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Abstract

Maximum likelihood estimations for the parameters of extreme value distribu-

tions are discussed in this paper using fixed point iteration. The commonly used

numerical approach for adressing this problem is the Newton-Raphson approach

which requires differentiation unlike the fixed point iteration which is also easier

to implement. Graphical approaches are also usualy proposed in the literature.

We prove that these reduce in fact to the fixed point solution proposed in this

paper.

2000 AMS Classification: 62F10; 62N02.

1 Introduction

Extreme value distributions are largely used in applied engineering and environmental
problems (see the book by Coles [4]). Parameter estimation is the first step in the sta-
tistical analysis of parametric probability distributions. The most widely used approach
is the popular maximum likelihood estimation (MLE), but usually, as for extreme value
distributions, the solution is not analytic and must be then approached by numerical
techniques. The commonly used one is the Newton-Raphson algorithm to determine
the maximum likelihood estimates of the parameters. To employ the algorithm, the
second derivatives of the log-likelihood are required. Sometimes the calculations of
the derivatives based on the progressively Type II censored samples for example are
complicated (see [7]). To avoid such computation, we propose to use the fixed point
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iteration algorithm instead. In this paper we prove that generally MLE of extreme
value distributions could be expressed in a fixed point iteration form which is easier
to implement and does not require differentiation. Graphical techniques were also pro-
posed as alternatives (see Balakrishnan and Kateri [2] and Dodson [5]) which have the
disadvantage of using visualization to detect the solution from graphics. We prove that
these graphical solutions reduce in fact to fixed points of a suitable iteration forms.

In the following section, we propose fixed point iterations for estimating the param-
eters of the Gumbel and Weibull distributions from complete data. In section 3, we
extend the procedure to censored samples (simple and progressive Type I and Type II)
using the Type I least extreme values distribution from which estimations for Gum-
bel and Weibull distributions can be deduced from suitable transformations. Finally, in
section 4 we illustrate the proposed approach using examples quoted from the literature.

2 Maximum Likelihood Estimations for Complete

Data

2.1 Type I extreme value distribution

The Type I extreme value distribution which is also called Gumbel distribution function
is defined as:

F (x) = exp

{
− exp

[
−

1

σ
(x − µ)

]}
,

for x ∈ R, and it has the probability density

f(x) =
1

σ
exp

[
−

1

σ
(x − µ)

]
exp

{
− exp

[
−

1

σ
(x − µ)

]}
,

where σ > 0 and µ ∈ R. Let x = (x1, ..., xn)′ be a complete sample from the Type I
extreme value distribution.

The maximum likelihood estimator for σ is known to be the solution of the following
equation

σ =

∑n
i=1 xi

n
−

∑n
i=1 xi exp(−xi

σ
)∑n

i=1 exp(−xi

σ
)

. (1)

Denote the right hand side of (1) by g(σ; x). Then the equation (1) is in fact in a fixed
point form

σ = g(σ; x). (2)

Unlike the Newton-Raphson method, which is the commonly used nonlinear numerical
method for solving MLE of the extreme value distribution (see Cohen [3] p. 143),
the fixed point approach does not require differentiation and then is more easier to
use. Uniqueness of the solution of (1) can be proved using graphical techniques (see
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Balakrishnan and Kateri [2]). Indeed, the left hand side σ is monotone increasing on
σ. We then have to show that g(σ; x) is monotone decreasing on σ.

∂g(σ; x)

∂σ
=

∑n
i=1

xi

σ2 exp(−xi

σ
)
∑n

i=1 xi exp(−xi

σ
) −

∑n
i=1

x2
i

σ2 exp(−xi

σ
)
(∑n

i=1 exp(−xi

σ
)
)

(∑n
i=1 exp(−xi

σ
)
)2

It remains then to prove that

g∗(σ; x) =
n∑

i=1

xi exp
(
−

xi

σ

) n∑

i=1

xi exp
(
−

xi

σ

)
−

n∑

i=1

x2
i exp

(
−

xi

σ

)( n∑

i=1

exp
(
−

xi

σ

))
≤ 0.

Setting ai = xi exp
(
−

xi

2σ

)
and bi = exp

(
−

xi

2σ

)
, i = 1, ..., n, g∗(σ; x) becomes

g∗(σ; x) =

(
n∑

i=1

aibi

)2

−

n∑

i=1

a2
i

n∑

i=1

b2
i

and g∗(σ; x) ≤ 0 by the Cauchy-Schwarz inequality. The last result can be deduced
from the result of Balakrishnan and Kateri [2] from transformation between the Weibull
and Type I extreme value distribution. It should be noted that limσ→∞ g(σ; x) = 0 and

lim
σ→0+

g(σ; x) =

∑n
i=1 x(i)

n
− x(1) =

1

n

n∑

i=2

(
x(i) − x(1)

)
.

