
ar
X

iv
:1

00
1.

30
20

v1
  [

gr
-q

c]
  1

8 
Ja

n 
20

10

ON THE STABILITY OF THE

SHEAR–FREE CONDITION

L. Herrera1∗, A Di Prisco1†and J. Ospino2‡

1Escuela de F́ısica, Facultad de Ciencias,

Universidad Central de Venezuela, Caracas, Venezuela.
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Abstract

The evolution equation for the shear is reobtained for a spherically

symmetric anisotropic, viscous dissipative fluid distribution, which al-

lows us to investigate conditions for the stability of the shear–free

condition. The specific case of geodesic fluids is considered in detail,

showing that the shear–free condition, in this particular case, may be

unstable, the departure from the shear–free condition being controlled

by the expansion scalar and a single scalar function defined in terms

of the anisotropy of the pressure, the shear viscosity and the Weyl

tensor or, alternatively, in terms of the anisotropy of the pressure, the

dissipative variables and the energy density inhomogeneity.
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1 Introduction

The relevance of the shear tensor in the evolution of selfgravitating systems
and the consequences emerging from its vanishing has been brought out by
many authors (see [1]–[6] and references therein). Particular attention de-
serves the possible role of shear in the violation of the cosmic censorship,
leading to the appearance of a naked singularity. This has the important
implication that the resultant spacetime singularity of collapse could become
visible to faraway observers in the universe (see [4] for a detailed discus-
sion). Furthermore as it has been recently shown [7] the shear–free flow (in
the nondissipative case) appears to be equivalent to the well known homol-
ogous evolution. It should be recalled that homology conditions are of great
relevance in astrophysics [8]–[10].

Accordingly, it is quite pertinent to ask under which conditions the shear–
free condition is stable. This question in fact entails two different (but re-
lated) questions, namely:

• Under which conditions an initially shear–free flow remains shear–free
all along the evolution ?

• Under which conditions a fluid with a small initial shear evolves, keep-
ing always a small value of shear (Lyapunov stability)?

Now, in the study of self–gravitating compact objects it is usually as-
sumed that deviations from spherical symmetry are likely to be incidental
rather than basic features of the process involved. Thus, since the semi-
nal paper by Oppenheimer and Snyder [11], most of the work dedicated to
the problem of general relativistic gravitational collapse, deal with spheri-
cally symmetric fluid distribution. Accordingly we shall consider spherically
symmetric fluid distributions.

The purpose of this work is to provide answers (at least partial) to the
above questions. Obviously for doing so we need an evolution equation for
the shear. Such an equation was derived by Ellis [12],[13], for a perfect fluid
without any kind of symmetry. Here we shall reobtain that equation for
a spherically symmetric anisotropic viscous dissipative fluid. The physical
motivation to consider such a general fluid has been explained in detail in
[14]–[17] (and references therein). However, since the study of the general
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case is quite complicated and will probably require the use of numerical
techniques, we shall consider in detail the case of a geodesic fluid.

Nevertheless, even though the restriction to the geodesic case is dictated
by the sake of simplicity in the analysis, the physical relevance of such a case
becomes evident when we recall that Friedman–Lemaitre–Robertson–Walker
(FLRW) metrics are shear–free. In other words, it appears that for a geodesic
fluid (without dissipative fluxes), the stability of the shear–free condition is
somehow equivalent to the stability of FLRW spacetime itself.

For the geodesic case it will be shown that departures from the shear–free
condition are controlled by the expansion scalar and a scalar function, which
is defined in terms of the the Weyl tensor, the anisotropy of pressure and the
shear viscosity or, alternatively, in terms of pure physical variables. Such a
scalar function appears in a natural way in the orthogonal splitting of the
Riemann tensor and is related to the Tolman mass [17]. Together with the
expansion scalar, this scalar function controls the evolution of the shear.

In the next section we shall present the general equations and definitions
to obtain the evolution equation for the shear. Next in Sec. III that evolution
equation is obtained. The origin and some properties of the scalar function
which plays such an important role in the evolution of the shear are discussed
in Sec.IV, and in Sec. V the obtained equation is used to analyze the geodesic
case. Finally, a discussion of results is presented in the last section.

