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Abstract: We give analytic methods for nonparametric bias reduction that remove the need for
computationally intensive methods like the bootstrap and the jackknife.

We call an estimate pth order if its bias has magnitude n−p
0 as n0 → ∞, where n0 is the sample

size (or the minimum sample size if the estimate is a function of more than one sample). Most
estimates are only first order and require O(N) calculations, where N is the total sample size. The
usual bootstrap and jackknife estimates are second order but they are computationally intensive,
requiring O(N2) calculations for one sample. By contrast Jaeckel’s infinitesimal jackknife is an
analytic second order one sample estimate requiring only O(N) calculations. When pth order
bootstrap and jackknife estimates are available, they require O(Np) calculations, and so become
even more computationally intensive if one chooses p > 2.

For general p we provide analytic pth order nonparametric estimates that require only O(N)
calculations. Our estimates are given in terms of the von Mises derivatives of the functional being
estimated, evaluated at the empirical distribution.

For products of moments an unbiased estimate exists: our form for this “polykay” is much
simpler than the usual form in terms of power sums.

1 Introduction and Summary

Let T (F ) be any smooth functional of one or more unknown distributions F based on random
samples from them. Bias reduction of estimates of T (F ), say T (F̂ ), has been a subject of con-
siderable interest. Traditionally bias reduction has been based on well known resampling methods
like bootstrapping and jackknifing in nonparametric settings, see Efron (1982). However, these
methods may not be effective in complex situations when the sampling distribution of the statistic
changes too abruptly with the parameter, or when this distribution is very skewed and has heavy
tails. Also the robustness properties of F may not be preserved for T (F ) for all T (·).

Recently, various analytical methods have been developed for bias reduction in parametric
settings. Withers (1987) developed methods for bias reduction based on Taylor series expansions.
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Sen (1988) established asymptotic normality of
√

n{T (F̂ ) − T (F )} as n → ∞ under suitable
regularity conditions. Cabrera and Fernholz (1999, 2004) defined a target estimator: for a given T
and a parametric family of distributions it is defined by setting the expected value of the statistic
equal to the observed value. Cabrera and Fernholz (1999, 2004) established under suitable regularity
conditions that the target estimator has smaller bias and mean squared error than the original
estimator. See also Fernholz (2001).

This paper provides the first analytical methods for nonparametric bias reduction. We give
three analytic methods for obtaining unbiased estimates (UEs) of any smooth functional T (F ).
These UEs are in general infinite series which in practice need to be truncated. Let us define
a pth order estimate as one with bias O(n−p

0 ) as n0 → ∞, where n0 is the minimum sample
size. Our truncated pth order estimates require only O(N) computations, where N is the total
sample size. By contrast computer intensive methods, like the pth order bootstrap and jackknife
estimates require O((n1 · · ·nk)

p) calculations. Put another way, for fixed p, the computational
efficiency of our analytic pth order estimate relative to the pth order bootstrap or jackknife estimate
is O(np−1

0 ). So, our truncated estimates remove the need for these computationally intensive
methods of nonparametric bias reduction. The downside is that the details must be worked out
for each nonparametric functional of interest. This involves calculating the von Mises or functional
derivatives of the functional up to order 2p−2. When von Mises (1947) introduced these derivatives,
he did not define them uniquely, nor did he give a method to obtain higher derivatives. This was
rectified in Withers (1983): the second derivative is not the derivative of the first derivative, but
requires a ‘correction’ term. von Mises did give a method for calculating the first derivative, also
known as the influence function and this is well known and widely used. von Mises’ expansion for
say T (F̂ ) about T (F ) was extended to functionals of more than one distribution in Withers (1988).
This introduced for the first time the partial von Mises derivatives and showed how to calculate
them.

Suppose we observe k independent random samples of sizes n = (n1, . . . , nk) from k unknown
distributions F = (F1, . . . , Fk) on Rs1, . . . , Rsk , where R is the real line. Let F̂ = (F̂1, . . . , F̂k) be
their k empirical (or sample) distributions. We shall give three pth order estimates of any smooth
functional T (F ) in terms of the derivatives of T (F ) up to order 2p − 2 evaluated at F̂ .

As noted we derive these pth order estimates from three forms of UE for T (F ). These are
all infinite series unless T (F ) is a polynomial in F , (for example, a polynomial in the moments
of F1, . . . , Fk). Truncation of these series yields three forms of estimates of T (F ) of bias O(n−p

0 ),
where n0 = mink

i=1 ni and p ≥ 1 is any specified integer.

We call these three forms of estimates the S, T and V estimates. For p = 2, all three forms of
estimates have k + 1 terms. But for p > 2 the S estimate is the best choice, requiring fewer terms
than the T estimate or the V estimate: see Section 5. The T estimate is its power series equivalent.
The V estimate is an intermediate form for arriving at the S estimate.

If T (F ) is a product of moments or cumulants, then an unbiased estimate of it exists, and is
given by our S estimate with the appropriate choice of p. Special cases include the UEs of the
cumulants of Fisher (1929), the UEs of the central moments of James (1958), and the polykays
of Wishart (1952) given in terms of the power sums via tables of the symmetric polynomials: see
Stuart and Ord (1987, Section 12.22). Our S estimate gives these polykays in terms of the sample
central moments and so is much more compact and avoids the need for these tables.

For p = 2 and k = 1 the relation of our S estimate to the infinitesimal jackknife of Jaeckel
(1972) is given in Appendix A. Jaeckel gave formulas for second order estimates in terms of the
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derivatives with respect to the weights of T (F̂ ), where F̂ is now the weighted empirical distribution.
His formulas are equivalent to our second order one sample S and T estimates. Our formulas are
given in terms of the second derivatives of T (F ).

For the case of one sample problems (functionals of only one distribution function), the S and T
estimates given here were obtained by a much more laborious approach in Withers (1994a) starting
with an expansion for ET (F̂ ) based on a generalised delta method; results were given up to p = 4.
(This also contains more examples.) Here these results are extended to p = 6 for the general k-

sample problem. The present method uses U -statistics and so bypasses the need in Withers (1994a)
to differentiate functionals of derivatives.

At this point we give four simple one sample examples dealt with in Section 6:

• For univariate data, a second order estimate of the standard deviation T (F ) = σ is T (F̂ ){1+
m−1s1(F̂ )}, where m = n or n − 1, s1(F ) = (β4 + 3)/8 and β4 is the kurtosis, that is the
standardised fourth central moment.

• For univariate data, a second order estimate of T (F ) = µ/σ is T (F̂ ) + n−1S1(F̂ ), where
S1(F ) = −β3/2 − T (F )(3β4 + 1)/8 and β3 is the skewness, that is the standardised third
central moment.

• For bivariate data a second order estimate of the ratio of marginal means T (F ) = µ1/µ2, is

(X1/X2){1 + n−1[X1X2/(X1 X2) − X2
2/X2

2
]}.

(The usual ratio estimate T (F̂ ) = X1/X2 has bias O(n−1).)

• For multivariate data, we give a second order estimate of T (F ) = (α′µ)q, where µ is the mean
vector and α is any given vector of the same dimension, is

(α′µ̂)q{1 −
(

q

2

)
(α′µ̂)−2α′V̂ α/(n − 1)},

where µ̂ is the sample mean, and V̂ is the sample covariance.

Applications to skewness and kurtosis have already been given in Withers (1994b). A k-sample
univariate example is given by interpreting µi in the last example as the mean of the ith distribution
sampled, µ̂i as the mean of the ith sample, and replacing α′V̂ α/(n − 1) by

∑k
i=1 α2

i v̂i/(ni − 1),
where v̂i is the ith sample variance. All these examples allow for a possible initial transformation
of the data X → h(X) say.

The three analytic methods for obtaining UEs are as follows. The simplest UE for T (F ) has
the S estimate

∞∑

i1,...,ik=0

Si1···ik(F̂ )/{(n1 − 1)i1 · · · (nk − 1)ik}, (1.1)

where (m)i = m(m − 1) · · · (m − i + 1) = m!/(m − i)!. Clearly this can be transformed if desired
to the T estimate

∞∑

i1,...,ik=0

Ti1···ik(F̂ )n−i1
1 · · · n−ik

k . (1.2)
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The coefficients Si1···ik(F ) and Ti1···ik(F ) are functions of the partial von Mises derivatives of T (F )
of order up to (2i1, . . . , 2ik). The third form of UE for T (F ) has the V estimate

∞∑

r1,...,rk=0

V̂r1···rk
/(r1! · · · rk!), (1.3)

where Vr1···rk
is determined by the partial derivatives of T (F ) of order (r1, . . . , rk). If T (F ) is a

polynomial in F (such as a polynomial in the moments and cumulants of F ), then the S and V
forms of the UE reduce to finite sums.

In Section 2 we derive the V estimate (1.3) and its multivariate analogue using U -statistics and
tables of the symmetric polynomials. Section 3 derives from it the S estimate (1.1). Section 4
derives the T estimate (1.2). The number of terms required for these estimates and the bootstrap
estimate are compared in Section 5. Finally, Section 6 illustrates the three estimates using various
examples, including the four listed above. We show in particular that our estimates consistently
outperform those due to Sen (1988) and Cabrera and Fernholz (1999, 2004). Computer programs in
MAPLE for the implementation of the V , S and T estimates for any p and k are given in Appendix
B.

We shall often use bold to denote an integer vector, for example, nnn for (n1, n2, . . . , nk), and 111
for (1, . . . , 1). Similarly, we write r!r!r! = r1! · · · rk! and (m)i(m)i(m)i = (m1)i1 · · · (mk)ik . With this notation,
(1.1)–(1.3) become

∞∑

iii=000

Siii(F̂ )/(nnn − 111)iii,

∞∑

iii=000

Tiii(F̂ )/nnn−iii,

∞∞∞∑

rrr=000

V̂rrr/rrr!.

We show that the truncated forms

Snpnpnp(F̂ ) =

ppp−111∑

iii=000

Siii(F̂ )/(nnn − 111)iii, Tnpnpnp(F̂ ) =

ppp−111∑

iii=000

Tiii(F̂ )/nnn−iii, Vnpnpnp(F̂ ) =

2ppp−222∑

rrr=000

V̂rrr/rrr!,

all have bias O(n−p1

1 + · · · + n−pk

k ) as nnn →∞∞∞.

2 The V Form of Unbiased Estimate

2.1 One Sample

Let us first consider the case of one distribution F on Rs and one sample X1, . . . ,Xn. For G any
distribution on Rs the von Mises-Taylor expansion of T (F ) about T (G) is

T (F ) =

∞∑

r=0

Vr(F,G)/r!, (2.1)

where V0(F,G) = T (G) and Vr(F,G) =
∫
· · ·

∫
TG(x1 · · · xr)dF (x1) · · · dF (xr) for r ≥ 1, and

TG(x1 · · · xr) is the rth order (von Mises) derivative of T (G), uniquely defined by (2.1) subject to the
constraints that TG(x1 · · · xr) is not altered by permuting x1, . . . , xr, and

∫
TG(x1 · · · xr)dG(x1) = 0.

