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Abstract

A reduced-bias nonparametric estimator of the cumulative distribution function

(CDF) and the survival function is proposed using infinite-order kernels. Fourier trans-

form theory on generalized functions is utilized to obtain the improved bias estimates.

The new estimators are analyzed in terms of their relative deficiency to the empirical

distribution function and Kaplan-Meier estimator, and even improvements in terms of

asymptotic relative efficiency (ARE) are present under specified assumptions on the

data. The deficiency analysis introduces a deficiency rate which provides a continuum

between the classical deficiency analysis and an efficiency analysis. Additionally, an

automatic bandwidth selection algorithm, specially tailored to the infinite-order ker-

nels, is incorporated into the estimators. In small sample sizes these estimators can

significantly improve the estimation of the CDF and survival function as is illustrated

through the deficiency analysis and computer simulations.
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1 Introduction

We consider the problem of estimating the CDF in contexts of independently and iden-

tically distributed (iid) data and randomly right-censored data. Indeed, the seminal

paper of Kaplan and Meier [11] solves this problem with the product-limit estimator—

the nonparametric maximum likelihood estimator of the CDF—but there is still room

for improvement, especially when the sample size is small.

The most obvious drawback of the Kaplan-Meier estimator, like the empirical distri-

bution function (EDF), is its lack of smoothness. Kernel smoothing easily remedies this

problem, but also introduces two new issues of choosing the best kernel and bandwidth.

Kernel smoothing also improves the estimator mean square error (MSE) performance

by decreasing its variance while introducing a slight bias resulting in an overall improve-

ment of the MSE. The MSE improvement, however, is typically only a second-order

improvement, since the original estimator’s first-order MSE convergence rate already

achieves the best-possible
√
n-rate. When the asymptotic relative efficiency (ARE) be-

tween the Kaplan-Meier estimator and its smoothed counterpart is one, as is typically

the case, a distinction in performance can be measured by considering the asymptotic

relative deficiency, or just simply the deficiency between the two estimators. The gen-

eral notion of deficiency and subsequent calculations with the proposed estimators is

provided in Section 3 which also illustrates that an actual increase in efficiency can

be achieved with the new estimators under certain (rather strong) assumptions of the

distribution function.

Higher-order MSE improvement is influenced by the kernel order—the higher the

kernel order, the greater the improvement. Therefore the best kernel-based estima-

tors, the ones with smallest asymptotic MSE, are the estimators that use infinite-order

kernels. Current methods traditionally invoke second-order kernels [23] and more re-

cently a hybrid kernel estimator has been investigated [13], but infinite-order kernel

methods allow for the greatest improvement in bias rates without affecting the rates

of the variance. The main argument against the use of large-order kernels in density
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estimation is the concern that the estimator may be negative on some intervals when

it is known that the true probability density is always nonnegative. This argument,

however, is moot in the density estimation context (so also in the CDF estimation

context) since the estimator can easily be truncated to zero when it goes negative

then renormalized to have a total area of one without affecting the MSE convergence

rate. General construction of the infinite-order kernel estimators are introduced in the

following section and a compatible bandwidth selection algorithm that adapts to the

infinite-order kernels is described in Section 4.

Another pitfall of all kernel estimators of the density is the lack of consistency at

boundary points when the support of the density lies in an interval or half-interval.

Simple reflection [25] solves this problem in the density estimation context and an

analogous fix also exists for CDF estimators. Boundary correction and standardization

methods specific to kernel-smoothed CDF estimators are discussed in Section 5.

Simulations with iid and censored data illustrate the effectiveness of the infinite-

order kernel estimators coupled with the automatic bandwidth selection algorithm

of Section 6. Uniform improvement in MSE over existing estimators is observed in

the simulations. Since estimation of the CDF is so fundamental in standard statical

analysis, there are many applications of the new estimators beyond just estimating

the underlying CDF. Some of these applications are included in the last section on

Discussions and Conclusions.

2 Estimation with Flat-Top Kernels

The analysis will be confined to independently and identically distributed (iid) data,

but extensions to randomly right censored with possible left truncation can be more

generally derived; cf. [3, 24].

