. The first order deformation is given by the Poisson bracket ([3.33))
Cl (Amm#kw---wv Bplmpmm---an) = {Aulmukm---uz’ Bplmpmtfl---tfn} : (371)

3. The constant function, M > x + 1, is the identity: 1x A= Ax1 = A.

4. Every C, is of order n in the Poisson bivector § (including its covariant derivatives
(3.10) and the curvature (3.9))) and it has zero degree

deg (C’n (Arpe B”l“'pmal,,,gn)> = deg(A) + deg(B). (3.72)

Vi)

5. The operators C,, have the generalized Moyal symmetry
C, (Aur"me BPLPm

viyp)? U1~~~Un)

= (_1)deg(A) deg(B)+nCn (Bp1~~~pm AR B

O1+0n? V1~~-Vz) :

(3.73)

To the second order in the deformation parameter A the star product is given by

1
C’2 (Alll---,ukl/lmyl, Bpl---pmalman> _ §9A1T1 0)\27-2 VM V)\QAM"'”’“ A le VTZBplmme

vy 10n

AV, B

vy 17°0n

1 1
+ g (Qz\l‘rlleeAsz + §9A2¢972XT)‘1¢X) (V)\lv/\QAﬂl"'#k

F VR AR, AT, B, )

+ (_1)deg(A)(9>\171R)\2T2 A V)\lz'/\QAul"'“kylmw A\ VﬁimBmmpmgl...an

1 - ~
_ T pMT A2T2 i M1 p o q pLp
2R A R N 7’>\12)\2A vy, N ZleTZB m0'1"'0'n

1 - _
_ §R>\1T1 A, R A <(_1)deg(A)Z'>\lZ')\QAul“'ukylmyl A Z'TQB/Jr“pmJlman

+ iA?AMlmuer“Vz A Z')\IZ'TQBP1~..pm01MUn> ) (374)
The second term of (3.74)) can be simplified by using (3.10]) and (3.7)),
1 1
0"V + 50707 = =50 0T (3.75)

but we choose to keep the similarity with the star product of [B]H Proof of the associativity
of the star product (3.69)) to O(h?) is completely analogous with [3]@ At the classical level

5There is a sign difference in the second factor of the second term of (3.74) compared to [3] that is

enabled by the antisymmetry of the first factor under Ay <+ 7. The motivation for this cosmetic change is

to emphasize the symmetry property (3.73)) of Cs.
6Due to the vanishing of the curvature of the connection V the tensorial indices can mostly be ignored in
the calculation verifying the associativity (3.70) to O(h?).
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O(1) the associativity is trivially implied by the associativity of the exterior product. At O(h)
the associativity is implied by the graded symmetry rule (3.37). At O(h?) the associativity
condition

JERY™ p1p A1
A A Ch (B n o .C )

V1Y

— ICRR p1ep ArAg
Cy (A NB "o O T1"'TJ'>

vy

Vi)

A1 g
n A C 7'1-~~7'j)
_ H1 1 Pm A1
CQ (A vieyp? B Ul"'o'n) NC T

— Cl <C’1 (Alﬁ-“uk BP1-~-pm01mJn) ’ C)\l-..)\iTl..'Tj>

10

(
Loy (anm, g, .

10Ty

vy-vp?
— M1 i p1-Pm AL A
Cl (A v1eyp) Cl (B O10n? C 17’1"'7—]'))

can be shown to hold by using the properties of the Poisson bracket, the constraints these
properties imply — namely (8.6), (3.7), (8.12), (3.13) and (3.14) — and the properties of
the covariant derivative and the interior product — including the commutativity of the two
, iuty = —i,%, and the decomposition ([3.64]).

As discussed in [3] the next order i* deformation could be found with a considerable
amount of calculation by finding an ansatz that satisfies the required conditions.

If the torsion vanishes, we have a flat symplectic connection V. Then the star product

(3.69) can be defined by

1 i p1+pm — AHL p1pm
A V1Y * B 010n ’T:O =A V1Y NB 010n

AV, -V, BPrem (3.77)

V1Y 010n )

[oe) hn
AT AnTn
+Zm011,__‘9 vkl"'vAnAul Jire
n=1
since now the covariant derivatives commute both with each other and with the Poisson
bivector 6+*.

