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1 Departamento de Geometŕıa y Topoloǵıa , Facultad de Ciencias, Universidad de Granada
Campus Fuentenueva s/n, 18071 Granada, Spain
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Abstract. We present the explicit local form of the metric of the second-order symmetric
non-symmetric 4-dimensional Lorentzian manifolds. They turn out to be a specific subclass of
plane waves.

1. Introduction

The historical roots of the subject under investigation go back to the classification of the locally
symmetric spaces in the (proper) Riemannian case by Cartan [2, 3]. Locally symmetric pseudo-
Riemannian manifolds are characterized by the condition∇R = 0, whereR denotes the curvature
tensor of the manifold. The pseudo-Riemannian manifolds satisfying ∇2R = 0 constitute a
logical generalization of the locally symmetric ones. But in the Riemannian case these two
conditions are equivalent. Moreover, in the Riemannian case:

∇mR = 0,m ≥ 2 =⇒ ∇R = 0, (1)

a result based on the orthogonal de Rham decomposition [10, 15]. In this Riemannian case
the natural generalization are the semi-symmetric spaces (introduced in [4], studied in [13, 14])
defined by the relation RXY R = 0 for all vector fieldsX,Y , whereRXY is the curvature operator
∇X∇Y −∇Y ∇X −∇[X,Y ].

In the Lorentzian case (1) does not hold, because of the failure of the orthogonal de Rham
decomposition [16, 17, 18]. In fact,

∇mR = 0,m ≥ 2 =⇒ g(∇m−1R,∇m−1R) = 0,

where the metric g is extended to the inner product between tensor fields in the standard fashion.
So in the Lorentzian case we can introduce the second-order symmetric (also called 2-symmetric)
spaces [11], i.e., the spaces that satisfy the condition ∇2R = 0.

The following relations hold: {∇R = 0} ⊂ {∇2R = 0} ⊂ {RXY R = 0}.
In this contribution we present a specific result from [1]. Namely, we find the 2-symmetric

non-symmetric 4-dimensional spacetimes: the explicit local form of the metric, classification and
properties. The main result is summarized in the following theorem:
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Theorem 1.1 A 2-symmetric non-symmetric 4-dimensional spacetime (M,g) is locally

isometric to R
4 endowed with the metric

ds2 = −2du(dv +Hdu) + dx2 + dy2,

where H(u, x, y) = (α1u+β1)x
2+(α2u+β2)y

2+(α3u+β3)xy for some constants {αA, βA}A=1,2,3

with α2
1 + α2

2 + α2
3 6= 0.

2. Sketch of the proof of theorem 1.1

The starting point for this proof is theorem 4.2 in [11]. From this theorem follows that a
2-symmetric non-symmetric spacetime must have a null parallel vector field and therefore its
metric is of Brinkmann type:

ds2 = −2du(dv +Hdu+Widx
i) + gijdx

idxj , i, j ∈ {2, 3},

where H, Wi and gij = gji are functions independent of v, otherwise arbitrary.
Using the 2-symmetry condition, one can prove that gij must be locally symmetric on each

slice u = u0 [1]. Since the only locally symmetric 2-dimensional Riemannian spaces are the
constant curvature ones, we have that in appropriate local coordinates

gijdx
idxj =

1
(

1 + k(u)
4 (x2 + y2)

)2

(

dx2 + dy2
)

.

In fact, k(u) must vanish. To prove this, we use the Petrov classification [12]. By [7] we know
that all the semi-symmetric spacetimes (of dimension 4) are of type D, N or O. Moreover, as
a consequence of this result, it was also proven that the 2-symmetric spacetimes are of Petrov
type N , or its degenerate case, O. And this only happens when k(u) = 0.