Let X1, . . . , Xn be independent1 and identically distributed random vectors in R

with absolutely continuous distribution function F and corresponding probability den-

1The independent assumption can be relaxed under certain stationarity and mixing conditions; see [16, 8].
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sity function f . Estimation of f with infinite-order kernels was considered in [21] and

[3]; here we consider the integration of those estimators in the construction of the CDF

estimator.

The traditional estimator of the CDF is the empirical distribution function, or EDF,

which is given by

F̂ (t) =
1
n

n∑
j=1

I(Xi ≤ t)

where I(·) represents the indicator function. The kernel estimator of the probability

density, f , is then given by

f̂h(x) =
∫ ∞
−∞

1
h
K

(
t−Xj

h

)
dF̂ (t) =

1
nh

n∑
j=1

K

(
x−Xj

h

)
.

where K is a kernel that integrates to one (but not necessarily nonnegative!) and h is

the bandwidth parameter. To insure consistency of f̂h, h should satisfy the condition

h→ 0 as n→∞ but with nh→∞.

The smoothed estimation of the CDF, F̂h, is constructed by integrating f̂h. That

is,

F̂h(t) =
∫ t

−∞
f̂h(x) dx =

1
n

n∑
j=1

K̄

(
t−Xj

h

)
(1)

where K̄(t) =
∫ t
−∞K(x) dx.

The estimator F̂h(t) is equivalent to the EDF in terms of first-order asymptotic

performance, but improvements are achieved in the higher-order terms. The estimator

F̂h(t) effectively smooths the EDF, decreasing its variance at the cost of introducing a

slight bias. The variance improvement is uniform across different kernels, affecting only

the second-order constant and not the second-order rate (refer to equation (2) below);

however the additional bias that gets introduced in the smoothing can be minimized

significantly by using kernels of large order with infinite-order kernels providing the

most benefit. The variance of F̂h(t), as derived in [15], is given by

var
[
F̂h(t)

]
=
F (t)[1− F (t)]

n
− 2f(t)

(∫
uK̄(u)K(u) du

)
h

n
+ o

(
h

n

)
. (2)
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The bandwidth parameter h only enters the variance expression through the second-

order term which is negative. So the larger h is, the smaller the variance of F̂h(t)

becomes. However, we will see below in Theorem 1 that the smaller h is, the smaller

the bias of F̂h(t) becomes. Therefore there is an optimal h that strikes a compromise

between the bias and variance terms which is presented in Corollary 1 below.

We now construct a family of infinite-order kernels, following [21], that are derived

from “flat-top functions”. We start with a continuous, real-valued function κ given by

κ(s) =


1, |s| ≤ c

g(|s|), otherwise
(3)

where g is any continuous, square-integrable function that is bounded in absolute

value by one and satisfies g(|c|) = 1. The region |s| < c is referred to as the “flat-

top neighborhood”, but in some cases we may wish to relax the requirement to allow

g(s) ≈ 1 when s is close to c. This “effective flat-top neighborhood” is useful when using

an infinitely smooth function κ(s) as described in [19] and Section 6 below. The Fourier

transform of κ then produces the infinite-order kernel, K, of interest. Specifically,

K(x) =
1

2π

∫ ∞
−∞

κ(s)e−isx ds. (4)

The MSE of F̂h(t) with an infinite-order kernel K is now computed under various

assumptions on the smoothness of the underlying density. Let φ(t) be the characteristic

function corresponding to f(x), i.e.

φ(s) =
∫ ∞
−∞

f(x)eisx dx.

The following three assumptions quantifies the degree of smoothness of the density

f(x) by the rate of decay of its characteristic function.

Assumption A(p): There is a p > 0 such that
∫∞
−∞ |t|

p |φ(t)| <∞.

Assumption B: There are positive constants d and D such that |φ(t)| ≤ De−d|t|.
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Assumption C: There is a positive constant b such that φ(t) = 0 when |t| ≥ b.

Theorem 1. Let F̂h(t) be a kernel smoothed estimator of the CDF with an infinite-

order kernel derived from a flat-top function.

(i) Suppose assumption A(p) holds, then

sup
t∈R

∣∣∣bias
(
F̂h(t)

)∣∣∣ = o
(
hp+1

)
.

