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Introduction

Linear statistical analysis, and the least squares method specifically, achieved
their modern complete form in the language of linear algebra, that is in the
language of geometry. In this article we will show that multivariate linear
statistical analysis in the language of geometry can be stated just as beauti-
fully and clearly. In order to do this, the standard methods of linear algebra
must be expanded. The first part of this article introduces this generaliza-
tion of linear algebra. The second part introduces the theory of multivariate
statistical analysis in the first part’s language. We believe that until now
multivariate statistical analysis, though explained in dozens of textbooks,
has not had adequate forms of expression.

Multivariate observations are the observations of several random quanti-
ties in one random experiment. We shall further record multivariate obser-
vations as columns. We commonly provide multivariate observations with
indices. In the simple case, natural numbers serve as the indices. (This
can be the numbers of observations in the order they were recorded). For
independent evenly distributed observations this is a fitting way to orga-
nize information. If the distributions of observation depend on one or more
factors, the values or combinations of values of these factors can serve as
indices. Commonly the levels of factors are numbered. In that case the
index is the set of numbers. So, in a two-factor scheme (classification by
two traits) pairs of natural numbers serve as indices.

We shall call the set of observations, provided with indices and so orga-
nized, an array.

For theoretical analysis the linear numeration of data is most convenient.
Further we will be holding to this system. When analyzing examples we
will return, if needed, to the natural indexing of data.

In univariate statistical analysis the numeration of data allows recording
as rows. In the multivariate case the entirety of the enumerated data (that
is arrays) can also be examined as a row of columns. In many cases (but
not always) such an array can be treated as a matrix.

Arrays of one form naturally form a vector space under the operation
of addition and multiplication by numbers. For the purposes of statistical
analysis this vector space is given a scalar product. In one dimensional anal-
ysis, if the observations are independent and have equivalent dispersions,
then the most fitting scalar product is the euclidean product. In more detail:
let the observations have an index α; let arrays TX and TY be composed
of the one-dimensional elements Xα, Yα. Then the euclidean scalar product
of arrays TX and TY is

〈TX , TY 〉 =
∑

α

XαYα, (0.1)

where the index of summation goes through all possible values. We shall

2



record multivariate observations as columns. In the multivariate case, the
elements Xα, Yα are columns. For arrays composed of columns, let us accept
the following definition of the scalar product of arrays TX and TY :

〈TX , TY 〉 =
∑

α

XαY T
α . (0.2)

The scalar product (0.2) is a square matrix. Therefore, for arrays com-
posed of columns, square matrices of the corresponding dimensions must
play the role of scalars. With the help of the scalar product (0.2) and
its consequences, this article develops a theory of multivariate statistical
analysis, parallel to existing well-known univariate theory.

1 Modules of Arrays

Over a Ring of Matrices

1.1 Space of Arrays

In the introduction we agreed to hold to a linear order of indexation for
simplicity’s sake. However, all the introduced theorems need only trivial
changes to apply to arrays with a different indexation.

Let us consider a p-dimensional array with n elements,

T := {Xi | i = 1, n}, (1.1)

where X1, X2, . . . , Xn are p-dimensional vector-columns. Arrays of this na-
ture form a linear space with addition and multiplication by numbers.

1. Addition:

{Xi | i = 1, n} + {Yi | i = 1, n} = {Xi + Yi | i = 1, n}.

2. Multiplication by numbers: let λ be a number; then

λ{Xi | i = 1, n} = {λXi | i = 1, n}.

In addition, we will be examining the element-by-element multiplication
of arrays by square matrices of the appropriate dimensions.

3. Left Multiplication by a Matrix: let K be a square matrix of
dimensions p × p. Suppose

K{Xi | i = 1, n} = {KXi | i = 1, n}. (1.2)

Note that the multiplication of an array by a number can be examined as
a special case of multiplication by a square matrix. Specifically: multipli-
cation by the number λ is multiplication by the matrix λI, where I is the
identity matrix of dimensions p × p.

3



4. Right Multiplication by matrices: let Q = ‖qij | i = 1, n, j =
1, n‖ — a square n by n matrix. Let us define the right multiplication of
array T (1.1) by matrix Q as

{Xi | i = 1, n}Q = {
n∑

j=1

Xjqij | i = 1, n}. (1.3)

It is clear that the product TQ is defined by the common matrix multipli-
cation method of “row by column” with the difference that elements of a
row of T (array T) are not numbers but columns X1, . . . , Xn.

5. Let us define the inner product in array space. For it’s properties
we shall call it the scalar product (or, generalized scalar product). In more
detail: let

T = {Xi | i = 1, n}, R = {Yi | i = 1, n}.

Definition 1. The Scalar (generalized scalar) product of arrays T and R

is defined as

〈T, R〉 =
n∑

i=1

XiY
T
i . (1.4)

The result of the product is a square p by p matrix. The scalar product
is not commutative:

〈R, T〉 = 〈T, R〉T .

6. The Scalar square of array

〈T, T〉 =

n∑

i=1

XiX
T
i . (1.5)

is a symmetric and non-negatively defined (p×p) matrix. For the represen-
tation of the scalar square, we shall use the traditional symbol of absolute
value: 〈T, T〉 = |T|2. In our case, |T| is the so-called matrix module. [7]

7. The Properties of the scalar product in array spaces are similar
to the properties of the traditional scalar product in euclidean vector spaces.
If T1,T2,T3 are arrays in general form, then

〈T1 + T2, T3〉 = 〈T1, T3〉 + 〈T2, T3〉;
〈KT1, T2〉 = K〈T1, T2〉 where K is a square (p × p) matrix;

〈T1, T1〉 < 0 in the sense of the comparison of square symmetrical matrices;

〈T1, T1〉 = 0 iff T1 = 0.