The first derivative or influence function of T (G) is just TG(x) = limǫ→0(T (Gǫ)−T (G))/ǫ, where
Gǫ(y) = (1−ǫ)G(y)+ǫI(y ≤ x) and I(A) is 1 or 0 for A true or false. A simple method of obtaining
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TG(x1 · · · xr) from TG(x1 · · · xr−1) was given in Withers (1983). For example, S(G) = TG(x) has
derivative SG(y) = TG(x, y)− TG(y) so this gives the second derivative of T (G) in terms of its first
derivative. Similarly, S(G) = TG(x, y) has derivative SG(z) = TG(x, y, z) − TG(z, y) − TG(x, z) so
this gives the third derivative. The analogous formula holds for the derivative of the general rth
order derivative, with r ‘correction’ terms subtracted.

For fixed G an UE of Vr(F,G) is the U -statistic

V n
r (F̂ ,G) =

∑

r

TG(Xi1 · · ·Xir)/(n)r, (2.2)

where
∑

r sums over all (n)r permutations of distinct i1, . . . , ir in 1, . . . , n. So,

nV n
1 (F̂ ,G) =

n∑

i=1

TG(Xi) = n

∫
TG(x)dF̂ (x),

(n)2V
n
2 (F̂ ,G) =

n∑

i6=j

TG(Xi,Xj) = (
n∑

i,j=1

−
n∑

i=j=1

)TG(Xi,Xj)

= n2

∫ ∫
TG(x1, x2)dF̂ (x1)dF̂ (x2) − n

∫
TG(x2

1)dF̂ (x1),

where TG(x2
1) = TG(x1, x1), and so on.

Note that V n
r (F̂ ,G) can be written down using the tables of the symmetric polynomials in Stuart

and Ord (1987, Appendix Table 10, page 554) for r ≤ 6 and David and Kendall (1949) for r ≤ 12.
The last column of these tables expresses the symmetric polynomials [1r] =

∑
r xi1 · · · xir , where∑

r sums over distinct i1, . . . , ir in 1, . . . , n say, in terms of the power sum functions (j) =
∑n

i=1 xj
i

for 1 ≤ j ≤ r. For example, [14] = −6(4)+8(31)+3(22)−6(212)+(14), where for π = (π1, . . . , πm),
(π) = (π1) · · · (πm). In general

[1r] =
r∑

π

(π)c(π), (2.3)

where
∑r

π sums over all partitions π of r, and the numerical coefficients c(π) are provided in the
last column of the tables. The MAPLE procedure symmpoly(...) in Appendix B expresses a given
number of symmetric polynomials in terms of power sum functions.

However, the relation (2.3) remains true if [1r] is redefined as
∑

r t(xi1 , . . . , xir ) and (π) =
(π1 · · · πm) is redefined as

∑n
i1=1 · · ·

∑n
im=1 t(xπ1

i1
, . . . , xπm

im
), where xπ1

1 denotes π1 arguments equal
to x1, not a power, and t is an arbitrary symmetric polynomial of r variables. In particular taking
xi ≡ Xi and t ≡ TG, [1r] = (n)rV

n
r (F̂ ,G), and (π) = T bFG[π]nm(π), where m = m(π) is the number

of elements in π, and

T bFG[π] =

∫
· · ·

∫
TG(xπ1

1 · · · xπm
m )dF̂ (x1) · · · dF̂ (xm). (2.4)

So, (2.3) can be written

V n
r (F̂ ,G) = (n)−1

r

r∑

π

c(π)T bF G
[π]nm(π),
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and an UE of T (F ) is
∑∞

r=0 V n
r (F̂ ,G)/r!. Since G is arbitrary we may now take G = F̂ and set

V̂r = V n
r (F̂ , F̂ ), T̂ [π] = T bF bF [π], T [π] = TFF [π]. For example, for second order estimates we shall

need T̂ [2] =
∫

T bF
(x, x)dF̂ (x).

Our expression above for LHS (2.2) at G = F̂ now yields the following V form of UE for T (F ):

∞∑

r=0

V̂r/r!, (2.5)

where

V̂r = (n)−1
r

∑∼r

π
c(π)T̂ [π]nm(π), (2.6)

and
∑∼r

π is
∑r

π excluding partitions containing 1 because of the constraint
∫

T bF (x1 · · · xr)dF̂ (x1) =
0. The first few Vr are

V̂0 = T (F̂ ), V̂1 = 0, V̂2 = −(n − 1)−1T̂ [2],

V̂3 = 2(n − 1)−1
2 T̂ [3],

V̂4 = (n − 1)−1
3 {−6T̂ [4] + 3T̂ [22]n},

V̂5 = 2(n − 1)−1
4 {24T̂ [5] − 20T̂ [32]n},

V̂6 = (n − 1)−1
5 {−120T̂ [6] + 90T̂ [42]n + 40T̂ [32]n − 15T̂ [23]n2}.

Using the Op(.) notation of Mann and Wald (1943), since V̂2r−1 and V̂2r are Op(n
−r), the UE

(2.5) is Vn:2p−2(F̂ ) + Op(n
−p), where

Vn:j(F̂ ) =

j∑

r=0

V̂r/r !.

Note that Vn:2p−2(F̂ ) estimates T (F ) with bias O(n−p): Vn:2(F̂ ) = T (F̂ )− (n−1)−1T̂ [2]/2 has bias

O(n−2), Vn:4(F̂ ) = Vn:2(F̂ ) + (n − 1)−1
2 T̂ [3]/3 + (n − 1)−1

3 (−6T̂ [4] + 3T̂ [22]n)/24 has bias O(n−3),
and so on. The MAPLE procedures Vestsum(...) and Vest(...) in Appendix B calculate (2.6) for
any r and hence Vn:2p−2 for any p, so estimates of bias of any order can be obtained.

If T (F ) is a polynomial in F of degree p, for example, µp(F ), κp(F ) or µ(F )p then TG(x1 · · · xr) =

0 for r > p so that Vnp(F̂ ) is an UE.

2.2 More than One Sample

Now consider the case of k ≥ 1 distributions, with k samples {X1j , . . . ,Xnjj}, 1 ≤ j ≤ k. The von
Mises–Taylor expansion of T (F ) about T (G) for G = (G1, . . . , Gk) distributions on Rs1, . . . , Rsk is

T (F ) =

∞∑

r1=0

· · ·
∞∑

rk=0

Vr1···rk
(F,G)/(r1! · · · rk!) =

∞∞∞∑

rrr=000

Vrrr(F,G)/rrr!, (2.7)

where

Vrrr(F,G) =

∫
· · ·

∫
TG

(
1 1 · · · 1 · · · k k · · · k

x1x2 · · · xr1
· · · z1z2 · · · zrk

)

dF1(x1) · · · dF1(xr1
) · · · dF1(z1) · · · dFk(zrk

)

6



and TG

(
a1 · · · ar

x1 · · · xr

)
is the partial (von Mises) derivative, defined for a1, . . . , ar in 1, . . . , k and xi

in Rsai . These were introduced in Withers (1988). They are determined uniquely by (2.7) and the
two constraints

TG

(
a1 · · · ar

x1 · · · xr

)

is not altered by permuting columns, and
∫

TG

(
a1 · · · ar

x1 · · · xr

)
dFGa1

(x1) = 0.

In practice they are determined by adapting the rules given above for the one distribution deriva-

tives, namely: TG

(
a
x

)
is just SGa(x) for S(Ga) = T (G), U(Gb) = TG

(
a
x

)
has derivative

UGb
(y) = TG

(
a b
x y

)
− TG

(
a
x

)

and similarly for the derivative of the general derivative.

The term V000(F,G) is interpreted as T (G). For more details and examples see Withers (1988,
1994a). For a given G, an UE of Vrrr(F,G) is

V nnn
rrr (F̂ ,G) =

∑

r1···rk

TG

(
1 · · · 1 · · · k · · · k

Xi11 · · ·Xir1
1 · · · Xj1k · · ·Xjr

k
k

)
/(nnn)rrr,

where
∑

r1···rk
sums over all (n1)r1

permutations of distinct i1, . . . , ir1
in {1, . . . , n1}, . . . and all

(nk)rk
permutations of distinct j1, . . . , jrk

in {1, . . . , nk}. So,

∞∞∞∑

rrr=000

V n
rrr (F̂ ,G)/rrr!

is an UE of T (F ). Taking G = F̂ ,

∞∞∞∑

rrr=000

V̂rrr/r!r!r!

is a UE of T (F ), where V̂rrr = V nnn
rrr (F̂ , F̂ ). For i1, . . . , ik in {0, 1}, V̂2r−ir−ir−i is Op(n

−r1

1 · · · n−rk

k ). So,

Vnnn:2ppp−222(F̂ ) estimates T (F ) with bias O(n−p1

1 + · · · + n−pk

k ) = O(n−p0

0 ), where

Vnnn:jjj(F̂ ) =

jjj∑

rrr=000

V̂rrr/rrr!, n0 = min
1≤i≤k

ni, p0 = min
1≤i≤k

pi.

However for p0 > 1, an estimate of T (F ) of bias O(n−p0

0 ) with fewer terms than Vnnn:222p0−222 is

Vnnnp0
(F̂ ) =

2p0−2∑

r0=0

V̂r0
/r0!, (2.8)

where

V̂r0
= r0!

∑

r1+···+rk=r0

V̂rrr/rrr!.
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If T (F ) is a polynomial of degree p1 in F1, . . . , pk in Fk, then the UE reduces to the finite sum
Vnnn:ppp(F̂ ), containing (p1 + 1) · · · (pk + 1) terms. This is because V̂rrr = 0 if r1 > p1 or · · · or rk > pk.
Set

TF (irjs · · · ) =

∫ ∫
· · ·TF

(
ir js

· · ·
xr ys

)
dFj(x)dFj(y) · · · ,

where the first column in the integrand stands for r repeated columns of
(

i
x

)
, and similarly for the

other columns. Set

TFG[π1, . . . , πk] = TFG(1π11 · · · 1πm11 · · · 1π1k · · · 1πmkk)

for π1 = (π11 · · · πm11), . . . , πk = (π1k · · · πmkk). (So, mk is the length of the vector πk.) Set

T̂ [π1 · · · πk] = T bF bF [π1 · · · πk], T̂ (irjs · · · ) = T bF bF (irjs · · · ), T (irjs · · · ) = TFF (irjs · · · ).