(ii) Suppose assumption B holds, then

sup
t∈R

∣∣∣bias
(
F̂h(t)

)∣∣∣ = O
(
he−d/h

)
= o

(
e−d/h

)
.

(iii) Suppose assumption C holds. When h ≤ 1/b,

sup
t∈R

∣∣∣bias
(
F̂h(t)

)∣∣∣ = 0.

To optimize the amount of smoothing under the MSE criterion—i.e., to optimize

the bandwidth h—we choose the bandwidth that allows the squared bias rates to be

comparable to the second-order variance rates. The optimal bandwidths are provided

in the following corollary.

Corollary 1. Let F̂h(t) be as in Theorem 1.

(i) Suppose assumption A(p) holds. Letting h ∼ an−β where a is any positive con-

stant and β = (2p+ 1)−1 optimizes the tradeoff between the bias and variance of

F̂h(t) and gives

sup
t∈R

∣∣∣bias
(
F̂h(t)

)∣∣∣ = o
(
n
− p+1

2p+1

)
.

(ii) Suppose assumption B holds. Letting h ∼ a/ log n where a < 2d is a constant

optimizes the tradeoff between the bias and variance of F̂h(t) and gives

sup
t∈R

∣∣∣bias
(
F̂h(t)

)∣∣∣ = o

(
1√

n log n

)
.
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(iii) Suppose assumption C holds. Letting h ≤ 1/b be fixed guarantees zero bias and

the best possible variance rate.

Estimation of the survival function with randomly right censored data can be sim-

ilarly improved with the smoothing of the Kaplan-Meier estimator with infinite-order

kernels. Density estimation of censored data with infinite-order kernels is analyzed in

[3], and an estimator of the survival function can be similarly derived from this den-

sity estimator through integration as in (1). The same conclusions as Theorem 1 and

Corollary 1 will also hold for the smoothed version of the Kaplan-Meier estimator with

infinite-order kernels. This is detailed in the following theorem where the proof has

been omitted as it follows naturally from the iid case above.

Define Ŝh(t) to be a smoothed estimator of the survival function, S(t) = 1− F (t),

derived from smoothing the Kaplan-Meier estimator with an infinite-order kernel of

the form given in (4); i.e.,

Ŝh(t) =
∑

sjK̄

(
t−Xj

h

)
(5)

where sj is the height of the jump of the Kaplan-Meier estimator at Xj (cf. [3] for

more details). The following theorem is consistent with the results described in [14].

Theorem 2. Let Ŝh(t) be a kernel smoothed estimator of the survival function as in

(5) above. Suppose assumption A(p) holds, then

sup
t∈R

∣∣∣bias
(
Ŝh(t)

)∣∣∣ = o
(
hp+1

)
= o

(
n
− p+1

2p+1

)

when h ∼ an−β where a is any positive constant and β = (2p+ 1)−1.

The analysis under assumptions B and C of the above theorem are considerably

more complex and have been omitted.
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3 Deficiency

The notion of deficiency was introduced in the article “Deficiency” by Hodges and

Lehmann [10] wherein several deficiency calculations are provided. Many articles fol-

lowed suit using the deficiency concept to compare kernel-smoothed estimators, but

many of the approaches used in calculating the deficiency strayed from the original

and simple techniques employed by Hodges and Lehmann; c.f. [1, 5, 6, 7, 23, 26].

The simplicity of the original deficiency computations is maintained in the proof of

Theorem 3 below.

The deficiency concept is described as follows. Given an estimator, Sm, based on a

sample of size m and a more efficient estimator, Tn, based on a sample of size n with

equivalent performance as Sm. The difference between the sample sizes, d = m − n,

defines the relative deficiency between the two estimators. The original paper of Hodges

and Lehmann mostly dealt with situations where d approaches a finite limit as n goes to

infinity in which case the two estimators have an asymptotic relative efficiency (ARE)

of one. However, it is still possible for two estimators to have an ARE of one yet

with a deficiency that approaches infinity. Therefore calculation of the rate in which d

approaches infinity gives a generalization of the original deficiency concept.