8. We say that array T is orthogonal to array R, if

〈T, R〉 = 0.
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Note that if 〈T, R〉 = 0, then also 〈R, T〉 = 0. Therefore the property of
orthogonality of arrays is reciprocal. The orthogonality of arrays T and R

shall be denoted as T ⊥ R.
9. Notice a Pythagorean theorem: if arrays T and R are orthogonal,

then
〈T + R, T + R〉 = 〈T, T〉 + 〈R, R〉. (1.6)

We note again that the result of a scalar product of two arrays is a (p × p)
matrix, therefore in array spaces square matrices of corresponding dimen-
sions should play the role of scalars. In particular, left multiplication by a
(p × p) matrix shall be understood as multiplication by a scalar, and array
kT shall be understood as proportional to array T.

Together with arrays of the form (1.1) we shall consider one-to-one cor-
responding matrices

X = ||X1, X2, . . . , Xn||. (1.7)

Matrix (1.7) is a matrix with p rows and n columns.
Notation. Matrices with p rows and n columns shall be called (p × n)

matrices. The set of (p×n) matrices we shall call R
p
n. Matrices of dimensions

(p × 1) we shall call p-columns, or simply columns. The set of p-columns
we represent as R

p
1. Matrices (1 × n) we shall call n-rows, or simply rows.

The set of n-rows we represent as R
1
n.

Many operations with arrays can be carried out in their matrix forms.
For instance, the addition of arrays is equivalent to the addition of their
corresponding matrices; left multiplication by a square (p × p) matrix k is
equivalent to the matrix product kX; right multiplication by matrix Q is
equivalent to the matrix product XQ; the scalar product of arrays

TX = {Xi | i = 1, n}, TY = {Yi | i = 1, n}

is equal to the product of their equivalent matrices X and Y:

〈TX , TY 〉 = XYT . (1.8)

We show, for instance, that array TQ corresponds to matrix XQ. Here T is
the arbitrary array of form (1.1) and X is the corresponding (p× n) matrix
(1.7). Let Q = {qαβ | α, β = 1, n} be a (n × n) matrix (with numerical
elements qαβ).

Proposition 1. Matrix XQ corresponds to array TQ.

Proof. Elements of array T, being columns of matrix X, must be represented
in detailed notation. Let

Xj = (x1j , x2j , . . . , xpj)
T , j = 1, n.

5



In this notation,

XQ = ‖
n∑

j=1

xijqjk | i = 1, p, k = 1, n‖. (1.9)

The array
TY = {Yk | k = 1, n},

corresponds to matrix XQ where

Yk = (y1k, y2k, . . . , ypk)
T ,

and

yik =

n∑

j=1

xijqjk,

by (1.9). Array TQ, by definition (1.3), is equal to

TQ = {Xi | i = 1, n}Q = {
n∑

j=1

Xjqkj | k = 1, n} = {Zk | k = 1, n},

where p-row

Zk =

n∑

j=1

Xjqkj =

n∑

j=1

(x1j , . . . , xpj)
T qkj =

=

(
n∑

j=1

x1jqkj,

n∑

j=1

x2jqkj, . . . ,

n∑

j=1

xpjqkj

)T

.

(1.10)

Comparing expressions (1.9) and (1.10), we see the equality of their ele-
ments.

Thus in a tensor product R
p
n ⊗ R

1
n we introduced the structure of a

module over the ring of square matrices supplied with an inner product,
which we called a scalar product.

1.2 Linear Transformations

Many concepts of classical linear algebra transfer to array space almost
automatically, with the natural expansion of the field of scalars to the ring
of square matrices. For instance, the transformation f(·) of array space (1.1)
onto itself is called linear if for any array T1 and T2 and for any (p × p)
matrix k1 and k2

f(K1T1 + K2T2) = K1f(T1) + K2f(T2). (1.11)

6



Linear transformations in array space are performed by right multiplication
by square matrices. Let Q be an arbitrary (n×n) matrix, T be an arbitrary
array (1.1). That transformation

f(T) = TQ

is linear in the sense of (1.11), directly follows from the definition (1.3).
That there are no other linear transformations follows from their absence
even in the case p = 1. (As we know, all linear transformations in vector
spaces of rows are performed by right multiplication by square (n × n)
matrices.)

Note that the matrix form (1.7) of representing an array is fitting also
for the representation of linear transformations: matrix XQ (the product of
matrices X and Q) coincides with the matrix form of an array (1.3)

TQ = {Xi | i = 1, n}Q = {
n∑

j=1

Xjqij | i = 1, n}.

We shall call a linear transformation of array space onto itself orthogonal
if this transformation preserves the scalar product. It means that for any
arrays T and R

〈TQ, RQ〉 = 〈T, R〉.
It is easy to see that orthogonal transformations are performed by right
multiplication by orthogonal matrices. Indeed,

〈TQ, RQ〉 =

n∑

i=1

(
n∑

j=1

Xjqij

)(
n∑

l=1

Ylqil

)T

=

=
n∑

j=1

n∑

q=1

XjY
T
l

(
n∑

i=1

qijqil

)

=
n∑

j=1

XjY
T
j ,

since matrix Q is orthogonal and therefore

n∑

i=1

qijqil = δjl (Kronecker symbol).

1.3 Generating Bases and Coordinates

Let α ∈ R
p
1, x ∈ R

1
n, αx ∈ R

p
n. Here αx denotes the product of matrices α

and x. The matrices of form αx plays a special role in array spaces.
Let n-rows e1, e2, . . . , en ∈ R

1
n form the basis of the space R

1
n. Let

α1, α2, . . . , αn ∈ R
p
1 be arbitrary p-columns. Let us consider (p×n)-matrices

α1e1, α2e2, . . . , αnen.
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Theorem 1. Any (p × n)-matrix X (1.7) can be represented as

X =
n∑

i=1

αiei (1.12)

for some choice of α1, α2, . . . , αn ∈ R
p
1 uniquely.