Analogous to (2.5) we have

V̂rrr = (nnn)−1
rrr

∼r1∑

π1

· · ·
∼rk∑

πk

c(π1) · · · c(πk)T̂ [π1, . . . , πk]n
m(π1)
1 · · ·nm(πk)

k . (2.9)

The MAPLE procedures Vestsum(...) and Vest(...) in Appendix B calculate (2.9) for any rrr and
hence (2.8) for any p0, so estimates of bias of any order can be obtained. Let ei be the ith unit
vector in Rk. Then the first six V̂r0

of (2.8) are

V̂0 = T (F̂ ),

V̂1 =

k∑

i=1

V̂ei
= 0,

V̂2 =
k∑

i=1

V̂2ei
= −

k∑

i=1

T bF
(i2)/(ni − 1),

since V̂ei+ej
= 0 for i 6= j,

V̂3 =

k∑

i=1

V̂3ei
= 2

k∑

i=1

T̂ (i3)/(ni − 1)2,

V̂4 =

k∑

i=1

V̂4ei
+

(
4
2

) ∑

1≤i<j≤k

V̂2ei+2ej

=
k∑

i=1

{−6T̂ (i4) + 3T̂ (i2i2)ni}/(ni − 1)3 + 6
∑

1≤i<j≤k

T̂ (i2j2)/{(ni − 1)(nj − 1)},

V̂5 =

k∑

i=1

V̂5ei
+

(
5
2

)∑

i6=j

V̂3ei+2ej

=

k∑

i=1

{24T̂ (i5) − 20T̂ (i3i2)ni}/(ni − 1)4 − 20
∑

i6=j

T̂ (i3j2)/{(ni − 1)2(nj − 1)}
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and

V̂6 =
k∑

i=1

V̂6eiii
+

(
6
2

)∑

i6=j

V̂4ei+2ej+

(
6
3

) ∑

1≤i<j≤k

V̂3ei+3ej
+

(
6

222

) ∑

1≤i<j<l≤k

V̂2ei+2ej+2el

=

k∑

i=1

{
−120T̂ (i6) + 90T̂ (i4i2)ni + 40T̂ (i3i3)ni − 15T̂ (i2i2i2)n2

i

}
/(ni − 1)5

−15
∑

i6=j

{−6T̂ (i4j2) + 3T̂ (i2i2j2)ni/}{(ni − 1)3(nj − 1)}

+80
∑

1≤i<j≤k

T̂ (i3j3)/{(ni − 1)2(nj − 1)2}

−90
∑

1≤i<j<l≤k

T̂ (i2j2l2)/{(ni − 1)(nj − 1)(nl − 1)}.

By (2.8) the above formulas give Vn4(F̂ ) =
∑6

r=0 V̂r/r! as an estimate of T (F ) with bias O(n−4
0 ),

where n0 = min1≤i≤k ni.

3 The S Estimate

Here we derive the S form of UE, (1.1), from the V estimate, (1.3).

Suppose first that k = 1, (that is, univariate data). Then for r ≥ 2, (n)rV̂r is a polynomial in
n = n1 of degree [r/2], the integral part of r/2, say:

V̂r = (n)−1
r

∑

1≤i≤r/2

Ur,i(F̂ )ni = (n − 1)−1
r−1

∑

0≤j≤r/2−1

Ur,j+1(F̂ )nj

for r ≥ 2. Writing

nj =

j∑

k=0

[n − r + 1]k ckjr, (3.1)

where [a]k = a(a + 1) · · · (a + k − 1), we obtain

V̂r =
∑

r/2≤i<r

Vri(F̂ )/(n − 1)i,

where

Vri(F ) =
∑

0≤j≤r/2−1

cr−i−1,jrUr,j+1(F ).

The MAPLE procedure cc(...) in Appendix B calculates the coefficients ckjr in (3.1) for any given
k, j and r. It follows that the UE is

V̂0 +

∞∑

r=2

V̂r/r! =

∞∑

i=0

Si(F̂ )/(n − 1)i,
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where S0(F̂ ) = V̂0 = T (F̂ ) and

Si(F ) =

2i∑

r=i+1

Vri(F )/r! (3.2)

for i ≥ 1. So,

Snp(F̂ ) =

p−1∑

i=0

Si(F̂ )/(n − 1)i (3.3)

has bias O(n−p). The MAPLE procedure Sest(...) in Appendix B can be used to calculate (3.3) to
obtain a bias of any order. Using (3.2), the first few Si(F ) can be shown to be

S1(F ) = −T [2]/2, (3.4)

S2(F ) = T [3]/3 + T [22]/8, (3.5)

S3(F ) = −T [4]/4 + 3T [22]/8 − T [32]/6 − T [23]/48, (3.6)

S4(F ) = T [5]/5 − 2T [32]/3 − 3T [23]/16 + T [42]/8 + T [32]/18

+T [322]/24 + T [24]/384, (3.7)

S5(F ) = −T [6]/6 + 5T [42]/8 + 5T [32]/18 − T [52]/10 − T [43]/12 + 3T [24]/64

−T [422]/32 − T [322]/36 − T [323]/144 − T [25]/3840, (3.8)

S6(F ) = T [7]/7 − 3T [52]/5 − T [43]/2 + T [322]/140 + 127T [24]/64

−13T [422]/32 − 377T [322]/1008 + T [62]/12 + T [53]/15 + T [42]/32

−T [323]/48 + T [525]/40 + T [432]/24 + T [33]/324 − T [25]/160

+T [3222]/144 + T [423]/192 + T [324]/1152 + T [26]/46080. (3.9)

So, Sn2(F̂ ) = T (F̂ )−(n−1)−1T [2]/2 has bias O(n−2), Sn3(F̂ ) = Sn2(F̂ )+(n−1)−1
2 {T [3]/3+T [22]/8}

has bias O(n−3), and so on.

Now suppose k ≥ 1, (that is, multivariate data). The UE

∞∑

rrr=000

V̂rrr/rrr! =

∞∑

r0=0

V̂r0
/r0!

can be written

∞∑

iii=000

Siii(F̂ )/(nnn − 111)iii =

∞∑

i0=0

Snnn
i0(F̂ ),

where

Snnn
i0(F ) =

∑

iii′111=i0

Siii(F )/(nnn − 111)iii = O(n−i0
0 )

for n0 = min1≤i≤k ni. An estimate of T (F ) of bias O(n−p0

0 ) is

Snnnp0
(F̂ ) =

p0−1∑

i0=0

Snnn
i0(F̂ ). (3.10)
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The MAPLE procedure Sest(...) in Appendix B can be used to calculate (3.10) to obtain a bias of
any order. For example, to obtain an estimate of bias O(n−4

0 ) one can show that

Snnn
0 (F ) = T (F ), (3.11)

Snnn
1 (F ) = −(1/2)

k∑

i=1

T (i2)/(ni − 1), (3.12)

Snnn
2 (F ) = S2

nnn + S11
nnn , (3.13)

where

S2
nnn =

k∑

i=1

{T (i3)/3 + T (i2i2)/8}(ni − 1)2,

S11
nnn = (1/4)

∑

1≤i<j≤k

T (i2j2){(ni − 1)(nj − 1)}

and

Snnn
3 (F ) = S3

nnn + S21
nnn + S111

nnn , (3.14)

where

S3
nnn =

k∑

i=1

{−T (i4)/4 + 3T (i2i2)/8 − T (i3i2)/6 − T (i2i2i2)/48}/(ni − 1)3,

S21
nnn = (−1/2)

∑

i6=j

{T (i3j2)/3 + T (i2i2j2)/8}/{(ni − 1)2(nj − 1)},

S111
nnn = (−1/2)3

∑

1≤i<j<l≤k

T (i2j2l2)/{(ni − 1)(nj − 1)(nl − 1)}.

In general

Snnn
r (F ) =

r∑

π

Sπ
nnn , (3.15)

where for π = (i1, i2, . . .), Si1i2···
nnn can be written down from the formulas for Si1(F ), Si2(F ), . . .: let

us write

Si(F ) =

∗i∑

π

diπT [π], (3.16)

where
∑∗i

π sums over partitions π of {i + 1, . . . , 2i}. (Therefore many diπ are zero.) Then

Si1···im
nnn (F ) =

∗i1∑

πππ

· · ·
∗im∑

πππ

di1π1
· · · dimπm

k∑

j1···jm

T (jπ1

1 · · · jπm
m )/{(nj1 − 1)i1 · · · (njm − 1)im},

where jπ = jπ1jπ2 · · · and
∑k

j1···jm
sums over j1, . . . , jm distinct in 1, . . . , k with ji < ji+1 if

πi = πi+1. For example,

Snnn
4 (F ) = S4

nnn + S31
nnn + S22

nnn + S211
nnn + S1111

nnn , (3.17)
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where by (3.7),

S4
nnn =

k∑

i=1

{
T (i5)/5 − 2T (i3i2)/3 − 3T (i2i2i2)/16

+T (i4i4)/8 + T (i3i3)/18 + T (i3i2i2)/24 + T (i2i2i2i2)/384
}

/(ni − 1)4,

and by (3.4), (3.6),

S31
nnn = (−1/2)

∑

i6=j

{−T (i3j2)/4 − 3T (i2i2j2)/18 − T (i3i2j2)/6

−T (i2i2i2j2)/48}/{(ni − 1)3(nj − 1)},

and by (3.5),

S22
nnn =

∑

i≤i<j≤k

{T (i3j3)/9 + T (i2i2j2j2)/64}/{(ni − 1)2(nj − 1)2}

+2(1/3)(1/8)
∑

i6=j

T (i3j2j2)/{(ni − 1)2(nj − 1)},

and by (3.4), (3.5),

S211
nnn = (−1/2)2

∑

i6=j,i6=l,j<l

{−T (i3j2l2)/3 + T (i2i2j2l2)/8}/{(ni − 1)2(nj − 1)(nl − 1)}

and by (3.4),

S1111
nnn = (−1/2)4

∑

1≤i<j<l<m≤k

T (i2j2l2m2)/{(ni − 1)(nj − 1)(nl − 1)(nm − 1)}.

So, (3.10), (3.4)–(3.9) provide the S-estimate of bias O(n−6
0 ).

4 The T Estimate

The T form of the UE,
∑∞∞∞

iii=0 Tiii(F̂ )nnn−iii, is easily derived from the S estimate, but is less useful: its
truncated form cannot be an UE for T (F ) a polynomial in F , and the number of components in
Tiii(F ) rapidly increases over the number in Siii(F ) as iii increases. Since

i∏

j=1

(1 − jǫ)−1 =

∞∑

β=0

ǫβGβi,

we have

Gβi =
∑

α1+···+αi=β

1α1 · · · iαi , (4.1)

and

(n − 1)−1
i =

∞∑

α=i

n−αDαi,
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where

Dαi = Gα−i,i. (4.2)

The MAPLE procedures gbetai(...) and dalphai(...) in Appendix B calculate (4.1) and (4.2),
respectively. Set Dαααiii = Dα1i1 · · ·Dαkik , so Diii+βββ,iii = Gβ1i1 · · ·Gβkik . Then

(nnn − 111)−1
iii =

∞∞∞∑

ααα=iii

Dαααiiinnn
−ααα.