In the following theorem, a formula is derived for computing the generalized defi-

ciency between two estimators from their MSE performance which explicitly computes

the rate at which d approaches infinity.

Theorem 3. Suppose the mean squared errors of two estimators Sn and Tn are given

as

MSE(Sn) =
c

nr
+

a

nr+δ
+ o

(
1

nr+δ

)
MSE(Tn) =

c

nr
+

b

nr+δ
+ o

(
1

nr+δ

)

Define m = m(n) to be the sample size for which MSE(Tm) equals (up to a second order

term) MSE(Sn). Then the asymptotic deficiency of Tn relative to Sn is d = m−n and
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satisfies
d

n1−δ −→
b− a
cr

In the next theorem, the deficiency of two estimators is calculated when the second-

order term in the MSE expansion decreases at the rate nr log n which is very close to

the leading term of nr. Therefore the deficient index, d, will approach infinity at a

faster rate indicating a larger discrepancy in the performance of the two estimators.

Theorem 4. Suppose the mean squared errors of two estimators Sn and Tn are given

as

MSE(Sn) =
c

nr
+

a

nr log n
+ o

(
1

nr log n

)
MSE(Tn) =

c

nr
+

b

nr log n
+ o

(
1

nr log n

)

Define m = m(n) to be the sample size for which MSE(Tm) equals (up to a second

order term) MSE(Sn). Then the asymptotic expected deficiency of Tn relative to Sn is

d = m− n and satisfies

d

(
log n
n

)
−→ b− a

cr

These formulas, combined with the results of Corollary 1 and equation (2), are

used to derive the deficiency of infinite-order kernel estimators to the unsmoothed EDF

under the assumptions A(p), B, and C. In the case of assumption C, the improvement

in MSE performance is first-order, and therefore improvement in terms of efficiency, or

ARE, is present.

Corollary 2. Let F̂h(t) be as in Theorem 1 and F̂ be the empirical distribution function

estimator. Assume F (t) (1− F (t)) 6= 0.

(i) Suppose assumption A(p) holds. When h ∼ an−β where a > 0 is constant and

β = (2p+ 1)−1, the deficiency of F̂h(t) relative to F̂ (t) is

(
2af(t)

(∫
uK̄(u)K(u) du

)
F (t) (1− F (t))

)
n

2p
2p+1
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(ii) Suppose assumption B holds. When h ∼ a/ log n where a < 2d is a constant, the

deficiency of F̂h(t) relative to F̂ (t) is

(
2af(t)

(∫
uK̄(u)K(u) du

)
F (t) (1− F (t))

)
n

log n

(iii) Suppose assumption C holds. When h ≤ 1/b is constant, the deficiency of F̂h(t)

relative to F̂ (t) is (
2f(t)

(∫
uK̄(u)K(u) du

)
F (t) (1− F (t))

)
n.

4 Bandwidth Selection

We now present a simple bandwidth selection algorithm that requires very minimal

computation and adapts to the specialized family of infinite-order kernels that is utilized

in this paper. The methods suggested in [20] for iid data and in [3] for censored

data present an algorithm that automatically selects the optimal bandwidth in density

estimation. Remarkably, these same algorithms can also be used to select the best

bandwidth in CDF estimation. Although the bias in estimating the CDF is smaller

than the bias of the density estimators, the variance of the CDF estimator is also smaller

than the variance of the density estimator. This algorithm automatically adapts to the

appropriate assumption A(p), B, or C and generates a bandwidth that is consistent

for the ideal bandwidth given by Corollary 1. The algorithm is also computationally

light as well as being simple to describe, and we now proceed to describe it.

Let φ̂ be the natural estimate of the characteristic function given by

φ̂(t) =
∫ ∞
−∞

eitx dF̂ (x) =
n∑
j=1

eitXj .

In the context of censored data, F̂ (x) in the above expression is replaced with the

Kaplan-Meier estimator of the CDF. The main key to the algorithm is finding when

φ(t) ≈ 0; more specifically, determining the smallest value t∗ such that φ(t) ≈ 0 for all

t ∈ (t∗, t∗ + ε) for some pre-specified ε. Then the estimate of the bandwidth is given
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by ĥ = 1/t∗. The formal algorithm is presented below.