Proof. Let us define (n × n)-matrix E formed by n-rows e1, e2, . . . , en. Let
us also introduce a (p × n)-matrix A formed by p-columns α1, α2, . . . , αn.
With matrices A and E the sum (1.12) can be represented as

n∑

i=1

αiei = AE.

Here are some calculations to confirm that assertion. Let αi = (α1i, α2i, . . . , αpi)
T , ei =

(ei1, ei2, . . . , ein).

n∑

i=1

αiei =
n∑

i=1

(α1i, α2i, . . . , αpi)
T (ei1, ei2, . . . , ein).

The element at (k, l)-position of each product αiei, i = 1, . . . , n, is in essence
αkieil. Their total sum, which is the element of matrix

∑n

i=1
αiei, is

∑n

i=1
αkieil.

The element at (k, l)-position of matrix AE (calculated by the row by
column rule) is

n∑

i=1

αkieil.

The calculated results are equal.
The theorem shall be proven if we show that the equation

X = AE (1.13)

has a unique solution relative to the (p × n)-matrix A. Since the (n × n)-
matrix E is invertible, the solution is obvious:

A = XE−1. (1.14)

The theorem allows us to say that the basis of R
1
n generates the space R

p
n

(using the above method). Thus, the bases in R
1
n shall be called generating

bases in relation to R
p
n. The p-columns α1, α2, . . . , αn from (1.12) can be

understood as the coordinates of X in the generating basis e1, e2, . . . , en.
For the canonical basis of the space R

1
n (where ei is an n-row, in which the

ith element is one, and the others are zero) coordinates X relative to this
basis are p-columns X1, . . . , Xn ∈ R

p
n, which form the matrix X.
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The coordinates of the (p×n)-matrix X in two different generating bases
are connected by a linear transformation. For example, let n-rows f1, . . . , fn

form the basis in R
1
n. Let F be an (n×n)-matrix composed of these n-rows.

By Theorem 1 there exists a unique set of p-columns β1, β2, . . . , βn that
are coordinates of X relative to the generating basis f1, . . . , fn. Matrices
B = ||β1, . . . , βn|| and F are connected to the (p × n)-matrix X by the
equivalence

X = BF. (1.15)

With (1.13) this gives
BF = AE.

Therefore,
B = AEF−1, A = BFE−1.

Corollary 1. If the generating bases e1, . . . , en and f1, . . . , fn are orthogo-
nal, then the transformation of the coordinates of an array in one basis to
the coordinates of it in another is performed through multiplication by an
orthogonal matrix.

Let us consider an arbitrary orthogonal basis e1, . . . , en in R
p
n. For arbi-

trary (p × n)-matrices X and Y we have the decompositions of (1.12) with
respect to this basis:

X =

n∑

i=1

αiei, Y =

n∑

i=1

γiei.

We can express the scalar product of X and Y through their coordinates. It
is easy to see that

〈TX , TY 〉 = XYT =
n∑

i=1

αiγ
T
i . (1.16)

Corollary 2. In an orthogonal basis, the scalar product of two arrays is
equal to the sum of the paired product of the coordinates.

Proof. Indeed,

XYT = 〈
n∑

i=1

αiei,

n∑

j=1

γjej〉 =

n∑

i=1

n∑

j=1

αieie
T
j γT

j =

n∑

i=1

αiγ
T
i ,

since for the orthogonal basis eie
T
j = δij .

Therefore the scalar square of TX equals

|TX |2 = XXT =

n∑

i=1

αiα
T
i .

We can conclude from here that the squared length of an array is equal to
the sum of its squared coordinates in an orthogonal basis, as for the squared
euclidean length of a vector.
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1.4 Submodules

We define a Submodule in array space (1.1) (or the space of corresponding
matrices (1.7)) to be a set which is closed under linear operations: addition
and multiplication by scalars. Remember that multiplication by scalars
means left multiplication by (p × p)-matrices. For clarity, we shall discuss
arrays in their matrix forms in future.

Definition 2. The set L ⊂ R
p
n we shall define to be the submodule of space

R
p
n, if for any X1, X2 ∈ L

K1X1 + K2X2 ∈ L (1.17)

with arbitrary (p × p)-matrices K1, K2.

Theorem 2. Any submodule L, L ⊂ R
p
n, is formed by some linearly inde-

pendent system of n-rows. The number of elements in this system is uniquely
determined by L. This number may be called the dimension of the linear
subspace L.

Proof. Let X ∈ L. The set of (p × n)-matrices of the form KX (where K

is an arbitrary (p × p)-matrix) forms a submodule. Let us label it as L(X)
Let x1, . . . , xp be n-rows of the (p×n)-matrix X. Let us choose from among
these n-rows a maximal linear independent subsystem, such as y1, . . . , yk.
It is obvious that

L(X) = {Y | Y =

k∑

i=1

βiyi, β1, . . . , βk ∈ R
p
1}.

If L(X) = L, then y1, . . . , yk form a generating basis for L ⊂ R
p
n. If L(X) 6=

L, then let us find in L an element, say Z, that does not belong to L(X). Let
us expand the system y1, . . . , yk with n-rows z1, . . . , zp of (p × n)-matrix
Z. Then we find in this set of n-rows the maximal linearly independent
subsystem, and repeat. At some point the process ends.

Corollary 3. Any submodule L ⊂ R
p
n can be expressed as the sum of one-

dimensional submodules Li ⊂ R
p
n:

L = L1 ⊕L2 ⊕ . . . ⊕Ll, (1.18)

where
Li = {X | X = αyi, α ∈ R

p
1}

for some yi ∈ R
1
n. The number l is the same in any representation (1.18)

of L. This number can be called the dimension of subspace L: l = dimL.
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Note. One can choose an orthogonal linearly independent system of
n-rows that generates L. For proof, it is sufficient to note that the gener-
ating system can be transformed into an orthogonal one by the process of
orthogonalization.