So, the UE is

∞∞∞∑

iii=000

Siii(F̂ )/(nnn − 111)iii =
∞∞∞∑

ααα=000

Tααα(F̂ )nnn−ααα =
∞∑

r=0

Tnnn
r (F̂ ),

where

Tααα(F ) =
ααα∑

iii=000

DαααiiiSiii(F )

and

Tnnn
r (F ) =

∑

{α′α′α′111=r}

Tααα(F )nnn−ααα = O(n−r
0 ).

Note that

Tnnnp(F̂ ) =

p−1∑

r=0

Tnnn
r (F̂ ) (4.3)

has bias Op(n
−p
0 ). The MAPLE procedure Test(...) in Appendix B can be used to calculate (4.3)

to obtain a bias of any order. The first few {Tnnn
r (F )} are

Tnnn
0 (F ) = T (F ),

Tnnn
1 (F ) = −(1/2)

k∑

i=1

T (i2)n−1
i ,

Tnnn
2 (F ) =

k∑

i=1

{−T (i2)/2 + T (i3)/3 + T (i2i2)/8}/(ni − 1)2

+(1/4)
∑

i<j

T (i2j2)/{(ni − 1)(nj − 1)},

Tnnn
3 (F ) =

k∑

iii=1

{−T (i2)/2 + T (i3) + 3T (i2i2)/4 − T (i4)/4

−T (i3i2)/6 − T (i2i2i2)/48}n−3
i

+
∑

i6=j

{T (i2j2)/4 − T (i3j2)/6 − T (i2i2j2)/16}n−2
i n−1

j

−
∑

i<j<l

T (i2j2l2)n−1
i n−1

j n−1
l /8
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and

Tnnn
4 (F ) =

k∑

i=1

{−T (i2)/2 + 7T (i3)/3 + 25T (i2i2)/8 − 3T (i4)/2

−5T (i3i2)/3 − 5T (i2i2i2)/16 + T (i4i4)/8

+T (i3i3)/18 + T (i2i2i2)/24 + T (i2i2i2i2)/384}n−4
i

−(1/2)
∑

i6=j

{−T (i2j2)/2 + T (i3j2)

−T (i4j2)/4 − T (i3i2j2)/6 − T (i2i2i2j2)/48}n−3
i n−1

j

+
∑

i<j

{T (i2j2)/4 + T (i3j3)/9 + T (i3j2j2)/12 + T (i2i2j2j2)/64}n−2
i n−2

j

+
∑

i6=j

{−T (i3j2)/6 − T (i2i2j2)/6}n−2
i n−2

j

+
∑

i6=j,i6=l,j<l

{−T (i2j2l2)/8 + T (i3j2l2)/12 + T (i2i2j2l2)/32}n−2
i n−1

j n−1
l

+
∑

i<j<l<m

T (i2j2l2m2)n−1
i n−1

j n−1
l n−1

m /16.

5 Number of Computations Required

As n0 = min1≤i≤k ni → ∞, for fixed p the estimators of bias O(n−p
0 ), Vnnnp(F̂ ) of (2.8), Snnnp(F̂ ) of

(3.10), and Tnnnp(F̂ ) of (4.3), all require O(n0) calculations. This is in sharp contrast with bootstrap
estimates of bias O(n−p

0 ), such as that of (1.35) of Hall (1992), which requires O(np
0) calculations

for the case k = 1 given there, and so at least this if generalized to k > 1. (Note that Hall’s (1.35)
should have a factor (−1)i+1 inserted.) If one allows p to increase and counts the number of terms
needed, then as shown by Table 5.1, Snnnp(F̂ ) requires increasingly fewer terms than do Vnnnp(F̂ ) and

Tnnnp(F̂ ).

[Tables 5.1–5.3 about here.]

The number of terms in an expression of the form
∑

1≤i1<···<im≤k annn,i1···im is sm = (k)m/m!.
So, for general k one obtains the results in Table 5.2. For k = 2, 3 this gives the results in Table
5.3.

6 Examples

For k = 1 and p ≤ 3, Snp(F ) was given in Withers (1994a). For k > 1, Sn0p(F̂ ) and Tn0p(F̂ ) in

Withers (1994a) differ from Snnnp(F̂ ) and Tnnnp(F̂ ) given here. All have bias O(n−p
0 ), but the forms

given here are more natural.

In this section we go over some of the examples of Withers (1994a) to obtain S estimates,
Snnnp(F̂ ), of bias O(n−p

0 ) up to p = 7. Recall that for k = 1 this is given by

Snp(F̂ ) =

p−1∑

i=0

Si(F̂ )/(n − 1)i (6.1)
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for Si(F ) of (3.4)–(3.9), and for k > 1 by (3.10)–(3.17). We begin with two problems estimating
a general function of the means of the distributions after initial given transformations of the data.
When this function of the means is a polynomial of total degree p0 we show that for both prob-
lems Snp0

(F̂ ) is an UE. We then give examples estimating functions of central moments. We use
the convention that repeated indices are summed over their range. For example, in (6.2) below,
i1 · · · j1 · · · are implicitly summed over 1, . . . , t.

Example 6.1 k = 1, T (F ) = g(µ), where µ =
∫

hdF = Eh(X) for X ∼ F , where h : Rs → Rt and
g : Rt → R are given functions.

Assume that the partial derivatives of g(µ) are finite: gj1···jr = ∂j1 · · · ∂jrg(µ), where ∂j = ∂/∂µj
.

Then the general derivative of T (F ) is TF (x1 · · · xr) = gj1···jrµj1x1
· · ·µjrxr , where µjx = µjF (x) =

hj(x) − µj. So,

T [π] = gi1···iπ1
j1···jπ2···

µ[i1 · · · iπ1
]µ[j1 · · · jπ2

] · · · , (6.2)

where µ[i1i2 · · · ] =
∫

(h(x) − µ)i1(h(x) − µ)i2 · · · dF (x), the joint central moment of h(X). Sub-
stituting into (3.4)–(3.9) gives Si(F ) for i ≤ 6 so (6.1) gives an estimate of bias O(n−7). Now
for i ≥ 1, Si(F ) has the form

∑2i
r=i+1 gj1···jrcij1···jr . So, if g(µ) is a polynomial of degree ppp in µ

(that is of degree pi in µi for 1 ≤ i ≤ t), then summation may be restricted to j1, . . . , jr with∑r
i=1 I(ji = a) ≤ pa for 1 ≤ a ≤ t, and Si(F ) = 0 for i ≥ |ppp| = p1 + · · · + pt so Sn,|ppp|(F̂ ) is an UE.

So, (6.1), (3.4)–(3.9) gives an UE for all polynomials g(µ) of total degree seven or less. �

Example 6.1.1 g(µ) = N q, where N = α′µ for some t-vector α. If π = (π1, . . . , πm) and r =
π1 + · · · + πm then T [π] = (q)rN

qα(π1) · · ·α(πm), where α(i) = N−iαj1 · · ·αji
µ[j1 · · · ji]. For

example, α(2) = N−2α′V̂ α, where V = covar{h(X)}. So, a second order estimate of (α′µ)q is
(α′µ̂)q{1 −

(q
2

)
(α′µ̂)−2α′V̂ α/(n − 1)}, where µ̂, V̂ are the sample estimates of µ = h(X), and V .

[Figures 6.1 and 6.2 about here.]

Now suppose q = t = 2, α = (α1, 1 − α1) and V = I2. The second order estimate reduces
to {α1µ̂1 + (1 − α1)µ̂2}2 − {α2

1 + (1 − α1)
2}/(n − 1). If h(X) is bivariate normal with unit

means and the given V then the target estimator (Cabrera and Fernholz, 1999, 2004) of (α′µ)2 is
{α1µ̂1 +(1−α1)µ̂2}2−{α2

1 +(1−α1)
2}/n. Sen (1988)’s asymptotic normality provides ω̂, the maxi-

mum likelihood estimate of ω given (α′µ̂)2 ∼ N(ω, (3/n){α2
1 +(1−α1)

2}2+(4ω/n){α2
1 +(1−α1)

2}).
Figures 6.1 and 6.2 compare the performance of these three estimates and those obtained by boot-
strapping and jackknifing. Our estimate has the lowest absolute bias and the lowest mean squared
error. The estimates due to Cabrera and Fernholz (1999, 2004) are so close to ours that they are
indistinguishable.

Next suppose t = α = 1 so T (F ) = µq, µ = Eh(X), α(i) = µ−iµi, µi = E(h(X) − µ)i and
T [π] = (q)rµ

q−rµπ1···µπm . Also for i ≥ 1,

Si(F ) =

2i∑

r=i+1

(q)rµ
q−rSir, (6.3)

where S12 = −µ2/2, S23 = µ3/3, S24 = µ2
2/8, S34 = −µ4 + 3µ2

2/8, S35 = −µ3µ2/6, S36 = −µ3
2/48,

S45 = µ5/5 − 2µ3µ2/3, S46 = −3µ3
2/16 + µ4µ2/8 + µ2

3/18, S47 = µ3µ
2
2/48, S48 = µ4

2/384, S56

= −µ6/6 + 5µ4µ2/8 + 5µ2
3/18, S57 = −µ5µ2/10 − µ4µ3/12, S58 = 3µ24µ

2
2/32 − µ2

3µ2/36, S59 =
−µ3µ

3
2/144, S5,10 = −µ5

2/3840, S67 = µ7/7 − 3µ5µ2/5 − µ4µ3/2 + µ3µ
2
2/140, S68 = 127µ4

2/64 −
13µ4µ

2
2/32−327µ2

3µ2/100+µ6µ2/12+µ5µ3/15+µ2
4/32, S69 = −7µ3µ

3
2/48+µ5µ

2
2/40+µ4µ3µ2/24+

µ3
3/324, S6,10 = −µ5

2/160 + µ2
3µ

2
2/144 + µ4µ

3
2/192, S6,11 = µ3µ

4
2/1152 and S6,12 = µ6

2/46080. This
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gives Si(F ) for i ≤ 6 and so Sn7(F̂ ) of bias O(n−7). If q is a positive integer, then Si(F ) = 0 for
i ≥ q so Snq(F̂ ) of (6.1), (6.3) is an UE of µq. For example, an UE of µ4 is given by (6.1) with
S1(F ) = −6µ2µ2, S2(F ) = 8µµ3 +3µ2

2, S3(F ) = −6µ4 +9µ2
2. This result may be checked by solving

the system of seven equations given by Wishart (1952, page 5). Alternatively one may follow the
method of Stuart and Ord (1987, Section 12.22) using their tables of the symmetric polynomials.
For example, one obtains the UE Tn(F̂ ) for µ4, where

(n − 1)3Tn(F ) = (n3 − 8n2 + 23n − 30)m4 − n(n2 − 7n + 4)m3m1 − n(n2 − 6n + 6)m2
2

+n2(n − 9)m2m
2
1 + n3m4

1,

where mi = EXi. Clearly our method gives the simpler form. �

Example 6.1.2 t = 2, g(µ) = µ1µ
−1
2 . Then g12j = (−1)jj! µ−j−1

2 = aj say, g2j = µ1aj , and gπ = 0
unless π is a permutation of 2j or 12j for some j. For π = (π1, π2, . . .) set |π| = π1 + π2 + · · · and

α[π] = µ[π]/(µπ1
µπ2

· · · ) = E(Xπ1
/µπ1

− 1)(Xπ2
/µπ2

− 1) · · · .