Bandwidth Selection Algorithm

Let C > 0 be a fixed constant, and εn be a nondecreasing sequence of

positive real numbers tending to infinity such that εn = o(log n). Let t∗ be

the smallest number such that

|φ̂(t)| < C

√
log10 n

n
for all t ∈ (t∗, t∗ + εn) (6)

Then let ĥ = c/t∗ where c is the “flat-top radius” depicted in equation (3).

The positive constant C is irrelevant in the asymptotic theory, but is relevant for

finite-sample calculations. The main idea behind the algorithm is to determine the

smallest t such that φ(t) ≈ 0. In most cases this can be visually seen without explicitly

computing the threshold in (6).

5 Boundary Correction and Standardization

Vanilla versions of the kernel estimators for density estimation break down when the

support of the density is restricted to a subset of the real line. For instance, in esti-

mating the probability density function of data taken from an exponential distribution,

most kernel estimators give substantial area to negative values even when it is known

that the support of the density is nonnegative. It is not too difficult to see that simple

kernel estimators of the density will not be consistent at the boundary of the density’s

support; cf. [25]. However, a simple remedy by reflection works well when the support

is not too complex. For instance when the support of the density is [a,∞), then the

estimator

ˆ̂
fh(x) =

(
f̂h(x) + f̂h(2a− x)

)
1[a,∞)(x) (7)

is consistent at the boundary point a ([25]).

This problem, therefore, also carries over to the situation of estimating the CDF.

Indeed the EDF and Kaplan-Meier estimators do not suffer from this drawback, but
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the kernel smoothed versions do. By integrating (7), we deduce a boundary-corrected

version of the kernel-smoothed CDF estimator with the same formulation as (7). For

t ∈ [a,∞),

ˆ̂
Fh(t) =

∫ t

−∞

ˆ̂
fh(x) dx

=
∫ t

a

(
f̂h(x) + f̂h(2a− x)

)
dx

= F̂h(t)− F̂h(a) +
∫ a

2a−t
f̂h(x) dx

= F̂h(t)− F̂h(a) + F̂h(a)− F̂h(2a− t)

= F̂h(t)− F̂h(2a− t)

and F̂h(t) = 0 when t < a. In the special case a = 0, we have the simple formula

ˆ̂
Fh(t) =

(
F̂h(t)− F̂h(−t)

)
1[0,∞)(t)

There is an additional issue that only affects higher-order kernel estimators and not

second-order estimators. Specifically, higher-order kernel estimators of the density are

not necessarily nonnegative, which means higher-order kernels estimators of the CDF

are not necessarily contained within the range [0, 1] or forced to be nondecreasing. The

natural remedy for these density estimators is to truncate negative estimates to zero

and then renormalize the area to one. When this is performed, the corresponding CDF

estimator will be a valid CDF. However this approach causes the kernel estimator of

the CDF to lose its simplistic representation that is given in the right-hand side of

(1), so instead, a simple alternative standardization technique is suggested. To insure

the estimator is nondecreasing, F̂h(t) is replaced by sup(−∞,t) F̂h(t), and to insure the

range is between 0 and 1, max(F̂h(t), 1) and min(F̂h(t), 0) are invoked.

Replacing F̂h(t) with sup(−∞,t) F̂h(t) is equivalent to replacing the estimator of the

density f̂h(x) with the truncated version f̂+
h (x) = max(f̂h(x), 0) and then integrating

the truncated density estimator from −∞ to t. Since f̂+
h (x) has better MSE perfor-

mance than the nontruncated counterpart f̂h(x) [22], it follows that the nondecreasing
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estimator sup(−∞,t) F̂h(t) has better MSE performance than the original F̂h(t). Sim-

ilarly, the MSE of the range restricted estimator produced from max(F̂h(t), 1) and

min(F̂h(t), 0) will also be improved since it is known the CDF has a range bounded in

[0,1]. This is formalized in the following corollary.

Corollary 3. Let F̂h(t) be as in Theorem 1. A modified estimator is defined as

F̃h(t) = max

(
min

(
sup

(−∞,t]
F̂h(t), 0

)
, 1

)
.