2 ENERGY–MOMENTUM TENSOR, KINE-

MATICAL VARIABLES AND FIELD EQUA-

TIONS

We consider a spherically symmetric distribution of collapsing fluid, bounded
by a spherical surface Σ. The fluid is assumed to be locally anisotropic (prin-
cipal stresses unequal) and undergoing dissipation in the form of heat flow (to
model dissipation in the diffusion approximation), null radiation (to model
dissipation in the free streaming approximation) and shearing viscosity.

Choosing comoving coordinates inside Σ, the general interior metric can
be written

ds2 = −A2dt2 +B2dr2 +R2(dθ2 + sin2 θdφ2), (1)
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where A, B and R are functions of t and r and are assumed positive. We
number the coordinates x0 = t, x1 = r, x2 = θ and x3 = φ.

The matter energy-momentum Tαβ inside Σ has the form

Tαβ = (µ+P⊥)VαVβ+P⊥gαβ+(Pr−P⊥)χαχβ+qαVβ+Vαqβ+ǫlαlβ−2ησαβ , (2)

where µ is the energy density, Pr the radial pressure, P⊥ the tangential
pressure, qα the heat flux, ǫ the energy density of the null fluid describing
dissipation in the free streaming approximation, η the shear viscosity coeffi-
cient, V α the four velocity of the fluid, χα a unit four vector along the radial
direction and lα a radial null four vector. These quantities satisfy

V αVα = −1, V αqα = 0, χαχα = 1, χαVα = 0, lαVα = −1, lαlα = 0. (3)

Observe that we have assumed the shear viscosity tensor παβ to satisfy
the relation

παβ = −2ησαβ , (4)

where σαβ is the shear tensor. However this last equation is valid only within
the context of the standard irreversible thermodynamics (see [18], [19] for
details).

In a full causal picture of dissipative variables we should not assume (4).
Instead, we should use the transport equation derived from the corresponding
theory (e.g. the Müller–Israel–Stewart theory [20]–[22]). However for the
sake of simplicity, in this work we shall restrict ourselves to the standard
irreversible thermodynamics theory.

The acceleration aα and the expansion Θ of the fluid are given by

aα = Vα;βV
β, Θ = V α

;α. (5)

and its shear σαβ by

σαβ = V(α;β) + a(αVβ) −
1

3
Θhαβ, (6)

where hαβ = gαβ + VαVβ.

We do not explicitly add bulk viscosity to the system because it can be
absorbed into the radial and tangential pressures, Pr and P⊥, of the collapsing
fluid [23].
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Since we assumed the metric (1) comoving then

V α = A−1δα0 , qα = qB−1δα1 , lα = A−1δα0 +B−1δα1 , χα = B−1δα1 , (7)

where q is a function of t and r satisfying qα = qχα.
From (5) with (7) we have for the acceleration and its scalar a,

a1 =
A′

A
, a2 = aαaα =

(

A′

AB

)2

, (8)

where aα = aχα, and for the expansion

Θ =
1

A

(

Ḃ

B
+ 2

Ṙ

R

)

, (9)

where the prime stands for r differentiation and the dot stands for differen-
tiation with respect to t. With (7) we obtain for the shear (6) its non zero
components

σ11 =
2

3
B2σ, σ22 =

σ33

sin2 θ
= −

1

3
R2σ, (10)

and its scalar

σαβσαβ =
2

3
σ2, (11)

where

σ =
1

A

(

Ḃ

B
−

Ṙ

R

)

. (12)

Then, the shear tensor can be written as

σαβ = σ

(

χαχβ −
1

3
hαβ

)

. (13)

2.1 The Einstein equations

Einstein’s field equations for the metric (1) are given by

Gαβ = 8πTαβ, (14)
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its non zero components with (1), (2) and (7) become

8πT00 = 8π(µ+ ǫ)A2 =

(

2
Ḃ

B
+

Ṙ

R

)

Ṙ

R

−
(

A

B

)2


2
R′′

R
+

(

R′

R

)2

− 2
B′

B

R′

R
−
(

B

R

)2


 , (15)

8πT01 = −8π(q + ǫ)AB = −2

(

Ṙ′

R
−

Ḃ

B

R′

R
−

Ṙ

R

A′

A

)

, (16)

8πT11 = 8π
(

Pr + ǫ−
4

3
ησ

)

B2

= −
(

B

A

)2
[

2
R̈

R
−

(

2
Ȧ

A
−

Ṙ

R

)