3.4 On the algebra of tensors

Thus by starting from the graded differential Poisson structure on the algebra of forms
Q(M), we have generalized it to the algebra of tensor-valued differential forms (2.13]) and
consequently to the subalgebra of all tensor fields on M,

T(M) = é QUM, T c Q(M,T). (3.78)

For such tensor-valued zero-forms the Poisson bracket (3.33)) is reduced to (3.34)) and in the
star product,

K1 Hk P11 Pm — AMH1IHE P11 Pm
A | Z RN * B o1 0n A 1/1--~le O1:0n

(3.79)

0'1“‘0'71) ’

+ Z O, (Aulmuklll“'llz’ BP1pm
n=1
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the deformation of order A? is written

C, (Am---uk BPLPm

vyeyp? Ul"'o'n>

p1-p
V., V.,BPrbm

V1 On

— %Hhﬁ pr2m2 V)\l V}Q AP

+

o10n

1 1
g <‘9A17—1 VTle)\zTQ 4 §6A2¢HTQXTA1¢X> <v)\l V)\QAMWMCVI...WVTQBplmpm

+ VTQAH1-~~uk VAIV)\QBPL..melman) ) (380)

V1Y

In the case of vanishing torsion we obtain the simple star product of tensor fields
exp (V2077 ) B,

In the recent work [5] a covariant star product of functions was defined on a symplectic
manifold with vanishing torsion and curvature (7' = R = 0). It was also proposed that this
star product could be straightforwardly extented for tensor fields. We recognize that the
reduced (T'= R = R= 0) case of our more general star product of tensor fields
is exactly what the extension of the star product of [5] to tensor fields would be.

B ik P1Pm — AM1pk
A oy * B oo | pg = A

v e (381)

3.5 Discussion

When we consider possible applications of these star products and in physics,
particularly gravity and gauge theory, the problem (perhaps also a possibility) is that the
structure of the graded differential Poisson algebra of (tensor-valued) differential forms re-
quires strict constraints on the underlying symplectic manifold. Due to the required con-
straints the torsion and the curvature are rather restricted, which is likely to cause some
problems particularly for theories of gravity. Still the connection V can have a nonvanishing
torsion and in this case the symplectic connection V also has curvature. This should open
up the possibility for some nontrivial gravitational dynamics.

In the extremely restricted (T = R = R = 0) case that was also recently studied
in [5] there is virtually impossible to have a nontrivial theory of gravity, because neither the
energy-momentum tensor nor the spin density tensor are supported due to the vanishing of
both the curvature and the torsion. Setting up the equivalence principle would clearly be
impossible. Thus this star product can be used only in cases where the curvature and
the torsion vanish in the corresponding commutative theory. Then in the noncommutative
extension of the theory we would find corrections to the geometrical objects in the higher
orders of the deformation parameter A due to the star product. In the gravitational field
equations these corrections would require compensating corrections to the energy-momentum
tensor and possibly to the spin density tensor depending on the chosen action. This is
problematic since, as we noted, matter fields are not supported in this casem An example
of such theory is the two-dimensional noncommutative dilaton gravity studied in [5].

17Such corrections to the right hand (energy-momentum) side of field equations frequently appear in non-
commutative theories of gravity when a star product is introduced. Particularly in the case of vacuum field
equations such corrections cannot be associated to matter fields, because presumably there are no matter in
empty space. So the corrections would have to be physically interpreted as some kind of energy-momentum
inherent to the noncommutative spacetime. However, at this point such interpretations are mere speculations.
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In the case of gauge theory these restrictions are not quite as severe as in the case of
gravity. Noncommutative gauge theory with Yang-Mills actions has been studied [11}, 12] in
this setting. The former work employed the popular Seiberg-Witten map [13]. In [I2] the
star product of differential forms was generalized to Lie algera-valued differential forms in
order to be able to apply it to the connection one-form of the gauge theory, as well as to the
gauge transformation parameter and the field strength, which are all Lie algebra-valued. This
generalization is fairly simple to achieve since the generators of the internal gauge symmetry
commute with the covariant derivation V. The generalization to tensor-valued differential
forms we have presented can be further generalized to Lie algebra-valued objects,

Ab — AMh o (3.82)

vy vy

where T, are the generators of the Lie algebra, along the lines of [I2] with relative ease[™|
The star product is defined by
AP HE % BP1Pm — AHLHE a A BPLPm bTaTb

vy O1-:0n Vi 01+0n

(3.83)

01+0n

+ Z O, (Am..-ukylmyla’ BPLPm b) T.T;,
n=1

where the operators C,, are defined as before. In order to obtain a star commutator that is
consistent with [I2] we have required the symmetry property (3.73)) for C,,, though it is not
required in [3].

[A”l"'“kyl...yl, B”l"'pmgl...an]* = AR,k BPrTe

_ (_1)deg(A) deg(B)Bp1~~me

o1+0n

* Aul“'”k
1°0n

_ Amae a /\Bm“.pmgl...(;nb[TaaTb] (384)

Vi

vyyp

+ Z hncn (Aulmukm-“ula’ Bplmmel"'Unb> [Ta’ Tb](n) ’
n=1

where [T, Ty () = T Ty — (=1)"T,T, is the anticommutator, {75, T;}, for every odd n and
the commutator, [T,,T;], for every even n.