Then it follows that

MSE
(
F̃h(t)

)
≤ MSE

(
F̂h(t)

)
and F̃h(t) satisfies the necessary properties of a CDF.

6 Simulations

We evaluate the performance of the proposed infinite-order kernel estimators with the

more traditional second-order kernel estimators and the EDF/Kaplan-Meier estimator.

Boundary correction, as described in Section 5, is applied to the estimators when

appropriate. As any choice of function g(x) in (3) will insure the ideal asymptotics of

an infinite-order kernel, the selection of infinite-order kernels is quite large. An easy

choice for the function g(x) is the straight line truncated at zero, i.e. g(x) = (1−x
1−c )+,

which gives κ a trapezoidal shape. The simulations below considers this trapezoidal

function κ with c = .75.

By making the flat-top function κ(x) infinitely smooth, the resulting kernel via the

Fourier transform will have tails that decay exponentially. Therefore in situations in

estimating the density with boundary conditions, the kernel derived from the infinitely

smooth flat-top function is more close to having the desirable quality of being compactly

supported than the kernel which is derived from the trapezoidal function. One example

of an infinitely smooth κ(x) is [17]
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κ(s) =



1 if |s| < c

exp

(
−b exp

“
−b

(|x|−c)2

”
(|x|−1)2

)
if c < |x| < 1

0 if |x| ≥ 1

(8)

which resembles and infinitely smooth trapezoid and is controlled by the two pa-

rameters b and c. In the simulations, we also used this function κ for comparisons with

the parameters b = 1 and c = .05. A plot of this κ is given below.

Figure 1: Infinitely differentiable flat-top function (8)
with parameters b = 1 and c = .05.

This function is perfectly flat only from 0 to .05, but it is “effectively” flat from 0

to about .5. Therefore the effective flat-top radius is taken to be .5, and it is this value

that is used in the bandwidth selection algorithm described above in Section 4.

A slightly modified bandwidth selection algorithm was invoked that retains the

function of the bandwidth algorithm described above. The key in the bandwidth

algorithm is to find the smallest value of t∗ so that φ̂(t∗) ≈ 0. To automate this

procedure, the value t∗ was chosen to be the first value for which φ̂(t∗) starts to level

off.

A Gaussian kernel is used in the second-order kernel estimator, and cross validation,

as suggested in [4], is used to select the bandwidth for this estimator. Estimates were

simulated over 1000 realizations.

The first simulation study considers the estimation of a N(0, 1) CDF from iid data.
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One may imagine the second-order Gaussian kernel estimator to do quite well in this

context, but in fact the infinite-order kernel performs uniformly better. MSE estimates

are provided at three points (t = −1.5, 0, 1.5) and under two different sample sizes

(n = 15, 30).

Table 1: Comparison of the EDF with a Gaussian kernel
estimator and two infinite-order kernel estimators (trapezoid
and smoothed trapezoid) on iid normal data

t = −1.5 t = 0 t = 1.5

n 15 30 15 30 15 30

MSEEDF
* 4.30 2.09 16.29 8.73 4.42 2.14

MSEGauss
* 3.50 1.75 13.02 7.20 3.67 1.82

MSEtrap
* 2.85 1.48 11.72 6.49 2.93 1.63

MSEsmooth
* 2.95 1.55 12.01 6.71 3.06 1.69

* MSE values are blown up by 103 for easier comparison.

The second simulation study considers the estimation of a Weibull distribution

with censored data. Lifetime variables, the variables of interest, are simulated from a

Weibull distribution with shape parameter 3 and scale parameter 1.5 and the censoring

variables are independently drawn from a Weibull distribution with shape parameter 4

and scale parameter 3. Since the support of the lifetime density is on the positive real

line, the boundary correction of Section 7 is implemented. MSE estimates are provided

at three points (t = .75, 1.5, 1.5) and under two different sample sizes (n = 15, 30).

Here again the infinite-order kernels consistently outperform the second-order kernel

estimator and the Kaplain-Meier estimator in term of MSE performance. In particular,

the smoothed trapezoid is shown to perform well near the boundary point which can

be attributed to its exponential tails making it more compactly supported.
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Figure 2: Lifetime and censored Weibull densities considered in the simulations with a plot
of the survival function also included.