Theorem 2 establishes the one-to-one correspondence between linear
subspaces of vector space R

1
n and the submodules of the matrix space R

p
n.

Let us state this as

Corollary 4. Each linear subspace L in the space of n-rows R
1
n corresponds

to some submodule L in the space of (p × n)-matrices R
p
n. The dimensions

of the linear subspace L and the submodule L coincide.

In this manner, the space R
p
n (and the corresponding array space) and

the space R
1
n have an equal “supply” of linear subspaces and submodules.

This leads to significant consequences for multivariate statistical analysis.

Definition 3. An orthogonal compliment of the submodule L with respect
to the whole space is said to be

L⊥ = {X | X ∈ R
p
n, 〈X, Y〉 = 0, ∀ Y ∈ L}. (1.19)

s It is easy to see that L⊥ is a submodule and that

L ⊕ L⊥ = R
p
n, dimL⊥ = n − dimL.

1.5 Projections onto Submodules

Let us consider array space (1.1) with the introduced scalar product (1.4).
Let L be the submodule (1.17). Let us call the projection of array T onto a
linear subspace L the point of L that is closest to T in the sense of comparing
scalar squares (1.5).

Let us say it in details. Let array R pass through the set L. We shall
call the point R0 ∈ L closest to T if for any R ∈ L

〈T− R0, T − R0〉 4 〈T −R, T − R〉.

Note that 〈T− R, T − R〉 is the function of R with values in the set of
(p× p)-matrices. The existence of a minimal element in the set of matrices
(generated by R ∈ L) is not obvious and is not provided naturally. So the
existence of projL T needs to be proved. We state this result in the following
theorem.

Theorem 3. The projection of T onto L exists, is unique, and has the
expected (euclidean) properties.
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1. For any array R ∈ L,

|T − R|2 < |T − projL T|2,

with equality iff R = projL T;

2. (T − projL T) ⊥ L;

3. projL(K1T1 + K2T2) = K1 projL T1 + K2 projL T2.

Proof. Let X ∈ R
p
n be an arbitrary (p × n)-matrix. As was shown, any

submodule L ⊂ R
p
n is equivalent to a linear subspace L in the space of

n-rows, L ⊂ R
1
n. Let Π be a projection matrix onto L in the space R

1
n, that

is, for any x ∈ R
1
n

projL x = xΠ.

To prove the theorem we need the following Lemma 1 and Theorem 4.

Lemma 1. Let L ⊂ R
p
n be a submodule in the space of (p × n)-matrices,

and let L ⊂ R
1
n be a linear subspace in the space of n-rows which generates

L. Then for any λ ∈ R
p
1

λTL = L.

Proof of Lemma. Let r = dim L, r ≤ n. Let us choose within L the basis
e1, . . . , er. As we know, the subspace L ∈ R

p
n can be represented as

L = {Y | Y =

r∑

k=1

αkek, α1, . . . , αk ∈ R
p
1}.

Let Y ∈ L, then for some α1, . . . , αk ∈ R
p
1

Y =
r∑

k=1

αkek.

Therefore, under any λ ∈ R
p
1

λT Y =
r∑

k=1

(λT αk)ek ∈ L,

since λT α1, . . . , λ
T αr are numerical coefficients.

Theorem 4. Let L be a submodule in the space of (p× n)-matrices. Let L

be a linear subspace in the space of n-rows which generates L ⊂ R
p
n. Let Π

be a projection (n × n)-matrix onto L, that is, for any x ∈ R
1
n

projL x = xΠ.

Then for any X ∈ R
p
n

projL X = XΠ.
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Proof. We must show that for any Y ∈ L
〈X − Y, X − Y〉 < 〈X − XΠ, X − XΠ〉 (1.20)

with equality if and only if Y = XΠ. The inequality between two symmet-
rical (p × p)-matrices in (1.20) means that for any λ ∈ R

p
1

λT 〈X − Y, X − Y〉λ ≥ λT 〈X − XΠ, X − XΠ〉λ,

thus
|λT (X − Y)|2 ≥ |λT (X − XΠ)|2,

thus
|λTX − λT Y|2 ≥ |λTX − (λTX)Π|2.

As was noted above, the n-row y = λT Y belongs to L and λT XΠ = xΠ is
a projection of λTX onto L. Due to the properties of euclidean projection,
we get for any y ∈ L

|x − y|2 ≥ |x − xΠ|2

with equality if and only if y = xΠ. Thus, XΠ is the nearest point to X in
L.

Now we return to proving Theorem 3. From Theorem 4 we know XΠ is
the unique projection of X onto L. So, statement 1 of Theorem 3 is proven.

The explicit expression projL X = XΠ confirms that the operation of
projection onto a submodule is a linear operation. So, statement 3 of The-
orem 3 is proven as well.

To complete the proof of Theorem 3 we need to show statement 2. Let
e1, . . . , er be an orthogonal basis of L and er+1, . . . , en be an orthogonal basis
of L⊥. Then, e1, . . . , en is the orthogonal basis of R

1
n. In this orthogonal

basis, if

X =

n∑

i=1

αiei,

then

X − XΠ =

n∑

i=r+1

αiei.

Since Y ∈ L,

Y =
r∑

i=1

βiei

for some β1, . . . , βr ∈ R
p
1. Therefore:

(X − XΠ)YT = 〈
n∑

i=r+1

αiei,

r∑

i=1

βiei〉 =
n∑

i=r+1

r∑

j=1

〈αiei, bejej〉 =

=

n∑

i=r+1

r∑

j=1

αiei(βjej)
T =

n∑

i=r+1

r∑

j=1

αieie
T
j βT

j = 0,
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since eie
T
j = 0 when i 6= j.