Then

T [π] = µ1µ
−1
2 (−1)|π|α[2π1 ]α[2π2 ] · · · {|π|! − (|π| − 1)!

∑

i

πiα[12πi−1]/α[2πi ]}.

So,

S1(F )/T (F ) = α[12] − α[22] = EX1X2/(µ1µ2) − EX2
2/µ2

2,

S2(F )/T (F ) = −2α[222] + 2α[122] + 3α[22]2 − 3α[12]α[22],

S3(F )/T (F ) = 6α[123] − 6α[24] − 9α[12]α[22] + 9α[222]

+20α[23]α[22] − 12α[122]α[22] − 8α[23])α[12]

+15α[12]α[22]2 − 15α[22]3 ,

S4(F )/T (F ) = 24α[124] − 24α[25] + 80α[23]α[22] − 48α[122]α[22]

−32α[23]α[12] + 45α[222](α[12] − α[22])

+90α[24]α[22] − 60α[123]α[22] − 30α[24]α[12]

+40α[23](α[23] − α[122]) − 210α[23]α[22]2 + 90α[122]α[22]2

+120α[23]α[12]α[22] + 105α[22]3(α[22] − α[12]),

S5(F )/T (F ) = 120α[125 ] − 120α[26] + 150α[24](3α[22] − α[12])

−300α[123 ]α[22] + 200α[23](α[23] − α[122])

+72α[25](7α[23] − 3α[123]) − 360α[124]α[23]

+60α[24](7α[23] − 3α[122]) − 240α[123]α[23]

+1890α[22 ]3(α[22] − α[12]) + 630α[24]α[22](α[12] − 2α[22])

+630α[123 ]α[22]2 + 210α[23]2(α[12] − 4α[22])

−630α[122 ]α[23]α[22] + 945α[22]4(α[12] − α[22])

+840α[22]2(3α[23]α[22] − α[122]α[22] − 2α[23]α[12]),

and similarly for S6(F ).

[Figures 6.3 and 6.4 about here.]

It follows that a second order estimate of µ1/µ2 is (X1/X2){1+n−1[X1X2/(X1 X2)−X2
2/X2

2
]},

where X1 and X2 are the sample means for X1 and X2, respectively. If Xi, i = 1, 2 are independent
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exponential random variables with means µi, i = 1, 2 then a target estimator (Cabrera and Fernholz,
1999, 2004) of µ1/µ2 is ((n2−1)/n2)(X1/X2), where n2 denotes the sample size for X2. Sen (1988)’s
conditions for asymptotic normality do not hold here. Figures 6.3 and 6.4 compare the performance
of the two estimates and those obtained by bootstrapping and jackknifing. Our estimate again
provides the lowest absolute bias and the lowest mean squared error, but the differences with
respect to the target estimator do not appear to be significant. �

Example 6.2 T (F ) = g(µ), where µ = (µ1, . . . , µk), µi =
∫

hidFi = Ehi(Xi) for Xi ∼ Fi, hi :
Rsi → R is a given function, and g : Rk → R is a given function with finite partial derivatives
gj1···jr . Then

TF

(
i1 · · · ir
x1 · · · xr

)
= gi1···irµi1x1

· · ·µirxr ,

where µix = µiFi
(x) = hi(x) − µi. So,

T (iajb · · · ) = giajb···µa[i]µb[j] · · · ,

where µa[i] = µa(hi(Xi)) =
∫
(hi(x) − µi)

adFi(x). An estimate of bias O(n−p
0 ) is Snnnp(F̂ ) =∑p−1

i=0 Snnn
i (F̂ ), where by (3.11)–(3.17),

Snnn
0 (F ) = g(µ),

Snnn
1 (F ) = −(1/2)

k∑

i=1

gi2µ2[i](ni − 1)−1,

Snnn
2 (F ) =

k∑

i=1

{gi3µ3[i]/3 + gi4µ2[i]
2/8}(ni − 1)−1

2

+
∑

1≤i<j≤k

gi2j2µ2[i]µ2[j](ni − 1)−1(nj − 1)−1/4,

Snnn
3 (F ) =

k∑

i=1

{gi4(−µ4[i]/4 + 3µ2[i]
2/8) − gi5µ3[i]µ2[i]/6 − gi6µ2[i]

3/48}(ni − 1)−1
3

−
∑

i6=j

{gi3j3µ3[i]µ3[j]/6 + gi4j2µ2[i]
2µ2[j]/16}(ni − 1)−1

2 (nj − 1)−1

−(1/8)
∑

i<j<l

gi2j2l2µ2[i]µ2[j]µ2[l](ni − 1)−1(nj − 1)−1(nl − 1)−1

17



and

Snnn
4 (F ) =

k∑

i=1

{gi5(µ5[i]/5 − 2µ3[i]µ2[i]/3)

+gi6(µ4[i]
2/8 + µ3[i]

2/18 − 3µ2[i]
3/16)

+gi7µ3[i]µ2[i]
2/24 + gi8µ2[i]

4/384}(ni − 1)−1
4

−(1/2)
∑

i6=j

{gi4j2(−µ4[i]/4 + 3µ2[i]
2/18)µ2[j]

−gi5j2µ3[i]µ2[i]µ2[j]/6 + gi6j2µ2[i]
3µ2[j]/48}(ni − 1)−1

3 (nj − 1)−1

+
∑

i<j

{gi3j3µ3[i]µ3[j]/9 + gi4j4µ2[i]
2µ2[j]

2/64}(ni − 1)−1
2 (nj − 1)−1

2

+
∑

i6=j

gi3j3µ3[i]µ3[j](ni − 1)−1
2 (nj − 1)−1

2 /12

+
∑

i6=j,i6=l,j<l

{gi3j2l2µ3[i]µ2[j]µ2[l]/12

+gi4j2l2µ4[i]
2µ2[j]µ2[l]/32}(ni − 1)−1

2 (nj − 1)−1(nl − 1)−1

+
∑

i<j<l<m

gi2j2l2m2µ2[i]µ2[j]µ2[l]µ2[m](ni − 1)−1(nj − 1)−1(nl − 1)−1(nm − 1)−1/16.

As in Example 6.1, for i ≥ 1, Snnn
i (F ) has the form

∑2i
r=i+1 gj1···jrc

nnn
ij1···jr

. So, if g(µ) is a polynomial

of degree ppp in µ (that is degree pi in µi for 1 ≤ i ≤ k), then Snnn|ppp|(F̂ ) is an UE of g(µ) for |ppp| = ppp′111.
�

Example 6.2.1 g(µ) = N q, where N = α′µ for some k-vector α. Then

gi1···ir = (q)rN
q−rαi1 · · ·αir .

So,

T (iajb · · · ) = (q)rN
q−rαa[i]αb[j] · · · ,

where r = a + b + · · · , αa[i] = αa
i µa[i], and for i ≥ 1,

Snnn
i (F ) =

2i∑

r=i+1

(q)rN
q−rSnnn

ir,

where

Snnn
12 = −

k∑

i=1

α2[i](ni − 1)−1/2,

Snnn
23 =

k∑

i=1

α3[i](ni − 1)−1
2 /3,

Snnn
24 =

k∑

i=1

α2[i]
2(ni − 1)−1

2 /8 +
∑

i<j

α2[i]α2[j](ni − 1)−1(nj − 1)−1/4,
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Snnn
34 =

k∑

i=1

(−α4[i]/4 + 3α2[i]
2/8)(ni − 1)−1

3 ,

Snnn
35 = −

k∑

i=1

α3[i]α2[i](ni − 1)−1
3 /6,

Snnn
36 = −

k∑

i=1

α2[i]
3(ni − 1)−1

3 /48

−
∑

i6=j

(α3[i]α3[j]/6 + α2[i]
2α2[j]/16)(ni − 1)−1

2 (nj − 1)−1

−
∑

i<j<l

α2[i]α2[j]α2[l](ni − 1)−1(nj − 1)−1(nl − 1)−1/8,

Snnn
45 =

k∑

i=1

(α5[i]/5 − 2α3[i]α2[i]/3)(ni − 1)−1
4 ,

Snnn
46 =

k∑

i=1

(α4[i]
2/18 + α3[i]

2/18 − 3α2[i]
3/16)(ni − 1)−1

4

−
∑

i6=j

(−α4[i]/4 + 3α2[i]
2/18)α2[j](ni − 1)−1

3 (nj − 1)−1/2

+
∑

i<j

α3[i]α3[j](ni − 1)−1
2 (nj − 1)−1

2 /9,

Snnn
47 =

k∑

i=1

α3[i]α2[i]
2(ni − 1)−1

4 /384

+
∑

i6=j

α3[i]{α2[i]α2[j](ni − 1)−1
3 (nj − 1)−1 + α2[j]

2(ni − 1)−1
2 (nj − 1)−1

2 }/12

+
∑

i6=j,i6=l,j<l

α3[i]α2[j]α1[l](ni − 1)−1
2 (nj − 1)−1

2 (nl − 1)−1
2 /12

and

Snnn
48 =

k∑

i=1

α3[i]
4(ni − 1)−1

4 /384

+
∑

i6=j

α2[i]
3α2[j](ni − 1)−1

3 (nj − 1)−1/96

+
∑

i<j

α2[i]
2α2[j]

2(ni − 1)−1
2 (nj − 1)−1

2 /64

+
∑

i6=j,i6=l,j<l

α4[i]α2[j]α2[l](ni − 1)−1
2 (nj − 1)−1(nl − 1)−1/32

+
∑

i<j<l<m

α2[i]α2[j]α2[l]α2[m](ni − 1)−1(nj − 1)−1(nl − 1)−1(nm − 1)−1/16.
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For example, a second order estimate of (α′µ)q is

(α′µ̂)q{1 −
(

q

2

)
(α′µ̂)−2

k∑

i=1

α2
i v̂i/(ni − 1)},

where µ̂i, v̂i are the sample estimates of µi, vi = µ2[i], the mean and variance of hi(Xi). �.