Table 2: Comparison of the EDF with a Gaussian kernel es-

timator and two infinite-order kernel estimators (trapezoid

and smoothed trapezoid) on censored Weibull data

t = .75 t = 1.25 t = 1.75

n 15 30 15 30 15 30

MSEEDF
* 6.47 3.51 17.0 7.75 12.0 5.62

MSEGauss
* 5.45 2.84 10.1 5.27 8.56 4.11

MSEtrap
* 5.83 2.70 8.68 4.28 9.32 4.06

MSEsmooth
* 5.04 2.36 9.81 4.85 8.84 5.62

* MSE values are blown up by 103 for easier comparison.

16



7 Discussion and Conclusions

The proposed estimators have implications far beyond just providing a more accurate

estimators of the CDF and survival function. For instance, it is standard practice to

compare the effects of two drugs based on their respected survival functions, but the

cost of running clinical trials limits the sample size of the available data. From the

deficiency calculations of Section 3, we see that the proposed estimators can produce

the same results as the traditional Kaplan-Meier estimator yet with a significantly

smaller sample size.

Another very standard use of the EDF is found in the bootstrap method. In the

smoothed bootstrap, data is drawn from a smoothed EDF, and when the estimator

of the smoothed EDF is improved, the smoothed bootstrap is also improved to give

more accurate inferences [9, 18]. The bootstrap method is particularly beneficial when

sample sizes are small, and therefore invoking infinite-order kernel estimators in this

situation is often very natural.

Hazard function estimation on small samples can also be significantly be improved.

Hazard estimators, constructed from dividing a smoothed density estimate by a smoothed

survival function, as in [12], have performance that is typically dictated by the conver-

gence of the density estimator [3]. However in small sample sizes, accurate estimation

of the survival function is just as crucial as accurate estimation of the density.

The new infinite-order kernel estimators of the CDF and survival function is shown

through analysis and demonstrated through simulations to be more accurate than the

EDF and Kaplain-Meier estimators with significant improvements seen in small sample

sizes and data from a distribution that has a rapidly decaying characteristic function.

Significant improvements in terms of an increase in efficiency is also produced by the

new estimators when the characteristic function of the data is identically zero after

some finite value. Additionally, the bandwidth selection algorithm that accompanies

the new estimator is computationally simpler with faster convergence rates than the

cross-validation bandwidth selection algorithms used with finite-order kernels.
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A Technical Proofs

Proof of Theorem 1.

From the following computation

E
[
F̂h(t)

]
=

1
n

n∑
j=1

E
[
K̄

(
t−Xi

h

)]
,

computing the bias of F̂h(t) amounts to computing the bias of K̄
(
t−Xi
h

)
. Starting

with its expectation, we have

E
[
K̄

(
t−Xi

h

)]
=
∫ ∞
−∞

K̄

(
t− x
h

)
f(x) dx

=
∫ ∞
−∞

K̄

(
t− x
h

)
dF (x)

= K̄

(
t− x
h

)
F (x)

∣∣∣∣x=∞
x=−∞︸ ︷︷ ︸

=0

+
1
h

∫
F (x)K

(
t− x
h

)
dx

=
1
h

∫
F (x)K

(
t− x
h

)
dx.

If we define Kh(t) = 1
hK

(
t
h

)
, then the expectation above can be written in very

simply as

E
[
K̄

(
t−Xi

h

)]
= F ? Kh(t)

where ? denotes convolution.

To proceed, we will employ Fourier transform theory on (mathematical) distribu-

tions, otherwise known as generalized functions. By invoking generalized functions,

we can compute the Fourier transform of not just the standard class of integrable

functions, but also many non-integrable functions like constants and cumulative distri-

bution functions. This theory, in general, is very technical and readers unfamiliar with

the subject are referred to [2] for a nice treatment of the subject.

As K is the Fourier transform of κ, κ is therefore the inverse Fourier transform of
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K. Through a simple change of variables, we have

F−1 (Kh(t)) = κ(th)

where the notation F and F−1 will represent the Fourier transform and its inverse.