1.6 Matrix Least Squares Method

Calculating projections onto a submodule L ⊂ R
p
n become easier if the form

of projection onto the linear subspace L which generates L is known. By
the lemma from Section 1.5, for any λ ∈ R

p
1

λT projL X = projL(λT X). (1.21)

Assume that for the right part of (1.21) we have an explicit formula y =
projL x. Then because of the linearity this gives us for projL(λT X) an
explicit formula λT Y. Therefore

λT projL X = λT Y. (1.22)

So we get an explicit expression for projL X. One can say this is the calcu-
lation of projL X by Roy’s method. [5]

Example: calculating the arithmetic mean. Let X1, X2, . . . , Xn ∈ R
p
1

be the set of p-columns. Let us consider the array T = {Xi | i = 1, n} and
represent it in matrix form.

X = ‖X1, X2, . . . , Xn‖. (1.23)

Our task is to find the array Y with identical columns, i.e., an array of form

Y = ‖Y, Y, . . . , Y ‖, Y ∈ R
p
1, (1.24)

closest to (1.23). Arrays of form (1.24) produce a one-dimensional submod-
ule. We shall denote it by L, L ⊂ R

p
n. We have to find projL X. The

submodule L is generated by a one-dimensional linear subspace L, L ⊂ R
1
n,

spanned by n-row e = (1, 1, . . . , 1).
Let x be an arbitrary n-row, x = (x1, . . . , xn). The form of projection

of x onto L is well known:

projL x = (x, . . . , x).

Applying Roy’s method to matrix X (1.23) we get over to n-row x = λT X,
where xi = λTXi, i = 1, n. It is then clear that

projL x = (λT X, . . . , λT X).

Therefore,
projL X = (X, . . . , X). (1.25)

14



Of course, this is not the only and not always the most efficient method. In
this example, like in other cases, one can apply the matrix method of least
squares and find

Ŷ = arg min
Y ∈R

p

1

n∑

i=1

(Xi − Y )(Xi − Y )T . (1.26)

Solution. Let us transform the function in (1.26): for any Y ∈ R
p
1

n∑

i=1

(Xi−Y )(Xi−Y )T =

n∑

i=1

[(Xi−X)+(X−Y )][(Xi−X)+(X−Y )]T =

=
n∑

i=1

(Xi − X)(Xi − X)T + n

n∑

i=1

(X − Y )(X − Y )T = (1) + (2), (1.27)

since “paired products” turn to zero:

n∑

i=1

(Xi − X)(X − Y )T = 0,

n∑

i=1

(X − Y )(Xi − X)T = 0.

Now the function (1.27) is a sum of two nonnegatively defined matrices, and
the first one does not depend on Y . The minimum attains at Y = X: at
that point the nonnegatively definite matrix (2) turns to zero.

The answer is an arithmetic mean, that is,

Ŷ = X.

Of course, it is well known. It can be find by applying not the matrix but
the ordinary method of least squares:

Ŷ = arg min
Y ∈R

p

1

n∑

i=1

(Xi − Y )T (Xi − Y ).

The results of the matrix method similarly relate to the traditional in
the case of projection on other submodules L ⊂ R

p
n. The reason is simple:

if an array Y is the solution of a matrix problem

n∑

i=1

(Xi − Zi)(Xi − Zi)
T = (X − Z)(X − Z)T → min

Z∈L

,

then Y is a solution of the scalar problem as well,

tr{
n∑

i=1

(Xi − Zi)(Xi − Zi)
T} =

n∑

i=1

(Xi − Zi)
T (Xi − Zi) → min

Z∈L
.
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Thus, for instance, in calculating the projection on submodulqes one can use
the traditional scalar method of least squares. Both least squares methods
in linear models give us the same estimates of parameters. The necessity
of matrix scalar products and the matrix form of orthogonality, projection,
submodules, etc becomes apparent in testing linear hypothesis. We shall
relate this in the next section.

2 Multivariate Linear Models

2.1 Arrays with Random Elements

Let us consider array (2.1), the elements of which are p-dimensional random
variables presented in the form of p-columns.

T = {Xi | i = 1, n}. (2.1)

Remember that we treat such an array as a row composed of p-columns
under algebraic operations. For arrays of form (2.1) with random elements,
let us define mathematical expectation and covariance. The array

ETX = {E Xi | i = 1, n} (2.2)

is called the mathematical expectation of T. We define the covariance matrix
of array (2.1) much like the covariance matrix of random vector. Let

t = (x1, . . . , xn)

be an n-row composed of random variables x1, x2, . . . , xn. As we know, the
covariance matrix Var t of the random vector t is an (n × n)-matrix with
elements

σij = Cov(xi, xj), where i, j = 1, n.

Algebraically, with the help of matrix operations, the covariance matrix of
the random vector t can be defined as

Var t = E (t − E t)T (t − E t). (2.3)

Following (2.3), we define the covariance array of random array (2.1) as

VarT := E (T − ET)T (T − ET) = {Cov(Xi, Xj) | i, j = 1, n}. (2.4)

Here Cov(Xi, Xj) is a covariance matrix of random column-vectors Xi and
Xj,

Cov(Xi, Xj) = E (Xi − E Xi)(Xj − E Xj)
T . (2.5)

Note that we consider VarT (2.4) as a square array of dimensions (n × n),
the elements of which are (p × p)- matrices (2.5).
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Let us consider the array R, obtained by the linear transformation of
array T (2.1)

R = TQ, (2.6)

where Q is a (n × n)-matrix.
It is clear that

ER = (ET)Q,

VarR = E [(TQ − ETQ)T (TQ − ETQ)] = QT (VarT)Q. (2.7)

In mathematical statistics, arrays with statistically independent random
elements are of especial interest when the covariance matrices of these ele-
ments are the same. Let T (2.1) be an array such that

Cov(Xi, Xj) = δijΣ, i, j = 1, n. (2.8)

Here Σ is a nonnegatively defined (p × p)-matrix and δij is the symbol of
Kronecker. Let us consider an orthogonal transformation of array T:

R = TC, (2.9)

where C is an orthogonal (n × n)-matrix. The following lemma is fairly
simple but important.