Ṙ

R

]

+

(

2
A′

A
+

R′

R

)

R′

R
−
(

B

R

)2

, (17)

8πT22 =
8π

sin2 θ
T33 = 8π

(

P⊥ +
2

3
ησ

)

R2

= −
(

R

A

)2
[

B̈

B
+

R̈

R
−

Ȧ

A

(

Ḃ

B
+

Ṙ

R

)

+
Ḃ

B

Ṙ

R

]

+
(

R

B

)2
[

A′′

A
+

R′′

R
−

A′

A

B′

B
+

(

A′

A
−

B′

B

)

R′

R

]

. (18)

2.2 The mass function

Let us now introduce the mass function m(t, r) [24] (see also [25]), defined
by

m =
R3

2
R23

23 =
R

2





(

Ṙ

A

)2

−

(

R′

B

)2

+ 1



 . (19)

Following Misner and Sharp [24], It is useful to define the proper time
derivative DT given by

DT =
1

A

∂

∂t
, (20)

and the proper radial derivative DR,

DR =
1

R′

∂

∂r
, (21)
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where R defines the areal radius of a spherical surface inside Σ ( as measured
from its area).

Using (20) we can define the velocity U of the collapsing fluid as the
variation of the areal radius with respect to proper time, i.e.

U = DTR < 0 (in the case of collapse). (22)

Then (19) can be rewritten as

E ≡
R′

B
=
(

1 + U2 −
2m

R

)1/2

. (23)

Using (15)-(17) with (20) and (21) we obtain from (19)

DTm = −4π
[(

P̃r −
4

3
ησ

)

U + q̃E

]

R2, (24)

and

DRm = 4π
(

µ̃+ q̃
U

E

)

R2, (25)

which implies

m = 4π
∫ R

0

(

µ̃+ q̃
U

E

)

R2dR, (26)

(assuming a regular centre to the distribution, so m(0) = 0). Integrating
(26) we find

3m

R3
= 4πµ̃−

4π

R3

∫ R

0
R3

(

DRµ̃− 3q̃
U

RE

)

dR. (27)

3 THE EVOLUTION EQUATION FOR THE

SHEAR

We shall now proceed to deduce the Ellis evolution equation for the shear,
for the specific fluid distribution discussed in the previous section. For that
purpose it will be convenient to express the energy momentum tensor (2) in
the equivalent form

Tαβ = µ̃VαVβ + P̂ hαβ +Παβ + q̃ (Vαχβ + χαVβ)− 2ησαβ (28)
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with

P̂ =
P̃r + 2P⊥

3
,

µ̃ = µ+ ǫ,

P̃r = Pr + ǫ,

q̃ = q + ǫ,

Π = P̃r − P⊥,

Παβ = Π
(

χαχβ −
1

3
hαβ

)

.

Now, Ricci identities for the vector Vα read

R
µ
αβνVµ = Vα;β;ν − Vα;ν;β, (29)

or, using the well known expression (remember that vorticity vanishes due
to the spherical symmetry)

Vα;µ = −aαVµ + σαµ +
1

3
Θhαµ, (30)

we obtain

1

2
R

ρ
αβµVρ = aα;[βVµ] + aαV[µ;β] + σα[β;µ] +

1

3
hα[βΘ,µ] +

1

3
Θhα[β;µ]. (31)

Contracting Eq.(31) with V βgαµ , we find the Raychaudhuri equation for
the evolution of the expansion

Θ;αV
α +

1

3
Θ2 + σαβσαβ − aα;α = −VρV

βR
ρ
β = −4π(µ̃+ 3P̂ ). (32)

On the other hand, contracting (31) with V βhα
γh

µ
ν we have

V βVρR
ρ
αβµh

α
γh

µ
ν = hα

γh
µ
ν

(

aα;µ − V βσαµ;β

)

+ aγaν −
1

3
V βΘ;βhνγ

− hµ
νV

β
;µ

(

σγβ +
1

3
Θhγβ

)

, (33)
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which by using (30), can be written as

V βVρR
ρ
αβµh

α
γh

µ
ν = hα

γh
µ
ν

(

aα;µ − V βσαµ;β

)

+ aγaν −
1

3
V βΘ;βhνγ

−
2

3
Θσγν −

σ2

3

(

χγχν +
1

3
hγν

)