4 Covariant star product on a Poisson manifold

In this section we discuss a covariant star product on a regular Poisson manifold M, first
for functions and then for tensor fields. Since M is regular, we can require that a linear
connection exists on M. On a nonregular Poisson manifold we would generally define a
different connection on each symplectic leaf of M, or define a contravariant connection on M
and use the associated contravariant derivative instead of a covariant one [14] [15] [16].

It was shown by Kontsevich [I7] that a star product can be constructed for smooth
functions on R? with any Poisson structure @ in the sense of deformation quantization, so
that at first order in the deformation parameter the star product is given by the Poisson

18Please note that one of the misunderstandings of [4] has been inherited to [12]. Namely, [V, V,]a =0
is not required for any a € Q(M), since it would also imply that the torsion vanishes, which is not necessary.
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bracket of functions. A path integral formulation of the Kontsevich quantization has been
developed [18]. The Kontsevich formula is not well-suited for calculating the star product
beyond A2, because it contains integrals that cannot be solved by any standard method. The
star product of functions has been calculated up to A* by using a simpler iterative approach
[19].

The existence of a covariant star product of functions on any Poisson manifold (M, 0)
with a torsion-free linear connection has been shown in [6] and given explicitly to A® as an
example.

4.1 Star product of functions
The Poisson structure on the algebra of smooth functions f, g € F(M) is defined by
{f,9} =0(df,dg) = 0"0,f0,9, (4.1)

where 6 is a Poisson bivector field, i.e. a smooth section of A*T'M. The Poisson bracket (4.1))
satisfies the required properties

1. Antisymmetry: {f, g} = —{9g, f}

2. Jacobi identity:

{f g} +{g.{h, f}} +{n.{f.g}} =0 (4.2)
3. Derivation in the second argument:
{f.9hy =L/, gth+9{f h} (4.3)

when the bivector 0*” satisfies the Jacobi identity (3.2)).
The star product of functions f,g € F(M) is defined by

frg=1rfg+> W'Culf.9), (4.4)
n=1

where the bidifferential operators C,, : F(M) x F(M) — F(M) are constructed from the
torsion-free linear connection V, the Poisson bivector and the curvature tensor. At order h
one has

Ci(f.9)={f.9}- (4.5)
The star product (4.4)) is required to be associative to all orders in 7,
[r(gah)=(fxg)xh. (4.6)
Such star product of functions is given to order i® by [0]
1 1
Co(f,g) = EH“VGPUV#foV,,VUg + §0“”V00”p(vuvyfvpg +V,fV,.V.9) (4.7)
1
+ EVPO‘“’VMG”"VVfVUg ,
1 v
Cs(f,9) = —69’0 (ﬁva)fjp (ﬁxgv)w , (4.8)
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where L,V is the tensor defined by the Lie derivative of the connection V along the Hamil-
tonian vector field X = i(df)é:

(»Cva)l:p = QUMVVVPVJ]C + Vueguvpvaf + Vpeguvuvaf (4 9)
+V V07N f + R*,,,07°V\f . ‘

Note that since the torsion vanishes, 7% , = 0, the covariant derivatives commute
Vu, Vo) f =-T°,V,f =0, (4.10)

for every f € F(M). This star product exists for any Poisson manifold (M,#) and any
torsion-free connection V.

A covariant star product of functions can alternatively be defined directly according to the
Kontsevich’s universal formula [I7] by replacing the partial derivatives d, with the covariant
derivatives V, in all C,,, n > 1. By using the results of [19] one can write this star product
up to order A*. At orders higher than A?, where second and higher covariant derivatives of
the bivector € appear, we have to introduce another condition

V., V,]0" =0, (4.11)

in addition to the vanishing of the torsion (4.10)), in order to ensure the associativity of the
star product. Thus the curvature tensor of the connection satisfies

V., V,]07 = —TAWVAQ’” + R'DAWH’\” + R"Awﬂp’\ (4.12)
= —07'R’,,, +0"R%,,, =0 '
or equivalently
RY = R™ . (4.13)

It is sufficient for 6 to be covariantly constant, V,0"” = 0, but it is not necessary.lr_gl Without
the above condition for the curvature we would have to add terms with curvature contri-
butions to the star product in order to satisfy the associativity requirement. Indeed this
approach is nothing more than a special case of the universal star product studied in [6].

Relaxing the condition of [6] that the connection is torsion-free appears to be very difficult
without imposing some constraints on both the curvature and the torsion. We shall discuss
this briefly while considering a star product of tensor fields.