Lemma 2.

VarR = VarT = {δijΣ | i, j = 1, n} (2.10)

This lemma generalizes for the multivariate case the well-known property
of spherical normal distributions.

Proof. The proof of the lemma is straightforward. To simplify the formulas,
assume that ET = 0. Then, (2.7),

E (TC) = E [(TC)T (TC)] = CT (VarT)C =

= CT{δijΣ | i, j = 1, n}C = {δijΣ | i, j = 1, n}.

Earlier, while discussing generating bases and coordinates (Section 1.3),
we established that the transformation from the coordinates of array T

in an orthogonal basis to coordinates of this array in another basis can
be done through multiplication by an orthogonal matrix. Therefore if the
coordinates of some array in one orthogonal basis are not correlated and
have a common covariance matrix, then the coordinates of the given array
hold these properties in any orthogonal basis. From the remark above and
just established Lemma 2 follows
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Lemma 3. If the coordinates of a random array in an orthogonal basis are
uncorrelated and have a common covariance matrix, then the coordinates of
this array are uncorrelated and have the same common covariance in any
orthogonal basis.

This property is of great importance in studying linear statistical models.
Finally, let us note that in introducing and discussing covariance arrays

of random arrays we have to work with the arrays themselves (1.1) and not
with the matrices (1.7) representing them.

2.2 Linear Models and Linear Hypotheses

Definition 4. One says that array T (2.1) with random elements obeys a
linear model if

a) for some given submodule L

ET ∈ L; (2.11)

b) elements X1, . . . , Xn of array T are independent and identically dis-
tributed.

If this is common for all Xi, with i = 1, n a gaussian distribution, then
we say that array T follows a linear gaussian model. We will now study
linear gaussian models.

We shall denote with Σ the common covariance matrix for all p-columns.
The array ET and matrix Σ are parameters of the model. They are generally
unknown; although, Σ is assumed to be nondegenerate.

For random arrays following the gaussian model, linear hypotheses are
often discussed. Within the framework of the linear model (2.11) the linear
hypothesis holds the form:

ET ∈ L1, (2.12)

where L1 is a given submodule, and L1 ⊂ L.
Let us show that the linear models and linear hypotheses discussed in

multivariate statistical analysis have the structure of (2.11) and (2.12). The
main linear models are factor and regression. For example, let us consider
the one-way layout and regression models of multivariate statistical analysis.

The One-way layout model is the simplest of the “analysis of vari-
ance” models. It is a shift problem of several (say, m) normal samples with
identical covariance matrices. The array of observations in this problem has
to have double numeration:

T = {Xij | j = 1, m, i = 1, nj}. (2.13)

18



Here m is the number of different levels of the factor, which affects the
expected values of the response. Here, nj is the number of independently
repeated observations of the response on the level j of the factor, j =
1, m. Finally, multivariate variables Xij are independent realizations of a
p-dimensional response, Xij ∈ R

p
1. Assume N = n1 + · · · + nm. The main

assumption of the model is: Xij ∼ Np(aj , Σ).
We shall linearly order the observations which constitute the array (2.13)

and then represent (2.13) as a (p × N)-matrix.

X = ‖X11, X12, . . . , X1n1
, X21, . . . , X2n2

, Xm1, . . .Xmnm
‖. (2.14)

Note that
E X = ‖ a1, . . . , a1

︸ ︷︷ ︸

n1 times

, a2, . . . , a2
︸ ︷︷ ︸

n2 times

, . . . , am, . . . , am
︸ ︷︷ ︸

nm times

‖. (2.15)

Let us introduce N -rows

e1 = (1, . . . , 1
︸ ︷︷ ︸

n1 times

, 0, . . . , 0),

e2 = (0, . . . , 0
︸ ︷︷ ︸

n1 times

, 1, . . . , 1
︸ ︷︷ ︸

n2 times

, 0, . . . , 0),

. . .

em = (0, . . . , 0
︸ ︷︷ ︸

n1times

, 0, . . . , 0
︸ ︷︷ ︸

n2 times

, . . . , 1, . . . , 1
︸ ︷︷ ︸

nm times

).

(2.16)

It is obvious that

E X =
m∑

i=1

aiei.

Therefore E X belongs to an m dimensional submodule of the space R
p
N

spanned by n-rows (2.16).
The hypothesis H0 : a1 = a2 = · · · = am, with which one usually begins

the statistical analysis of m samples, is obviously a linear hypothqesis in
the sense of (2.12) H0 : E X ∈ L1, where L1 is a one dimensional linear
subspace spanned by the single N -row e = e1 + · · ·+ em.

Multivariate Multiple Regression in matrix form is

Y = AX + E, (2.17)

where Y = ‖Y1, Y2, . . . , Yn‖. Here Y is theq observed (p × n)-matrix of
p-dimensional response; X is a given design (m×n)-matrix; A is a (p×m)-
matrix of unknown regression coefficients; E = ‖E1, E2, . . . , En‖ is a (p×n)-
matrix composed of independent p-variate random errors E1, E2, . . . , En. In
gaussian models

Ei ∼ Np(0, Σ),
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where (p × p) matrix Σ is assumed to be non-degenerate. Generally Σ is
believed to be unknown.