We deduce then that 0 ≤ σ ≤

P

n

i=1 x(i)

n
− x(1) and 0 ≤ g(σ; x) ≤

P

n

i=1 x(i)

n
− x(1) which

also guarantees the existence of a solution (see Lemma 3.4.1 of [1]). After obtaining a
solution for σ we deduce the MLE of µ from

µ̂ = σ

[
ln

n∑n
i=1 exp(−xi

σ
)

]
. (3)

Example 1 Consider the data about annual wind-speed maxima in km/h from 1947 to
1984 at Vancouver quoted from the software Xtremes 4.1 [10], provided with the book
by Reiss and Thomas [8], stored in the file em-cwind.dat (the source is [6]). By fitting
a Gumbel distribution to the data, they provide estimates for σ and µ as σ̂ = 8.3 and
µ̂ = 60.3. The fixed point iteration (2) leads to the solution σ̂ = 8.2891 and from (3)
we obtain µ̂ = 60.3504.

2.2 Weibull distribution

For the two parameters Weibull distribution W(θ, β) with pdf

f (x; θ, β) =
β

θβ
xβ−1 exp

[
− (x/θ)β

]
, x > 0, θ, β > 0,

3



which is the Type II extreme value distribution it can be deduced from [2] that

β = gw(β; x), (4)

where gw(β; x) is given by

gw(β; x) =





n∑
i=1

xβ
i ln xi

n∑
i=1

xβ
i

−
1

n

n∑

i=1

lnxi





−1

.

It has been proved in [2] that (gw(β; x))−1 is a monotone increasing function then
gw(β; x) is monotone decreasing which insures existence and uniqueness of the solution
of the fixed point iteration (4). The MLE of the parameter θ is deduced from

θ̂ =

(
1

n

n∑

i=1

xβ
i

)1/β

.

3 Estimation for Censored Data

3.1 Singly right censored samples

In the case of simple Type-II censored data, let r (1 < r < n) denote the number of
observed lifetimes and x = (x(1), x(2), ..., x(r)) the ordered observed lifetimes from the
Type I least extreme value distribution with probability density

f(x) =
1

σ
exp

[
1

σ
(x − µ)

]
exp

{
− exp

[
1

σ
(x − µ)

]}
.

If X is a random variable from a Type I greatest extreme value distribution with
location parameter µ and shape parameter σ then −X follows a Type I least extreme
value distribution with location parameter −µ and shape parameter σ [3]. But if we
have a Type-II rigth censored data x = (x(1), x(2), ..., x(r)) from the Type I least extreme
value distribution then y = (−x(r),−x(r−1), ...,−x(1)) will be a Type-II left censored
data from the corresponding Type I greatest extreme value distribution. The MLE of
σ is given by the following fixed point iteration expression

σ = g(σ; x), (5)

where now

g(σ; x) =

∑r
i=1 x(i) exp

(
−

x(i)

σ

)
+ (n − r)x(r) exp

(
−

x(r)

σ

)
∑r

i=1 exp
(
−

x(i)

σ

)
+ (n − r) exp

(
−

x(r)

σ

) −

∑r
i=1 x(i)

r
. (6)
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It can be easily proved that g(σ; x) of (5) is a monotone decreasing function in σ exactly
along the lines of section 2.1 by taking

ai = I (1 ≤ i ≤ r) x(i) exp
(
−

x(i)

2σ

)
+ I (r + 1 ≤ i ≤ n) x(r) exp

(
−

x(r)

2σ

)

bi = I (1 ≤ i ≤ r) exp
(
−

x(i)

2σ

)
+ I (r + 1 ≤ i ≤ n) exp

(
−

x(r)

2σ

)
,

which guarantees existence and uniqueness of a fixed point for σ. The parameter µ is
then obtained from

µ̂ = σ

[

ln

∑r
i=1 exp

(
−

x(i)

σ

)
+ (n − r) exp

(
−

x(r)

σ

)

r

]

.