Example 6.2.2 k = 2, g(µ) = µ1µ2/(µ1 + µ2). Set D = µ1 + µ2. Then g(µ) = 1 − µ2
2D

−1 so
g1aµ−2

2 = g2aµ−2
1 = (−D)−a−1a!. Also since µ2

2 = (D − µ1)
2,

g1a2b = −(−D)−a−b−1(a + b − 2)!{(b2 − b)µ2
1 − 2baµ1µ2 + (a2 − a)µ2

2}.

So,

Sn

1 (F ) = T (F )2D−1
2∑

i=1

µ−2
i µ2[i](ni − 1)−1,

Snnn
2 (F ) = T (F )2

2∑

i=1

(2D−2µ3[i] − 3D−3µ2[i]
2)µ−2

i (ni − 1)−1
2

+D−5(µ2
1 + µ2

2 − 4µ1µ2)µ2[1]µ2[2](n1 − 1)−1(n2 − 1)−1,

Snnn
3 (F ) = T (F )2

2∑

i=1

µ−2
i {D−3(6µ4[i] − 9µ2[i]

2)

+20D−4µ3[i]µ2[i] + 15D−5µ2[i]
3}(ni − 1)−1

3

−48D−7(µ2
1 + µ2

2 − 3µ1µ2)µ3[1]µ3[2]{(n1 − 1)−1
2 (n2 − 1)−1

+(n1 − 1)−1(n2 − 1)−1
2 }

−3D−7(µ2
1 − 8µ1µ2 + 6µ2

2)µ2[1]
2µ2[2](n1 − 1)−1

2 (n2 − 1)−1

−3D−7(6µ2
1 − 8µ1µ2 + µ2

2)µ2[2]
2µ2[1](n2 − 1)−1

2 (n1 − 1)−1,

and so on. �

Example 6.3 k = 1, T (F ) = µr = µr(h(X)) = E(h(X) − µ)r, where µ = Eh(X) for X ∼ F and
h : Rs → R a given function. By (5.6) of Withers (1994a), its general pth order derivative is

µrF (x1 · · · xp) = (−1)p{(r)pµr−p − (r)p−1

p∑

i=1

(hr−p
i − µr−p+1h

−1
i )}

p∏

j=1

hj ,

where hi = µF (xi) = h(xi)−µ. So, T [i1i2 · · · ] = T (1i1i2 · · · ) and Si(F ) for i ≤ 3 are as given there.
For example,

T [i] = (−1)i{(r)iµr−iµi − i(r)i−1(µr − µr−i+1µi−1)},
T [4] = (r)4µr−4µ4 − 4(r)3(µr − µr−3µ3),

T [5] = −(r)5µr−5µ5 + 5(r)4(µr − µr−3µ3),

T [42] = (r)6µr−6µ4µ2 − 2(r)5{−2µr−5µ3µ2 + µr−4µ4 + 2µr−2µ2},
T [32] = (r)6µr−6µ

2
3 − 6(r)5(µr−3µr−5µ2)µ3,

T [322] = −(r)7µr−7µ3µ
2
2 + (r)6{−3µr−6µ

3
2 + 4µr−5µ3µ2 + 3µr−4µ

2
2},

T [24] = (r)8µr−8µ
4
2 − 8(r)7µr−6µ

3
2.
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So,

S4[F ] =

8∑

i=0

µr−i(r)iS4−i,

where S4−0 = (r)4, S4−1 = 0, S4−2 = −r(r−2)2µ2/2, S4−3 = −r(r−3)µ3/3, S4−4 = −rµ4+r2µ2
2/8,

S4−5 = −µ5/5 + (r + 4)µ3µ2/6, S4−6 = −3µ3
2/16 + µ4µ2/8 + µ2

3/18 − rµ3
2/48, S4−7 = −µ3µ

2
2/24

and S4−8 = µ4
2/384. The fifth order S estimate is now given by (6.1). Also by Example 5.3 of

Withers (1994a) one can now obtain an UE for µr for r ≤ 9. Obtaining S5, S6 from (3.8)–(3.9) one
can obtain an UE for µr for r ≤ 12. Our results agree with those of James (1958, page 6): by a
different method he obtained an UE for µr for r ≤ 6. �

For T (F ) a function of a central moment, one may apply the chain rule, as illustrated in the

next example for the case T (F ) = σ = µ
1/2
2 .

Example 6.4 Here we specialise an application of the chain rule given in Appendix A of Withers
(1994a). Suppose k = 1, g : R → R is a function with finite derivatives and T (F ) = g(S(F )), where
S(F ) is a smooth univariate functional. Set gr = g(r)(S(F )). The third order S estimate of T (F )
is given by (6.1), (3.4), (3.5) in terms of

T [2] = g2S(1, 1) + g1 S[2],

T [3] = g3S(1, 1, 1) + 3g2S(1, 12) + g1 S[3],

T [22] = g4S(1, 1)2 + g3{2S(1, 1)S[2] + 4S(ab, a, b)}
+g2{4S(a, ab2) + S[2]2 + 2S(ab, ab)} + g1 S[22],

where

S(1, 1) =

∫
S2

x, S(1, 1, 1) =

∫
S3

x, S(1, 12) =

∫
Sx Sxx, S(ab, a, b) =

∫ ∫
Sxy Sx Sy,

S(a, ab2) =

∫ ∫
Sx Sxyy, S(ab, ab) =

∫ ∫
S2

xy, Sxy··· = SF (x, y, . . .)

and integration is with respect to F (x) and F (y).

Take T (F ) = σ, that is S(F ) = µ2 and g(s) = s1/2. Then gr = (1/2)rµ
1/2−r
2 , where (r)i =

r!/(r − i)!, µx = x − µ, µ2x = µ2
x − µ2, µ2xy = −2µxµy, and higher derivatives vanish. So,

S(1, 1) = µ4 − µ2
2, S[2] = −2µ2, S(1, 1, 1) = µ6 − 3µ4µ2 + 2µ2

2, S(1, 12) = −2(µ4 − µ2
2), S[3] =

S(a, ab2) = S[22] = 0, S(ab, a, b) = −2µ2
3 and S(ab, ab) = 4µ2

2. Setting βr = µ2 µ
−r/2
2 , we obtain

S1(F )/µ
1/2
2 = (β4 + 3)/8 and S2(F )/µ

1/2
2 = (16β6 + 22 β4 + 164 − 15β2

4)/128.

[Figures 6.5 and 6.6 about here.]

It follows that a second order estimate of σ is σ̂{1 + (1/(n− 1))(1/8)(β̂4 + 3)}. Suppose now F
is exponential with mean σ. Then a target estimator (Cabrera and Fernholz, 1999, 2004) of σ is the
sample mean X. Sen (1988)’s asymptotic normality provides ω̂, the maximum likelihood estimate
of ω given σ̂ ∼ N(ω, ω2/n). Figures 6.5 and 6.6 compare the performance of these three estimates
and those obtained by bootstrapping and jackknifing. Our estimate again gives the lowest absolute
bias and the lowest mean squared error. �

We end this section with examples of functions of more than one moment. These appeal to
some results given in Withers (1994a).
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Example 6.5 k = 1, T (F ) = g(µ, µ2) for µ = EY, µ2 = E(Y − µ)2, Y = h(X), given h : Rs → R
and g : R2 → R with finite derivatives gj1···jr = ∂j1 · · · ∂jrg(U1, U2) at U1 = µ, U2 = µ2, where
∂i = ∂/∂Ui. We give the fourth order S estimate for general g, then specialise. Note that S1(F ),
S2(F ), S3(F ) are given by (3.4)–(3.6) and (A14)–(A15), (A20)–(A23) of Withers (1994a). Set

Uij..(a
IbJ .., aKbL.., ..) =

∫ ∫
..UiF (aIbJ ..)UjF (aKbL..)..dF (a)dF (b)...

Allowing for permutations the nonzero terms needed are as follows:

• for T [2]: at (a2), U2 = −2µ2; at (a, a), U11 = µ2, U12 = µ3, U22 = µ4 − µ2
2;

• for T [3]: at (a, a2), U12 = −2µ3, U22 = −2(µ4 − µ2
2); at (a, a, a), U111 = µ3, U112 = µ4 − µ2

2,
U122 = µ5 − 2µ3µ2, U222 = µ6 − 3µ4µ2 + 2µ3

2;

• for T [22] : U22(ab, ab) = 4µ2
2; at (ab, a, b), U211 = −2µ2

2, U212 = U221 = −2µ2µ3, U222 = −2µ2
3;

• for T [4] : U22(a
2, a2) = 4µ4; at (a, a, a2), U112 = µ4 − µ2

2, U122 = −2(µ5 − µ3µ2), U222 =
−2(µ6 − 2µ4µ2 + µ2

2); at (a, a, a, a), U111 = µ4, U1112 = µ5 − µ3µ2, U1122 = µ6 − 2µ4µ2 + µ2
2,

U1222 = µ7 − 3µ5µ2 + 3µ3µ
2
2, U2222 = µ8 − 4µ6µ2 + 6µ4µ

2
2 − 3µ4

2.

• By (A14), T [32] = T (a2b3) =
∑5

k=1 ν23.k say, where ν23.1 = ν23.2 = 0. For ν23.3: at (a, ab, b2),
U122 = 4µ3µ2, U222 = 4µ2

3; at (b, ab, ab), U122 = 4µ3µ2, U222 = 4(µ4 − µ2
2)µ2. For ν23.4: at

(ab, a, b, b), U2111 = −2µ3µ2, U2112 = −2µ2(µ4 − µ2
2), U2122 = −2µ2(µ5 − 2µ3µ2), U2212 =

−2µ3(µ4 − µ2
2), U2222 = −2µ3(µ5 − 2µ3µ2).

• By (A15), T [23] = T (a2b2c2) =
∑6

k=1 ν222.k, where ν222.1 = ν222.2 = 0. For ν222.3 = gijkB
ijk
3 :

U222(ab, bc, ca) = −8µ3
2. For ν222.4 = gijklB

ijkl
3 : at (a, b, ab), U112 = −2µ2

2, U122 = −2µ3µ2,
U222 = −2µ2

3; at (a, b, ac, bc), U1122 = 4µ3
2, U1222 = 4µ3µ

2
2, U2222 = 4µ2

3µ2.

Other components are covered by the above Uij···. �

Example 6.5.1 g(µ, µ2) = µµ
−1/2
2 = β say. Let βr = µ

−r/2
2 µr. Then S1(F ), S2(F ), T [4] = T (14)

and T [22] = T (1212) are given by Example 5.6 of Withers (1994a). So, S3(F ) is given by (3.6) - and
hence the fourth order S estimate - once we specify T [32] =

∑5
k=3 ν23.k and T [23] =

∑6
k=3 ν222.k.