Hence, the line element of a 2-symmetric non-symmetric 4-dimensional spacetime (M,g)
simplifies to

ds2 = −2du(dv +Hdu+W2dx+W3dy) + dx2 + dy2,

From now on, an overdot means derivative with respect to u, f,x = ∂f/∂x and f,y = ∂f/∂y.
Using the Cartan method (see, for example, [5]) to calculate the connection 1-forms and the

curvature 2-forms for the null coframe {θ0, θ1, θ2, θ3} = {du, dv +Hdu+W2dx+W3dy, dx, dy}
and solving the 2-symmetry equations in this frame, we conclude that there exist functions
{ars(u), brs(u)}{r,s}∈{0,1},r+s<2, ω(u, x, y), w2(u), w3(u) and r(u) such that

W2(u, x, y) = ω,x(u, x, y) + w2(u)y, (2)

W3(u, x, y) = ω,y(u, x, y) + w3(u)x, (3)

H(u, x, y) =
a10
2

x2 +
b01
2
y2 + b10xy + a00x+ b00y + r(u) +Q(u, x, y) (4)

where Q,y(u, x, y) = Ẇ3(u, x, y), and the following equations must be satisfied:

− ä10 + 2gg̈ + 2ġa01 − 2g2(b01 − a10) + 4gȧ01 = 0, (5)

b̈01 − 2gg̈ + 2ġb10 + 4gḃ10 − 2g2(b01 − a10) = 0, (6)

ä01 +
...
g − 4ġg2 + ġ(a10 − b01)− 2g2a01 − 2g(ȧ10 − ḃ01) = 0, (7)

b10 − a01 = 2ġ, (8)



g(u) =
1

2
(W2,y −W3,x). (9)

The proof can then be completed by noticing that Eqs.(2), (3) and (4) together with (5)–(9)
permit the coordinate change needed to arrive at the final form of the metric. This change of
coordinates is given by

u′ = u+ u0,

v′ = v + F (u, x, y),

x′ = cos (θ(u))x− sin (θ(u)) y +B2(u),

y′ = sin(θ(u))x+ cos (θ(u)) y +B3(u),

It is easily verified that the functions θ, B2, B3 and F can be chosen such that the line-element
becomes

ds′2 = −2du′(dv′ +H ′du′) + (dx′)2 + (dy′)2, (10)

where
H ′(u′, x′, y′) = p1(u

′)(x′)2 + p2(u
′)(y′)2 + p3(u

′)x′y′ (11)

for some new functions {pA(u
′)}A=1,2,3, because the integrability conditions of the resulting

differential equations are always met by virtue of equations (2)–(9).
To finalize the proof of theorem 1.1, one simply has to solve the equations (5)-(9) appropriately

restricted to the new form of the metric (10) with (11). This readily implies that p1(u
′), p2(u

′)
and p3(u

′) must be linear functions:

pA(u
′) = αAu

′ + βA, αA, βA ∈ R, A ∈ {1, 2, 3}.

The condition α2
1 + α2

2 + α2
3 6= 0 must be enforced as otherwise ∇R = 0 and the spacetime

would be locally symmetric.

3. Concluding remarks

We would like to stress that, even though the family of metrics obtained in Therorem 1.1 depend
on six parameters, a further analysis shows that only four of them are essential parameters, and
the other two can be removed by the remaining freedom of coordinates.

Similarly, we want to remark that our result is local. A global classification is also feasible,
though some global hypotheses on the spacetime seem unavoidable to that end. Such kind of
hypotheses may involve the topology of the manifold, geodesics or causality (see [6, 8, 9] for a
study of the last two issues in some wave-type spacetimes). In particular, it seems that the local
solutions obtained in Theorem 1.1 are also the unique global 4-dimensional solutions under the
requirements of simple connectedness and geodesic completeness.

An open question is whether or not the above pattern is maintained for higher-order
symmetric 4-dimensional spacetimes. Specifically, we wonder if the m-symmetric spacetimes
(those with ∇mR = 0) are given, for general m, precisely by the line-element (10) with (11)
where the functions p1(u

′), p2(u
′) and p3(u

′) are polynomials of degree m.
A more important open question is the extension of the result to higher dimensions. Of

course, many more possibilities appear in this general case, which are being analyzed in [1].
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