−
1

9
Θ2hγν . (34)

Next, the Riemann tensor may be expressed through the Weyl tensor
C

ρ
αβµ, the Ricci tensor Rαβ and the scalar curvature R, as:

R
ρ
αβµ = C

ρ
αβµ +

1

2
R

ρ
βgαµ −

1

2
Rαβδ

ρ
µ +

1

2
Rαµδ

ρ
β

−
1

2
Rρ

µgαβ −
1

6
R(δρβgαµ − gαβδ

ρ
µ). (35)

Contracting (35) withVρV
βhα

γh
µ
ν and using Einstein equations, we find:

VρV
βhα

γh
µ
νR

ρ
αβµ = Eγν +

4π

3

(

µ̃+ 3P̂
)

hγν − 4πΠγν + 8πησγν , (36)

where Eγν denotes the “electric” part of the Weyl tensor (in the spherically
symmetric case the “magnetic” part of the Weyl tensor vanishes), and is
defined by

Eαβ = CαµβνV
µV ν , (37)

whose non trivial components are

E11 =
2

3
B2E ,

E22 = −
1

3
R2E ,

E33 = E22 sin
2 θ, (38)

where

E =
1

2A2

[

R̈

R
−

B̈

B
−

(

Ṙ

R
−

Ḃ

B

)(

Ȧ

A
+

Ṙ

R

)]

+
1

2B2

[

A′′

A
−

R′′

R
+

(

B′

B
+

R′

R

)(

R′

R
−

A′

A

)]

−
1

2R2
. (39)
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Observe that the electric part of Weyl tensor, may be written as:

Eαβ = E(χαχβ −
1

3
hαβ). (40)

Using (32), (36) can be written as

VρV
βhα

γh
µ
νR

ρ
αβµ = Eγν−

(

1

3
V αΘ;α +

Θ2

9
+

2

9
σ2 −

aα;α

3

)

hγν−4πΠγν+8πησγν ,

(41)
then, from Eq.(34) and Eq.(41) it follows

Eγν − 4πΠγν + 8πησγν =

hα
γh

µ
ν

(

aα;µ − V βσαµ;β

)

−
aα;α

3
hγν + aγaν −

1

3
σγν (2Θ + σ) (42)

or, using (13)

Eγν − 4πΠγν + 8πησγν =

hα
γh

µ
ν

(

aα;µ − V βσαµ;β

)

−
aα;α

3
hγν + aγaν −

2

3
σγνΘ+

2

9
σ2hγν − σβ

νσγβ .

(43)

Finally, contracting (43) with χγχν we obtain

E − 4πΠ+ 8πησ = a† − σ∗ + a2 −
σ2

3
−

2

3
Θσ − a

R′

RB
, (44)

with f † = f,αχ
α and f ∗ = f,αV

α.
Using (7), (44) takes the form

YTF ≡ E − 4πΠ+ 8πησ =
a′

B
−

σ̇

A
+ a2 −

σ2

3
−

2

3
Θσ − a

R′

RB
. (45)

This is the evolution equation for the shear we were looking for (we recall that
there is only one independent component of the shear tensor in our case). It
is equivalent (in comoving coordinates) to Eq.(71) in [15] or Eq.(101) in [17]
(notice that E in those references equals −E here).

We shall use the above equation to study the stability of the shear–free
condition for the case of a geodesic fluid. However before doing that we shall
discuss about the origin and the physical properties of YTF .

10



4 ON THE ORIGIN AND PROPERTIES OF

YTF

As we mention in the Introduction, the scalar function YTF appears in a
natural way in the orthogonal splitting of the Riemann tensor (see [17] for
details).

Indeed, the electric part of the Riemann tensor (which is one of the ele-
ment of that splitting) is defined by [26], [27]

Yαβ = RαγβδV
γV δ, (46)

which in turn can be splitted in terms of its trace and the corresponding
trace–free tensor, i.e.