Since g1 = µ
−1/2
2 , g2/µ = g12 = −µ

−3/2
2 /2, g22/µ = g122 = 2µ

−5/2
2 /4, and so on, these components

are given by

ν23.3 = 45β3 − 15β(2β2
3 + 3β4 − 3)/2,

ν23.4 = 45(3β5 − 6β3 + 7β4 − 7)/4

−105β{β6 − 3β4 + 2 + 12β3(β5 − 2β3) + 6(β4 − 1)2}/16,
ν23.5 = 105{2β3(β6 − 3β4 + 2) + 3(β4 − 1)(β5 − 2β3)}/16

−945β(β4 − 1)(β6 − 3β4 + 2)/32,

ν222.3 = −775β,

ν222.4 = 45{−y5β3 + 7β(β4 − 1 + 4β2
3)/4},

ν222.5 = 315{−3(β4 − 1)β3 + β3
3 + 3β(β4 − 1)(β4 − 1 + β2

3)}/16,
ν222.6 = 945{−12(β4 − 1)2β3 + 11β(β4 − 1)3}/64.

[Figures 6.7 and 6.8 about here.]
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It follows that a second order estimate of µ/
√

µ2 is µ̂/
√

µ̂2− (1/n){β̂3/2+(1/8)(µ̂/
√

µ̂2)(3β̂4 +
1)}. Suppose now Y = h(X) is normally distributed with mean µ and variance µ2. Then a target
estimator (Cabrera and Fernholz, 1999, 2004) of µ/

√
µ2 is

√
2Γ((n−1)/2)Ȳ /{

√
n − 1Γ(n/2−1)SY },

where Ȳ and SY denote the sample mean and the sample standard deviation, respectively. Sen
(1988)’s conditions for asymptotic normality do not hold here. Figures 6.7 and 6.8 compare the
performance of the two estimates and those obtained by bootstrapping and jackknifing. Our esti-
mate again provides the lowest absolute bias and the lowest mean squared error, but the differences
with respect to the target estimator do not appear to be significant. �

Example 6.6 k = s = 1, T (F ) = g(µ2, µ3) for µr = µr(X), X ∼ F and g having finite derivatives

gij··· = (∂/∂µi)(∂/∂µj) · · · g(µ2, µ3).

By Example 6.3, µ3x = µ3
x − µ3 − 3µ2µx, µ3xy = −3(µx + µy)(µxµy − µ2), µ3xyz = 12µxµyµz. Now

use (A8–A11) of Withers (1994a) with Ui(F ) = µi: for T [2] we need U3(a
2) = −6µ3, U23(a, a) =

µ5 − 4µ3µ2, U33(a, a) = µ6 − 6µ4µ2 − µ2
3 + 9µ3

2. This gives

T [2] = −2g2µ2 − 6g3µ3 + g22(µ4 − µ2
2) + 2g23(µ5 − 4µ3µ2) + g33(µ6 − 6µ4µ2 − µ2

3) + 9µ3
2.

For T [3] we need

U3(a
3) = 12µ3,

U23(a, a2) = −6(µ5 − 2µ3µ2),

U32(a, a2) = −2(µ5 − 4µ3µ2),

U33(a, a2) = −6(µ7 − 4µ5µ2) − µ4µ3 + 4µ3µ
2
2,

U223(a, a, a) = µ7 − 5µ5µ2 − µ4µ3 + 8µ3µ
2
2,

U233(a, a, a) = µ8 − 3µ6µ2 − 2µ5µ3 + 15µ4µ
2
2 + 4µ2

3µ2,

U333(a, a, a) = µ9 − 9µ7µ2 − 3µ6µ3 + 27µ5µ
2
2 + 18µ4µ3µ2 + 2µ3

3 − 135µ3µ
3
2.

This gives

T [3] = 12g3µ3 − 6g22(µ4 − µ2
2) − 12g23(2µ5 − 5µ3µ2)

−18g33(µ7 − 4µ5µ2 − µ4µ3 + 4µ3µ
2
2)

+g222(µ6 − 3µ4µ2 + 2µ3
2) + 3g223(µ7 − 5µ5µ2 − µ4µ3 + 8µ3µ

2
2)

+g233U233(a, a, a) + g333U333(a, a, a).

For T [22] we need

U23(a, ab2) = 12µ3µ2,

U33(a, ab2) = 12(µ4 − 3µ2
2)µ2,

U23(ab, ab) = 12µ3µ2,

U33(ab, ab) = 18(µ4µ2 + µ2
3 − µ3

2),

and at (ab, a, b):

U222 = −2µ2
3,

U223 = U232 = −2µ3κ4,

U233 = −2κ2
4,

U322 = −6µ3(µ4 − µ2
2),

U323 = U332 = −3{(µ4 − µ2
2)κ4 + µ3(µ5 − 4µ3µ2)},

U333 = −6κ4(µ5 − 4µ3µ2).
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This gives

T [22] = 12g22σ
4 + 48g23σ

5β3 + 12g33σ
6(7β4 + 6β2

3 − 15)

−8g222σ
6(β4 − 1 + β2

3) − 4g223σ
7(2β5 + 13β4β3 − 29β3)

−4g233σ
8(β6 + 12β5β3 + 2β2

4 − 42β4 − 49β2
3 + 9)

−12g333σ
9{(β6 − 14β4 − β2

3 + 33)β3 + 2(β4 − 3)β5}
+g2222σ

8(β4 − 1)2 + 4g2223σ
9(β5 − 4β3)(β4 − 1)

+2g2233σ
10{(β6 − 6β4 − β2

3)(β4 − 1) + 2(β5 − 4β3)
2}

+4g2333σ
11(β5 − 4β3)(β6 − 6β4 − β2

3) + g3333σ
12(β6 − 6β4 − β2

3)2,

where again βr = σ−rµr. By (3.4), (3.5) this gives S1(F ) and S2(F ) so that (6.1) gives the third
order S estimate. �

Example 6.6.1 g(µ2, µ3) = µ3µ
−3/2
2 , the skewness of F . One obtains

T [2] = −3β5 + 15(β4 − 1)β3/4 + 9β3,

T [3] = −105(β6 − 3β4 + 2)β3/8 + 36β5 − 45β4β3/2 − 111β3/2,

T [22] = −105(β5 − 4β3)(β4 − 1)/2 + 945(β4 − 1)2β3/16 + β3δ,

where δ = 78 − 105(β4 + β2
3) − 15(2β5 + 13β4β3 − 29β3). Note that T[2] for both skewness and

kurtosis were first given in Withers (1994b): βi in (3.1) there should be βi+r. �
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Appendix A

Here we explain the infinitesimal jackknife given in the unpublished report Jaeckel (1972) and its
relation to our case p = 2, k = 1. In fact he offers two forms and these are equivalent to our second
order S and T estimates, but are arrived at without using functional derivatives.

He considers the case k = 1 for T (F ) but with F̂ (x) the weighted empirical distribution, F̂ (x) =∑n
i=1 wiI(Xi ≤ x). His first form is equivalent to our T estimate with

T1(F̂ ) = −(1/2)n−1
n∑

i=1

∂2T (F̂ )/∂w2
i

evaluated at w1 = · · · = wn = 1/n. His second form is essentially our S estimate and is defined in
the same way except that in the definition of the weighted empirical distribution wi is replaced by
wi/(

∑n
j=1 wj).
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Appendix B

The following procedures in MAPLE calculate the V , S and T estimates described in Sections 2
to 4 to obtain bias of any given order. The electronic versions of these procedures can be obtained
from the corresponding author.

#this procedure expresses the first u symmetric polynomials in terms of power

#sum functions the output from this procedure is needed as input for

#the Vest() and Vestsum() procedures

symmpoly := proc(u)

local m,e;

e[0]:=1;

for m from 1 to u do

e[m]:=(1/m)*sum((-1)**(i-1)*e[m-i]*p[i],i=1..m);

od;

return([seq(e[mm],mm=1..u)]);

end proc;

#this procedure computes the G function given by (4.1)

gbetai := proc (beta,i)

local tt,ttt,ii,j,k,p;

tt:=0;

for ii from 1 to i do

p:=composition(beta,ii);

for j from 1 to nops(p) do

ttt:=1;

for k from 1 to ii do

ttt:=ttt*k**(p[j][k]);

od;

tt:=tt+ttt;

od;

od;

return(tt);

end proc;

#this procedure computes the D function given by (4.2)

dalphai := proc (alpha,i)

gbetai(alpha-i,i);

end proc;

#this procedure computes the coefficients c[k,j,r] given by equation (3.1)

cc := proc (k, j, r)

local d,tt,i,n;

d[j]:=1/Amkr(j,j,r);

tt:=d[j];
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if (j>k) then

for i from 1 to (j-k) do

d[j-i]:=0;

for n from (j-i+1) to j do

d[j-i]:=d[j-i]+d[n]*Amkr(j-i,n,r);

od;

d[j-i]:=-d[j-i]/(Amkr(j-i,j-i,r));

od;

tt:=d[k];

end if;

return(tt);

end proc;

#the following procedure is needed as part of the above cc (k, j, r) procedure

Amkr := proc (m, k, r)

sum(((-1)**(l+k))*stirling1(k,l)*binomial(l,m)*(1-r)**(l-m),l=m..k);

end proc;

#this procedure computes the k (ndim) fold summation in equation (2.9)

#here it is assumed implicitly that k=5

#but the procedure can be applied for any k by making appropriate changes to

#the five do-loops and the five statements following it

#this procedure requires as input: n[1],n[2],...,n[k],r[1],r[2],...,r[k],

#ndim=the value of k,the output from symmpoly() and the T(.) function

#in equation (2.4) the output from this procedure is needed as input for

#the Vest() and coefficients() procedures

Vestsum := proc (ndim,n::list,r::list,e::list,T)

local kk,pa,ss,i1,i2,i3,i4,i5,paa,bb,tt,kkk,j,nn,ttt,mmm;

for kk from 1 to ndim do

pa[kk]:=partition(r[kk]);

od;

ss:=0;

for i1 from 1 to nops(pa[1]) do

for i2 from 1 to nops(pa[2]) do

for i3 from 1 to nops(pa[3]) do

for i4 from 1 to nops(pa[4]) do

for i5 from 1 to nops(pa[5]) do

paa[1]:=pa[1][i1];

paa[2]:=pa[2][i2];

paa[3]:=pa[3][i3];

paa[4]:=pa[4][i4];

paa[5]:=pa[5][i5];

bb:=member(1,paa[1])=false;

for kk from 2 to ndim do

bb:=bb and member(1,paa[kk])=false;

od;
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if (bb) then

for kk from 1 to ndim do

tt[kk]:=expand(e[r[kk]]);

od;

for kkk from 1 to ndim do

for j from 1 to r[kkk] do

nn:=0;

for kk from 1 to nops(paa[kkk]) do

if (j=paa[kkk][kk]) then nn:=nn+1 end if;

od;

if (nn>0) then tt[kkk]:=coeff(tt[kkk],p[j],nn) end if;

od;

od;

ttt:=1;

for mmm from 1 to ndim do

ttt:=ttt*tt[mmm]*(n[mmm])**(nops(paa[mmm]));

od;

ss:=ss+ttt*T([seq(paa[mm],mm=1..ndim)]);

end if;

od;

od;

od;

od;

od;

ss:=expand(ss);

return(ss);

end proc;