4.2 Star product of tensor fields

Although we have found a covariant star product of tensor fields on a symplectic manifold as
a special case of a star product of tensor-valued differential forms in the Section [3] we would
like a find a construction with less constraints on the connection. Since it is the definition of
the Poisson bracket that primarily imposes the constraints on the connections in the case of
tensor-valued differential forms, we attempt to define a Poisson bracket of tensor fields with
a minimal set of properties.

9Tn the case of a symplectic manifold the condition V6" = 0 would be equivalent to the symplectic form
w to be covariantly constant, i.e. having a symplectic torsion-free connection.
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The Poisson structure (4.1)) can be extended on the algebra of smooth tensor fields A, B €
T(M) by
{Aul---uk BPvpm } = PNV AR

VB (4.14)

viyp? V1Y 17°0n *

For a function f € F(M) the bracket {f,-} is a covariant derivation with respect to the
second argument

{f, AR

with the Hamiltonian vector field X }’f = 0"V, f. We postulate the following properties for
the Poisson bracket as a straightforward generalization of the usual case of functions.

b=V, Arie (4.15)

vy vy ?

1. Antisymmetry:

{AM1~"Mk Bl’l"'pmal.--on} - {Bp1-~~pm Ammukm"'l’l} <416>

Vi) o1+0n?

2. Jacobi identity:

{A#lmukm---uz? {BPI"'PmUlWUn, C/\ll..AiTl"'Tj }}
+ {Bplmpmcn..-an? {C)\lm)\iﬂ---Tj’ Aulmukmmyl }} (417)

+ {C ! Tl"'Tj, {A'ul Mkl/y“l/l?Bpl P 0'1"'0'71}} - O

3. “Derivation in the second argument”

[GR p1--pm AL A — [ Amk p1Pm AL A
{A vi-yp? B U'l"'UnC le"'Tj} o {A vy-yp? B 01"-0n} C 17'1-"7]'
p1+Pm 1 g Ay
+ B Ul“'Un{A V1~~-l/l7c 7—1...7-].}
(4.18)

The Jacobi identity (4.17) imposes the following two constraints on the connection V:

> 0" (Ve — 0T7,,) =0, (4.19)
(1:v,p)

O TR =0. (4.20)

Note that according to the curvature tensor does not need to vanish everywhere since
the Poisson bivector 6* is not necessarily invertible.

Then we quantize the Poisson manifold by defining a covariant star product of tensor
fields as in (3.79)). The order h deformation, C', is again defined to be the Poisson bracket
(@14). The operators C,, are chosen to satisfy the same properties as in the Section (3.3) ]
A propriate ansatz for Cy can be found by calculating the side of the associativity condition
at order h? that depends on C; and choosing a C that produces a similar expression on

20The sign factor in the symmetry property (3.73) is obviously replaced with (—1)".
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the other side of the condition. We choose C5 to be of the same form as in (3.80). The
associativity property of the star product imposes the additional constraint

> o (VUW + %GMT”M> =0. (4.21)

(psv5p)

In order to satisfy both and we require that the connection satisfies the covariant
Jacobi identities ([3.7)), so that the cyclic sum over each of the terms of (£.19) and (4.21) is
zero. Thus the constraints and are all that is needed for a covariant star product
of tensor fields on a Poisson manifold up to order A2.

In the case of a star product of functions there is no need for the constraint .
However, the other of the constraints also affects the curvature. Thus relaxing the
torsion-freeness constraint has lead to having some constraints for both the torsion and the
curvature.

At present it is unclear whether additional constraints need to be introduced for the
connection at higher orders in A.

5 Conclusion

We have generalized the recently defined covariant star product of differential forms on a
symplectic manifold [3] to tensor-valued differential forms and consequently to tensor fields
of any type. This generalization does not require any new constraints on the connections.
Possible applications of the star product to gravity and gauge theory have been discussed,
considering the rather strict constraints the connections have to satisfy. Further study of
both of these applications is required.

Then we proposed a covariant star product of tensor fields on a Poisson manifold with
a linear connection that has less constraints than in the first case. Thus this star product
could be a more viable option for theories of gravity.

We also discussed the possibility to relax the torsion-freeness condition of the linear con-
nection of the universal covariant star product of functions defined on a Poisson manifold in
[6]. It was found that this requires one to impose some constraints on both the torsion and
the curvature, namely in our case.

Finally a remark about the Poisson algebra of tensor fields is in order. A Poisson algebra
consists of a commutative associative algebra endowed with a Poisson bracket. A graded-
commutative associative algebra — like the algebra of differential forms — can be turned
into a graded Poisson algebra by introducing a graded Poisson bracket. However, the algebra
of tensor fields is neither commutative nor graded-commutative. This is the reason why
the Poisson structure of tensor fields — was defined for the components of the
tensors, which are of course commutative functions. This raises the question could a Poisson
structure for tensor fields be defined some other way compared to the definition given above?
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