Yαβ =
1

3
TrY hαβ + Y<αβ>, (47)

with TrY = Y α
α and,

Y<αβ> = hµ
αh

ν
β

(

Yµν −
TrY

3
hµν

)

, (48)

this last tensor may also be written as

Y<αβ> = YTF

(

χαχβ −
1

3
hαβ

)

. (49)

To obtain TrY and YTF we may proceed as in [17] or, directly from (46)–
(49), using the expressions for the Riemann tensor components in terms of
the Einstein tensor components, given in the Appendix of [16]. Either way
the result is

TrY ≡ YT = 4π
(

µ̃+ 3P̃r − 2Π
)

, (50)

and
YTF = 4π(−Π + 2ησ) + E . (51)

Next, using (15), (17), (18) with (19) and (39) we obtain

3m

R3
= 4π (µ̃−Π + 2ησ)− E , (52)

which combined with (27) and (51) produces
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YTF = −8πΠ + 16πησ +
4π

R3

∫ R

0
R3
(

DRµ̃− 3q̃
U

RE

)

dR. (53)

Thus the scalar YTF may be expressed through the Weyl tensor and the
anisotropy of pressure or in terms of the anisotropy of pressure, the density
inhomogeneity and the dissipative variables. It is worth recalling that a link
between YTF and the Tolman mass has been established in [17].

We shall now bring out the role of this scalar function in the stability of
the shear–free condition for the geodesic fluid.

5 THE GEODESIC FLUID

If we assume the fluid to be geodesic (i.e. aµ = 0 = a) then it follows from
(8) and rescaling t, that A = 1. In this case (45) reads

σ̇ +
σ2

3
+

2Θσ

3
+ YTF = 0, (54)

where YTF is defined through (51) or (53).
Let us first assume that YTF = 0, then the general solution of (54) is

σ(r, t) =
3c(r)

[

c(r)t− e
2

3

∫

Θdt
(

1− 2
3
c(r)

∫

Θte−
2

3

∫

Θdt̃dt
)] , (55)

where c(r) is a function of integration. After some simple manipulations,
this solution can be rewritten as

σ(r, t) =
3c(r)e−(2/3)

∫

Θdt

c(r)
∫

e−(2/3)
∫

Θdt̃dt− 1
. (56)

If we now demand the shear to vanish initially, (i.e. σ(0, r) = 0) then as
it follows from (55) or (56) we must have (assuming Θ is a regular function
of its arguments)

c(r) = 0, (57)

implying σ = 0 for all t. Therefore, if YTF = 0, the only solution compatible

with an initially shear–free flow is a shear–free flow. This result is also evident
from (54).
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Before proceeding further, the following remark is in order: Observe that
the condition YTF = 0 does not imply conformal flatness (E = 0) as it is
obvious from (51), unless we assume further the fluid to be perfect. In this
latter case the result above is compatible with the one obtained by Stephani
[28], [29] stating that the most general conformally flat perfect fluid solution
differs from FLRW only by having nonzero acceleration.

Let us now consider the case (always with YTF = 0) when, initially, the
flow is close to the shear–free condition, but still σ 6= 0. Then the question is
under which conditions the fluid will evolve, keeping close to the shear–free
regime (Lyapunov stability).

Thus, let us assume

σ(0, r) = ǫσ̄(r), |ǫ| << 1 (58)

Now, for sufficiently small ǫ and assuming Θ to be a regular function of
t, we obtain from (55)

c(r) ≈ O(ǫ), (59)

implying

σ ≈ −ǫe−
2

3

∫

Θdt. (60)

From the above it is evident that if Θ > 0 then the shear will remain
always close to the initial (“quasi–shear–free” condition). However it is also
evident that for Θ < 0 the situation radically changes and in principle de-
partures from the quasi–shear–free condition may be expected, depending on
Θ.

Let us now consider the case YTF 6= 0.
We shall first assume that YTF (at least initially) is small, i.e.

YTF = αȲTF ; α << 1, (61)

and
σ(t, r) = σo(t, r) + βσ1(t, r), β << 1 (62)

Θ(t, r) = Θo(t, r) + ξΘ1(t, r), ξ << 1 (63)

where σo(t, r) and Θo(t, r) correspond to the general solution of (54) for
YTF = 0 given by (55).
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Introducing (62) and (63) into (54) and linearizing we obtain for σ1(t, r)
the following equation

σ̇1 +
2

3
(σo +Θo) σ1 +

2ξ

3β
Θ1σo +

α

β
ȲTF = 0, (64)

which may be easily integrated to obtain

σ1(t, r) = f(r)e−(2/3)
∫

(σo+Θo)dt

− e−(2/3)
∫

(σo+Θo)dt
∫

1

β

(

2

3
ξΘ1σo + αȲTF

)

e(2/3)
∫

(σo+Θo)dt̃dt,

(65)

where f(r) is an integration function. Introducing this last equation into
(62) we have

σ(t, r) = σo(t, r) + βf(r)e−(2/3)
∫

(σo+Θo)dt

− e−(2/3)
∫

(σo+Θo)dt
∫
(

2

3
ξΘ1σo + αȲTF

)

e(2/3)
∫

(σo+Θo)dt̃dt.