#this procedure computes of the coefficients of the output from

#with respect to powers of n[1],n[2],...,n[k]

#It is assumed implicitly that k is 5

#the procedure can be applied to any k by changing the number

#of do loops and making other appropriate changes

#this procedure requires as input: n[1],n[2],...,n[k],r[1],r[2],...,r[k]

#and the output from Vestsum()

#the output from this procedure is needed as input for the Sest()

#and Test() procedures

coefficients := proc(n::list,r::list,ss)

local i1,i2,i3,i4,i5,sss,A;

A:=array(1..r[1]/2,1..r[2]/2,1..r[3]/2,1..r[4]/2,1..r[5]/2);

for i1 from 1 to r[1]/2 do

for i2 from 1 to r[2]/2 do

for i3 from 1 to r[3]/2 do

for i4 from 1 to r[4]/2 do

for i5 from 1 to r[5]/2 do

sss:=coeff(ss,n[1],i1);

sss:=coeff(sss,n[2],i2);
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sss:=coeff(sss,n[3],i3);

sss:=coeff(sss,n[4],i4);

sss:=coeff(sss,n[5],i5);

A[i1,i2,i3,i4,i5]:=sss;

od;

od;

od;

od;

od;

return(A);

end proc;

#this procedure computes V_r for the V estimate in Section 2

#this procedure requires as input: n[1],n[2],...,n[k],r[1],r[2],...,r[k],

#ndim=the value of k,the output from symmpoly() and the T(.) function

#in equation (2.4)

Vest := proc(ndim,n::list,r::list,e::list,T)

local ss,mm;

ss:=Vestsum(ndim,n,r,e,T);

ss:=ss*(product(factorial(n[mm]-r[mm]),mm=1..ndim));

ss:=ss/(product(factorial(n[mm]),mm=1..ndim));

ss:=simplify(ss);

return(ss);

end proc;

#this procedure computes V_r for the S estimate in Section 3

#It is assumed implicitly that k is 5

#the procedure can be applied to any k by changing the number

#of do loops and making other appropriate changes

#this procedure requires as input: n[1],n[2],...,n[k],

#r[1],r[2],...,r[k] and the output from coefficients()

Sest := proc(n::list,r::list,A::array)

local i1,i2,i3,i4,i5,j1,j2,j3,j4,j5,tt,ttt,ss;

ss:=0;

for i1 from r[1]/2 to r[1]-1 do

for i2 from r[2]/2 to r[2]-1 do

for i3 from r[3]/2 to r[3]-1 do

for i4 from r[4]/2 to r[4]-1 do

for i5 from r[5]/2 to r[5]-1 do

tt:=0;

for j1 from r[1]-i1-1 to r[1]/2-1 do

for j2 from r[2]-i2-1 to r[2]/2-1 do

for j3 from r[3]-i3-1 to r[3]/2-1 do

for j4 from r[4]-i4-1 to r[4]/2-1 do

for j5 from r[5]-i5-1 to r[5]/2-1 do

ttt:=A[j1+1,j2+1,j3+1,j4+1,j5+1]*cc(r[1]-i1-1,j1,r[1])*cc(r[2]-i2-1,j2,r[2]);
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ttt:=ttt*cc(r[3]-i3-1,j3,r[3])*cc(r[4]-i4-1,j4,r[4])*cc(r[5]-i5-1,j5,r[5]);

tt:=tt+ttt;

od;

od;

od;

od;

od;

tt:=tt*factorial(n[1]-i1-1)*factorial(n[2]-i2-1)*factorial(n[3]-i3-1);

tt:=tt*factorial(n[4]-i4-1)*factorial(n[5]-i5-1);

tt:=tt/(factorial(n[1]-1)*factorial(n[2]-1));

tt:=tt/(factorial(n[3]-1)*factorial(n[4]-1)*factorial(n[5]-1));

ss:=ss+tt;

print(i1,i2,i3,i4,i5,ss);

od;

od;

od;

od;

od;

ss:=simplify(ss);

return(ss);

end proc;

#this procedure computes V_r for the T estimate in Section 4

#It is assumed implicitly that k is 5

#the procedure can be applied to any k (ndim) by changing the number

#of do loops and making other appropriate changes

#this procedure requires as input: n[1],n[2],...,n[k],r[1],r[2],...,r[k],

#ndim=the value of k and the output from coefficients()

Test := proc(ndim,n::list,r::list,A::array)

local i1,i2,i3,i4,i5,j1,j2,j3,j4,j5,nn,tt,ttt,tttt,ss,a,kk;

ss:=0;

for i1 from r[1]/2 to r[1]-1 do

for i2 from r[2]/2 to r[2]-1 do

for i3 from r[3]/2 to r[3]-1 do

for i4 from r[4]/2 to r[4]-1 do

for i5 from r[5]/2 to r[5]-1 do

tt:=0;

for j1 from r[1]-i1-1 to r[1]/2-1 do

for j2 from r[2]-i2-1 to r[2]/2-1 do

for j3 from r[3]-i3-1 to r[3]/2-1 do

for j4 from r[4]-i4-1 to r[4]/2-1 do

for j5 from r[5]-i5-1 to r[5]/2-1 do

ttt:=A[j1+1,j2+1,j3+1,j4+1,j5+1]*cc(r[1]-i1-1,j1,r[1])*cc(r[2]-i2-1,j2,r[2]);

ttt:=ttt*cc(r[3]-i3-1,j3,r[3])*cc(r[4]-i4-1,j4,r[4])*cc(r[5]-i5-1,j5,r[5]);

tt:=tt+ttt;

od;

od;
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od;

od;

od;

nn[1]:=i1;

nn[2]:=i2;

nn[3]:=i3;

nn[4]:=i4;

nn[5]:=i5;

ttt:=1;

for kk from 1 to ndim do

tttt:=0;

for a from nn[kk] to 100 do

tttt:=tttt+(n[kk])**(-a)*dalphai(a,nn[kk]);

od;

ttt:=ttt*tttt;

od;

ss:=ss+tt*ttt;

print(i1,i2,i3,i4,i5,ss);

od;

od;

od;

od;

od;

ss:=simplify(ss);

return(ss);

end proc;
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Table 5.1. Number of terms for estimates of bias O(n−p) for k = 1.
p = 1 2 3 4 5 6 7

Vnnnp(F̂ ) 1 2 5 11 22 42 77

Snnnp(F̂ ) 1 2 4 8 15 25 44

Tnnnp(F̂ ) 1 2 5 11 21 · ·

Table 5.2. Number of terms for estimates of bias O(n−p
0 ), where n0 = min ni.

p = 1 2 3 4 5

Vnnnp(F̂ ) 1 k + 1 s2 + 4k + 1 s3 + 8s2 + 10k + 1 s4 + 14s3 + 31s2 + 21k + 1
= (k2 + 7k + 2)/2 = (k3 + 21k2 + 38k + 6)/6 = (k4 + 40k3 + 305k2 + 230k + 24)/24

Snnnp(F̂ ) 1 k + 1 s2 + 3k + 1 s3 + 3s2 + 7k + 1 s4 + 9s3 + 15s2 + 14k + 1
= (k2 + 5k + 2)/2 = (k3 + 6k2 + 35k + 6)/6 = (k4 + 30k3 + 143k2 + 234k + 24)/24

Tnnnp(F̂ ) 1 k + 1 s2 + 4k + 1 s3 + 7s2 + 10k + 1 s4 + 13s3 + 25s2 + 20k + 1
= (k2 + 7k + 2)/2 = (k3 + 18k2 + 20k + 6)/6 = (k4 + 36k3 + 245k + 270k + 24)/24

Table 5.3. Number of terms for estimates of bias O(n−p) for k = 2 and 3.

k = 2 k = 3

p = 1 2 3 4 5 1 2 3 4 5

Vnnnp(F̂ ) 1 3 10 29 74 1 4 16 56 171

Snnnp(F̂ ) 1 3 8 18 44 1 4 13 32 97

Tnnnp(F̂ ) 1 3 10 28 66 1 4 16 53 149
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Figure 6.1. The average absolute bias of the estimator of {α1µ1 + (1 − α1)µ2}2 when µ1 and µ2

are the means of two independent normal distributions with unit standard deviations. The average
is based on 100 random samples each of size 100.

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

α1

Me
an

 S
qu

are
d E

rro
r

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

Withers & Nadarajah
Cabrera & Fernholz
Sen
Bootstrap
Jackknife

Figure 6.2. Mean squared error of the estimator of {α1µ1 + (1−α1)µ2}2 when µ1 and µ2 are the
means of two independent normal distributions with unit standard deviations. The MSE is based
on 100 random samples each of size 100.

34



0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.1
0.2

0.5
1.0

2.0

µ1 µ2

Av
era

ge
 A

bs
olu

te 
Bia

s

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.1
0.2

0.5
1.0

2.0

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.1
0.2

0.5
1.0

2.0

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0.1
0.2

0.5
1.0

2.0

Withers & Nadarajah
Cabrera & Fernholz
Bootstrap
Jackknife

Figure 6.3. The average absolute bias of the estimator of µ1/µ2 when µ1 and µ2 are the means
of two independent exponential distributions. The average is based on 100 random samples each
of size 100. The x axis is in log scale.
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Figure 6.4. Mean squared error of the estimator of µ1/µ2 when µ1 and µ2 are the means of two
independent exponential distributions. The MSE is based on 100 random samples each of size 100.
The x axis is in log scale.
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Figure 6.5. The average absolute bias of the estimator of σ when σ is the mean of an exponential
distribution. The average is based on 100 random samples each of size 100. The x axis is in log
scale.
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Figure 6.6. Mean squared error of the estimator of σ when σ is the mean of an exponential
distribution. The average is based on 100 random samples each of size 100. The x axis is in log
scale.
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Figure 6.7. The average absolute bias of the estimator of µ/σ when µ and σ are the mean and
the standard deviation of a normal distribution. The average is based on 100 random samples each
of size 100. The x axis is in log scale.
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Figure 6.8. The mean squared error of the estimator of µ/σ when µ and σ are the mean and the
standard deviation of a normal distribution. The MSE is based on 100 random samples each of
size 100. The x axis is in log scale.
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