If y(1), ..., y(r) designate the r smallest observations in a random sample of size n from
a two parameter Weibull distribution W (θ, β) then x(1), ..., x(r) where x(i) = ln y(i) will
designate equivalent observations in a sample from the Type I distribution of smallest
extremes [3]. The MLEs θ̂ and β̂ of the Weibull distribution will then be deduced from

the relations θ̂ = exp µ̂ and β̂ = 1/σ̂. Meanwhile, fixed point iterations hold also in this
case for the Weibull distribution from the relation

β = gw(β; x), (7)

where now

gw(β; x)−1 =

r∑
i=1

xβ
(i) ln x(i) + (n − r)xβ

(r) ln x(r)

r∑
i=1

xβ
(i) + (n − r)xβ

(r)

−
1

r

r∑

i=1

lnx(i). (8)

From [2] it has been proved that gw(β; x)−1 is monotone increasing in β then gw(β; x)
in (7) is monotone decreasing which insures existence and uniqueness of the fixed point

β̂ of the iteration (7).
The MLE of θ is deduced from

θ̂ =

[
1

r

{
r∑

i=1

xβ
(i) + (n − r) xβ

(r)

}]1/β

. (9)

For Type-I censoring, it suffices to replace the term x(r) in the (n−r)x(r) exp
(
−x(r)/σ

)

and (n − r) exp
(
−x(r)/σ

)
terms of relation (6) by the pre-specified time of testing T

and in the terms (n − r)xβ
(r) ln x(r) and (n − r)xβ

(r) in the relation (8).

Example 2 In this example we quote a Type-II censored data from [5]. These data
are about testing twenty identical grinders, with the test ending at time 152.7. In this
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period, twelve grinders failed. The observed failure times are presented in the following
table

Table 1

Type-II censored failure data from Dodson (2006)

12.5 24.4 58.2 68.0 69.1 95.5 96.6 97.0 114.2 123.2 125.6 152.7

By assuming a Weibull distribution the graphical approach of [2] leads to solutions

β̂ = 1.647 and θ̂ = 162.223. Using the fixed point iteration (7) we obtain the fixed point

solution β̂ = 1.6467 and from (9) θ̂ = 162.223. This shows that the graphical approach
proposed in [2] reduces in fact to a fixed point iteration.

3.2 Progressively censored samples

Consider a progressively Type II censored sample from a Type I least extreme values
distribution with Rj , j = 1, ..., r the number of censored items at failure time j. We
have the following fixed point iteration for the MLE of σ

σ = g(σ; x), (10)

where

g(σ; x) =

∑r
i=1 (Ri + 1)x(i) exp

(x(i)

σ

)
∑r

i=1 (Ri + 1) exp
(x(i)

σ

) −
1

r

r∑

i=1

x(i).

It can be proved using similar arguments of the preceding section that g(σ; x) is a
decreasing function on σ which insures existence and uniqueness of a fixed point for σ.
The MLE of µ is then deduced from

µ = σ ln

[
1

r

r∑

i=1

(Ri + 1) exp
(x(i)

σ

)]
. (11)

For the case of a Weibull distribution with progressively Type II censored sample,
we obtain from [2] that there exists a unique fixed point solution β̂ of the following
equation

β = gw(β; x),

where

gw(β; x) =





r∑
i=1

(Ri + 1) xβ
(i) ln x(i)

r∑
i=1

(Ri + 1)xβ
(i)

−
1

r

r∑

i=1

ln x(i)





−1

. (12)

We have for the MLE of θ

θ̂ =

(
1

r

r∑

i=1

(Ri + 1) xβ
(i)

)1/β

. (13)
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Example 3 Consider the progressive Type-II censored data analysed by Viveros and
Balakrishnan [9] and given in the following table

Table 2

Progressive Type-II censored failure data from Viveros and Balakrishnan (1994)

i 1 2 3 4 5 6 7 8
x(i) −1.6608 −0.2485 −0.0409 0.2700 1.0224 1.5789 1.8718 1.9947
Ri 0 0 3 0 3 0 0 5

Fitting a Type-I least extreme values distribution to these data and using the Newton-
Raphson numerical method they obtain σ̂ = 1.026 and µ̂ = 2.222. Using fixed point
iteration (10) we obtain the solution σ̂ = 1.0264 and using (11) we obtain µ̂ = 2.222.
In order to compare the convergence rate of the fixed point iteration with that of the
Newton–Raphson method and the EM algorithm used in [7], same initial value σ0 =
0.7912 (and µ0 = 1.4127 for the Newton–Raphson and EM algorithm methods) were
used and the level of accuracy was fixed at 5×10−5. The Newton–Raphson method used
in [9] took 37 iterations and the EM algorithm took 151 while the fixed point iteration
took 12 iterations to converge to the same values.
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