(66)

Let us now assume that the fluid is initially shear–free, which implies
σ0 = 0. Then it follows at once from (66)

σ(t, r) = βf(r)e−(2/3)
∫

Θodt

− e−(2/3)
∫

Θodt
∫

αȲTFe
(2/3)

∫

Θodt̃dt.

(67)

If, YTF = 0 (α = 0) then from the condition of an initially shear–free fluid,
we have that f(r) = 0, implying σ(t, r) = 0 for all t, which is the result
obtained before.

However, for any α 6= 0, it appears from (66) that the fluid may evolve to

a non–vanishing shear regime, for any sign of Θ, depending on the specific

time dependence of ȲTF . In other words, even for small values of α the fluid
may deviate from its initial shear–free condition.

If the fluid initially satisfies the quasi–shear–free condition, which implies
that σ0 is small but non–vanishing. Then in the case YTF = α = 0 we obtain
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as before that for Θ < 0 departures from the quasi–shear–free condition may
be expected, depending on Θ.

In the general (α 6= 0) case however, departures from the quasi–shear–free
condition may be expected along the evolution, depending on YTF for any
sign of Θ.

An alternative (and useful) expression for the shear, which allows to study
the same problem, may be obtained as follows.
From the geodesic condition

a = 0 ⇒ A = 1, (68)

the field equation (16) becomes

Ṙ′

R
−

Ḃ

B

R′

R
= 4πq̃B, (69)

or,
Ḃ

B
=

Ṙ′

R′
−

FR

R′
, (70)

where F ≡ 4πq̃B.
Then, (70) with (9) and (12) produces

2Θ + σ = 3

(

Ṙ′

R′
+

Ṙ

R
−

FR

R′

)

= 3(ln(R′R))̇− 3
FR

R′
(71)

Introducing (71) into (54) we get

σ̇ +
[

(ln(R′R))̇−
FR

R′

]

σ + YTF = 0, (72)

which after integration yields

σ =
e
∫

(FR/R′)dt

RR′

(

−
∫

R′RYTFe
−
∫

(FR/R′)dt̃dt+ C(r)
)

. (73)

In the non–dissipative case (F = 0), (73) takes the very simple form

σ =
1

RR′

(

−
∫

R′RYTFdt+ C(r)
)

. (74)
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Now, if we assume that YTF = 0 then it follows at once from (73) that
for an initially shear–free fluid we must have C(r) = 0 implying σ(t, r) = 0.

Also, for an initially quasi–shear–free fluid (with YTF = 0) it should be
clear that departures from that initial condition are possible if Θ < 0 and
such that it produces a sharp decreasing of R (remember that in order to
avoid shell crossing singularities we must have R′ > 0). Thus we recover our
previous result.

In the general case (YTF 6= 0) it is obvious from (73) that departures from
either the shear–free or the quasi–shear–free initial conditions are possible.

6 DISCUSSION

We have carried out a study on the stability of the shear–free condition based
on the evolution equation for the shear presented in Sec. III . As shown in the
previous section, a major role in such study is played by the scalar YTF . This
scalar, which appears in the orthogonal splitting of the Riemann tensor, is
not only related with the Tolman mass as shown in [17], but may be expressed
through purely physical quantities as in (53).

We shall not insist on the relevance of the question considered in this
work (the stability of the shear–free condition) since that was clearly stated
in the Introduction. However we would like to comment further on the results
concerning the geodesic case.

Indeed, as mentioned before, it is worth noticing that in the non–dissipative,
isotropic case, it may be easily shown that (e.g. see [15])

YTF ≡ E = 0 ⇔ σ = 0. (75)

Thus for that particular case (geodesic, non–dissipative, isotropic pres-
sure) the shear makes the difference between FLRW metrics (YTF = σ = E =
0) and LTB metrics (YTF 6= 0, σ 6= 0).