Let A1, A2, . . . , Am be the p-columns forming matrix A; let x1, x2, . . . , xm

be n-rows, forming matrix X. Then

AX =
m∑

i=1

Aixi. (2.18)

The resulting expression (2.18) shows that EY = AX belongs to an m

dimensional submodule of the space R
p
n, generated by the linear system of

n-rows x1, x2, . . . , xm.

2.3 Sufficient Statistics and Best Unbiased Estimates

Let us consider a linear gaussian model (2.11) in matrix form

X = M + E. (2.19)

where M = E X is an unknown (p × n)-matrix;

M = ‖M1, M2, . . . , Mn‖ ∈ L,

where L is a submodule of R
p
n;

E = ‖E1, E2, . . . , En‖

is a (p× n)-matrix, the p-columns E1, E2, . . . , En of which are the indepen-
dent Np(0, Σ) random variables.

The unknown parameter of this gaussian model is a pair (M, Σ). Let us
find sufficient statistics for this parameter using the factorization criterion.

A likelihood of the pair (M, Σ) based on X is

n∏

i=1

(
1√
2π

)p
1√

det Σ
exp {−1

2
(Xi − Mi)

T Σ−1(Xi − Mi)} =

=

(
1√
2π

)np(
1√

det Σ

)n

exp {−1

2
trΣ−1[

n∑

i=1

(Xi − Mi)(Xi − Mi)
T ]}.

(2.20)

The sum in square brackets is 〈X − M, X − M〉. Let us represent X−M

as
X − M = (X − projLX) + (projLX − M) = (1) + (2)

and note that
(1) = projL⊥X ∈ L⊥, (2) ∈ L.
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Thus, (Pythagorean Theorem)

〈X − M, X − M〉 = 〈projL⊥X, projL⊥X〉 + 〈projLX − M, projLX − M〉.
(2.21)

We conclude that the likelihood (2.20) is expressed through the statistics
projLX and 〈projL⊥X, projL⊥X〉, which are sufficient for M, Σ.

The statistic projLX is obviously an unbiased estimate of M. As a
function of sufficient statistics it is the best unbiased estimate of M. We
can show that the best unbiased estimate of Σ is the statistic

1

dimL⊥
〈projL⊥X, projL⊥X〉 (2.22)

after proving the following theorem 5.

2.4 Theorem of Orthogonal Decomposition

Theorem 5. Let X = ‖X1, X2, . . . , Xn‖ be a gaussian (p × n) matrix with
independent p-columns X1, X2, . . . , Xn ∈ R

p
1, and VarXi = Σ for all i =

1, . . . , n. Let L1,L2, . . . be pairwise orthogonal submodules R
p
n, the direct

sum of which forms R
p
n:

R
p
n = L1 ⊕ L2 ⊕ . . .

Let us consider the decomposition of (p × n)-matrix X into the sum of or-
thogonal projections X on the submodules L1,L2, . . . :

X = projL1
X + projL2

X + . . .

Then:

a) random (p × n)-matrices projL1
X, projL2

X, . . . are independent, nor-
mally distributed, and E projLi

X = projLi
E X;

b) 〈projLi
X, projLi

X〉 = Wp(dim Li, Σ, ∆i), where Wp(ν, Σ, ∆) indicates
a random matrix (of size (p × p)), distributed under Wishart, with ν

degrees of freedom and the parameter of non-centrality ∆. In this case

∆i = 〈projLi
E X, projLi

E X〉.

Proof. Each submodule L ⊂ R
p
n has a one-to-one correspondence to some

linear subspace L ⊂ R
1
n which generates it, and dimL = dim L. Let sub-

modules L1,L2, · · · ⊂ R
p
n correspond to the subspaces L1, L2, · · · ⊂ R

1
n. The

subspaces L1, L2, · · · ⊂ R
1
n are pairwise orthogonal, and their direct sum

forms the entire space R
1
n. Let us denote the dimensions of submodules

L1,L2, · · · ⊂ R
p
n (and subspaces L1, L2, · · · ⊂ R

1
n) by m1, m2, . . . .
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Let us choose in every subspace L1, L2, . . . an orthogonal basis. For L1

let it be the n-rows f1, . . . , fm1
; for L2, the n-rows fm1+1, . . . , fm1+m2

etc.
With the help of these n-rows each of the submodules L1,L2, . . . can be
represented as the direct sum of one dimensional submodules from R

p
n. For

example, L1 = F1 ⊕F2 ⊕ · · · ⊕ Fm1
, where

F1 = {Y | Y = αf1, α ∈ R
p
1},

F2 = {Y | Y = αf2, α ∈ R
p
1},

· · ·
Fm1

= {Y | Y = αfm1
, α ∈ R

p
1}.

The set of all n-rows f1, f2, . . . , fn forms an orthogonal basis in R
1
n and so

does the generating basis in R
p
n. Therefore any (p × n)-matrix X ∈ R

p
n can

be represented in the form

X =

n∑

i=1

Yifi,

where Y1, . . . , Yn are some p-columns, that is Y1, . . . , Yn ∈ R
p
1, and

projL1
X =

m1∑

i=1

Yifi,

projL2
X =

m2∑

i=m1+1

Yifi etc.

Here p-columns Y1, Y2, . . . , Yn are coordinates of a (p×n)-matrix X relative
to the generating basis f1, . . . , fn, while the p-columns X1, X2, . . . , Xn are
coordinates of the same (p×n)-matrix X relative to the orthogonal canonical
basis R

1
n: e1 = (1, 0, . . . ), e2 = (0, 1, 0, . . . ) etc. As was noted earlier (see

Lemma 3), the transformation from some coordinates to others is performed
through the right multiplication of an (p×n)-matrix X by some orthogonal
transformation (n × n)-matrix, say by (n × n)-matrix C:

‖Y1, Y2, . . . , Yn‖ = ‖X1, X2, . . . , Xn‖C, or Y = XC.