Next we wish to derive the Fourier transform of the CDF F (t). This is the first

generalized function that we encounter and its Fourier transform involves the Dirac

delta function, δ(s). Using the Heaviside step function H(x) given by H(x) = 1(x > 0),

we rewrite F (t) as

F (t) =
∫ t

−∞
f(x) dx =

∫ ∞
−∞

f(x)H(t− x) dx = f ? H(t)

Therefore the Fourier transform of F (t) reduces to the product of the Fourier transforms

of f(x) and H(x); i.e.

F (F (t)) = φ(s)
(
πδ(s) +

1
is

)
= πφ(0)δ(s) +

φ(s)
is

= πδ(s) +
φ(s)
is

.
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We will now proceed with estimating the bias of F̂h(t).

bias
(
F̂h(t)

)
= Kh ? F (t)− F (t)

= F
(
F−1 (Kh ? F (t)− F (t))

)
= F

(
F−1 (Kh) · F−1 (F )−F−1 (F )

)
= F

((
F−1 (Kh)− 1

)
F−1 (F )

)
= F

(
(κ(sh)− 1)

(
πδ(s) +

φ(s)
is

))
= F

(
(κ(sh)− 1)

φ(s)
is

)
− πF ((κ(sh)− 1) δ(s))

= F
(

(κ(sh)− 1)
φ(s)
is

)
− πF

(
(κ(sh)− 1)

∣∣∣∣
s=0

)
︸ ︷︷ ︸

=0

=
1

2π

∫
|s|>1/h

(κ(sh)− 1)
φ(s)
is

ds.

The last equality comes from the flat-top property of κ function; specifically, κ(sh) = 1

for |sh| ≤ 1 implies κ(sh) − 1 = 0 for |s| ≤ 1/h. Since κ is bounded by one, we have

the following bound on the bias of F̂h(t),

∣∣∣bias
(
F̂h(t)

)∣∣∣ ≤ 2
2π

∫
|s|>1/h

|φ(s)|
|s|

ds.

We now bound the bias under the three assumptions A(p), B, and C. Under assump-

tion A(p), we have

∫
|s|>1/h

|φ(s)|
|s|

ds =
∫
|s|>1/h

|s|p|φ(s)|
|s|p+1

ds

≤ hp+1

∫
|s|>1/h

|s|p|φ(s)| ds

= o(hp+1).

(9)
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Under assumption B,

∫
|s|>1/h

|φ(s)|
|s|

ds ≤ h
∫
|s|>1/h

|φ(s)| ds

≤ h
∫
|s|>1/h

De−d|s| ds

≤ Dh

ed/h

∫
|s|>1/h

ed(1/h−|s|) ds

= O
(
he−d/h

)
.

(10)

And under assumption C, ∫
|s|>1/h

|φ(s)|
|s|

ds = 0 (11)

when h ≤ 1. Therefore parts (i) through (iii) are proven from equations (9), (10), and

(11) respectively.

Proof of Theorem 3.

If the mean square errors are equal, up to a fraction of the sample size, then we

have
c

nr
+

a

nr+δ
+ o

(
1

nr+δ

)
=

c

mr
+

b

mr+δ
+ o

(
1

mr+δ

)
which implies

1
nr

[
c+

a+ o(1)
nδ

]
=

1
mr

[
c+

b+ o(1)
mδ

]
.

Dividing through by c and solving for m
n gives

m

n
=
[
1 +

b+ o(1)
cnδ

]1/r [
1 +

a+ o(1)
cmδ

]−1/r

.

From the above expression, we see that m/n → 1 and therefore o(1/n) = o(1/m).

Using the approximation (1 + x)s = 1 + sx+O(x2) gives

m

n
= 1 +

b

crnδ
− a

crmδ
+ o

(
1
nδ

)
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Recalling m = n+ d, we have

d

n
=

b

crnδ
− a

crmδ
+ o

(
1
nδ

)
.

Multiplying both sides of the above equation by nδ gives

d

n1−δ =
b

cr
− a

cr

( n
m

)δ
+ o (1) −→ b− a

cr
.

Proof of Theorem 4.

The proof of Theorem 4 follows the same lines as the proof of Theorem 3 with nδ

replaced with log n.
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