Therefore, the discussion in Sec.V illustrates for this particular case, how
departures from an initial FLRW spacetime are controlled by YTF .

Finally, it should be emphasized the fact that, even though it may be
intuitively obvious that dissipative processes, local anisotropy of pressure
and energy density inhomogeneity should affect the stability of the shear–
free condition, it is not so obvious that the above mentioned factors affect the
stability of the shear–free condition only through their specific combination

16



given by (53). Thus for example we could consider the peculiar case when
all those factors are present but they cancel each other in (53), producing
YTF = 0, in such a case the shear–free condition would be stable in spite of the
fact that the fluid is non–homogeneous, non–isotropic and non–dissipative.

Acknowledgments.

LH and ADP wish to thank Universite Paris VI, France, Universitat de Les
Illes Balears, Spain and Universidad de Salamanca, Spain for their hospital-
ity. ADP also wishes to thank Comisión de Investigación and Comisión de Es-
tudios de Posgrado, Facultad de Ciencias, Universidad Central de Venezuela,
Venezuela, for finantial support. LH also wishes to thank Fundacion Empre-
sas Polar for finantial support. JO acknowledges financial support from the
Universidad de Salamanca (Spain) under grant USAL2008A11.

References

[1] C. B. Collins and J. Wainwright, Phys. Rev. D 27, 1209 (1983).

[2] E. N. Glass, J. Math. Phys. 20, 1508 (1979).

[3] R. Chan, Mon. Not. R. Astron. Soc. 299, 811 (1998).

[4] P. Joshi, N. Dadhich and R. Maartens, Phys. Rev. D 65, 101501 (2002).

[5] P. Joshi, R. Goswami and N. Dadhich, gr–qc/0308012.

[6] L. Herrera and N. O. Santos, Month. Not. R. Astron. Soc. 343, 1207
(2003).

[7] L. Herrera, N. O. Santos and A. Wang, Phys. Rev. D 78, 084026 (2008).

[8] M. Schwarzschild, Structure and Evolution of the Stars, (Dover, New
York) (1958).

[9] R. Kippenhahn and A. Weigert, Stellar Structure and Evolution,
(Springer Verlag, Berlin) (1990).

17



[10] C. Hansen and S. Kawaler, Stellar Interiors: Physical principles, Struc-
ture and Evolution, (Springer Verlag, Berlin) (1994).

[11] J. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).

[12] G. F. R. Ellis, Relativistic Cosmology in: Proceedings of the Interna-
tional School of Physics “ Enrico Fermi”, Course 47: General Relativity
and Cosmology. Ed. R. K. Sachs (Academic Press, New York and Lon-
don) (1971).

[13] G. F. R. Ellis, Gen. Rel. Grav. 41, 581 (2009).

[14] L. Herrera and N. O. Santos, Phys. Rep. 286, 53 (1997).

[15] L. Herrera, A. Di Prisco, J. Mart́ın, J. Ospino, N. O. Santos and O.
Troconis, Phys. Rev. D 69, 084026 (2004).

[16] A Di Prisco, L. Herrera, G. Le Denmat, M. MacCallum and N.O. Santos,
Phys. Rev. D 76, 064017, (2007).

[17] L. Herrera, J. Ospino, A. Di Prisco, E. Fuenmayor and O. Troconis,
Phys. Rev. D 79, 064025 (2009)

[18] R. Maartens, astro-ph/9609119.

[19] L. Herrera, A. Di Prisco, E. Fuenmayor and O. Troconis, Int. J. Mod.

Phys. D 18, 129, (2009).

[20] I. Müller, Z. Physik 198, 329, (1967).

[21] W. Israel, Ann. Phys., NY 100, 310 (1976).

[22] W. Israel and J. Stewart, Phys. Lett. A58, 213 (1976); Ann. Phys. NY
118, 341 (1979).

[23] R. Chan, L. Herrera and N. O. Santos, Mon. Not. R. Astron. Soc. 267,
637 (1994).

[24] C. Misner and D. Sharp, Phys. Rev. 136, B571 (1964).

[25] M. Cahill and G. McVittie, J. Math. Phys. 11, 1382 (1970).

18



[26] L. Bel, Ann. Inst. H Poincaré 17, 37 (1961).
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