Thus the p-columns Y1, . . . , Yn are mutually normally distributed. Following
Lemma 3,

VarY = VarX = {δijΣ | i, j = 1, n}.
This means that Y1, . . . , Yn are independent gaussian p-columns with com-
mon covariance matrix Σ, just like the p-columns X1, . . . , Xn.

Let us consider random (p × p)-matrices

〈projL1
X, projL1

X〉, 〈projL2
X, projL2

X〉, . . .
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For example,

〈projL1
X, projL1

X〉 =

m1∑

i=1

YiY
T
i .

The distribution of such random matrices is called a Wishart distribution.
If E Y1 = E Y2 = · · · = E Ym1

= 0, we get the so-called central Wishart
distribution Wp(m1, Σ). Let us note that if one uses the notation Wp(m, Σ)
for a random matrix itself, not only for its distribution, then one can say
that

Wp(m, Σ) = Σ
1

2 Wp(m, I)Σ
1

2 ,

if one represents as Σ
1

2 a symmetric matrix, the unique symmetric solution
of the matrix equation: Z2 = Σ.

One says that a random (p × p)-matrix W has the noncentral Wishart
distribution if

W =
m∑

i=1

(ξi + ai)(ξi + ai)
T ,

where the p-columns ξ1, ξ2, . . . , ξm are iid Np(0, Σ), a1, a2, . . . , am are some
nonrandom p-columns, generally distinct from zero. The distribution W

somehow depends on the p-columns a1, a2, . . . , am. Let us show that the
distribution W depends on the noted p-columns through a so-called param-
eter of noncentrality: the (p × p)-matrix

∆ =
m∑

i=1

aia
T
i .

Let us introduce the (p × m)-matrices

ξ = ‖ξ1, ξ2, . . . , ξm‖,
A = ‖a1, a2, . . . , am‖.

In these notations
W = 〈ξ + A, ξ + A〉.

Let C be an arbitrary orthogonal (m × m)-matrix. Say η = ξC. Note

that η
d
= ξ, and

W
d
= 〈η + AC, η + AC〉.

We see that the noncentral Wishart distribution depends on A = ‖a1, . . . , am‖
not directly but through the maximal invariant A under orthogonal trans-
formations, that is through 〈A, A〉 =

∑m

i=1
aia

T
i .

Therefore, in the general case

〈projLi
X, projLi

X〉 = Wp(mi, Σ, ∆i),

where ∆i = 〈projLi
E X, projLi

E X〉.
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Let us return to the unbiased estimate of parameter Σ of linear models.
In linear model (2.19) projL⊥E X = 0. Therefore the statistic (2.22) is

1

dimL⊥
〈projL⊥X, projL⊥X〉 =

1

n − m
Σ

1

2 Wp(n − m, I)Σ
1

2 .

It is obvious that its expected value is Σ.

2.5 Testing Linear Hypotheses

Copying the univariate linear model, we shall define the hypothesis in the
multivariate linear model (2.19) as

H : E X ∈ L1, (2.23)

where L1 is a given submodule such that L1 ⊂ L.
In this section we will propose statistics which may serve as the base for

the construction of statistical criteria for testing H (2.23), free (under H)
from the parameters M, Σ.

Let us introduce the submodule L2 which is an orthogonal complement
L1 with respect to L:

L = L1 ⊕ L2. (2.24)

Let us consider the decomposition of the space R
p
n into three pairwise or-

thogonal subspaces:
R

p
n = L1 ⊕ L2 ⊕ L⊥.

Following theorem 5 the random matrices

S1 := 〈projL⊥X, projL⊥X〉 and S2 := 〈projL2
X, projL2

X〉

are independent and have Wishart distributions. Regardless of H

S1 = 〈projL⊥X, projL⊥X〉 = Wp(n − m, Σ). (2.25)

If the hypothesis H (2.23) is true, then

S2 = 〈projL2
X, projL2

X〉 = Wp(m2, Σ). (2.26)

(Here and further we denote m = dimL, m1 = dimL1, m2 = dimL2).
Under the alternative to H (2.23), the Wishart distribution of statistic

(2.26) becomes noncentral with the parameter of noncentrality

∆ = 〈projL2
E X, projL2

E X〉.

The noncentrality parameter shows the degree of violation of the hypothesis
H (2.23): E X ∈ L1.
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In the one-dimensional case (when p = 1) the statistics (2.25) and (2.26)
turn into random variables distributed as σ2χ2(n−m) and σ2χ2(m2) respec-
tively. Their ratio (under the hypothesis) is distributed free, and therefore
it can be used as a statistical criterion for testing H . This is the well-known
F-ratio of Fischer.

In the multivariate case the analogue of F-ratio should be the “ratio”
of (p × p)-matrices S2 and S1. Under n − m ≥ p the matrix S1 (2.25) is
non-degenerate, and therefore there exists a statistic ((p × p)-matrix)

〈projL2
X, projL2

X〉 〈projL⊥X, projL⊥X〉−1 (2.27)

Unlike the one-dimensional case (p = 1) the statistic (2.27) is not dis-
tributed free. By distribution, (2.27) is equal to

Σ
1

2 Wp(m2, I) W−1
p (n − m, I) Σ−

1

2 . (2.28)

However the eigenvalues of matrix (2.27) under the hypothesis H (2.23)
are distributed free (from M, Σ). These eigenvalues coincide with the roots
of the equation relative to λ

det(Wp(m2, I) − λWp(n − m, I)) = 0. (2.29)

Therefore certain functions of the roots of equation (2.29) are traditionally
used as critical statistics in testing linear hypotheses.

Here our investigation enters the traditional realm of multivariate sta-
tistical analysis, and therefore must be finished.
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