
ar
X

iv
:0

90
2.

13
23

v1
 [

st
at

.M
L

]
 8

 F
eb

 2
00

9

Sparse partial least squares for on-line variable selection in

multivariate data streams

Brian McWilliams Giovanni Montana

Department of Mathematics

Imperial College London

February 8, 2009

Abstract

In this paper we propose a computationally efficient algorithm for on-line variable

selection in multivariate regression problems involving high dimensional data streams.

The algorithm recursively extracts all the latent factors of a partial least squares solution

and selects the most important variables for each factor. This is achieved by means of only

one sparse singular value decomposition which can be efficiently updated on-line and in an

adaptive fashion. Simulation results based on artificial data streams demonstrate that the

algorithm is able to select important variables in dynamic settings where the correlation

structure among the observed streams is governed by a few hidden components and the

importance of each variable changes over time. We also report on an application of

our algorithm to a multivariate version of the ”enhanced index tracking” problem using

financial data streams. The application consists of performing on-line asset allocation

with the objective of overperforming two benchmark indices simultaneously.

1 Introduction

Streaming data arise in several application domains, including web analytics, healthcare mon-

itoring and asset management, among others. In all such contexts, large quantities of data

are continuously collected, monitored and analyzed over time. Often the main objective is to

make real-time predictions by using the incoming streams as covariates in a regression model.

In this work, we envisage a system that imports p input and q output data streams at discrete

1

http://arXiv.org/abs/0902.1323v1

time points. The input data vector is denoted by xt ∈ R
1×p where the subscript refers to

the time stamp and the dimension p may be very large. The output yt ∈ R
1×q may also be

multivariate. A common task is to recursively estimate a linear regression function of form

yt = f(xt) which can be used to make future predictions, for instance at time t + 1. Our

fundamental assumption is that, at any given time, only a few selected components of xt con-

tain enough predictive power, and only those should be actively used to build the regression

model. We embrace a penalized regression approach where the unimportant predictors are

excluded from the model by forcing their coefficients to be exactly zero.

There are a number of statistical problems arising in this setting which we intend to

tackle in this paper. Firstly, a decision has to be made on how to select the truly important

predictive components on the input data streams that best explain the multivariate response

in a computationally efficient manner. Secondly, since the components of xt may be highly

correlated, variable selection arises in an ill-posed problem and special care is needed in

order to deal with this difficulty. As will be clear later, we take a dimensionality reduction

approach. Thirdly, the relationship between input and output streams is expected to change

quite frequently over time, with the frequency of change depending on the specific application

domain and nature of the data. This aspect requires the development of adaptive methods

that are able to deal with possible non-stationarities and the notion of concept drift, that is

the time-dependency of the underlying data generating process. To the best of our knowledge,

little work has been done towards the development of a methodology that resolves all these

three issues in a unified framework.

The problem of tracking latent structures using time varying data streams has been ap-

proached in several different ways in the literature. Numerous approaches to on-line principal

component analysis (PCA) have been proposed for image analysis [23] and data stream min-

ing [17] amongst others. Tracking and performing regression in the streaming data setting is

also well studied with the most well known technique being recursive least squares (see, for

example [11]). However, the problem of selecting variables on-line has been somewhat less

studied. A search of the literature yielded two relatively recent works which address this issue

within a penalized regression framework. The earlier method by [13] proposes a modification

to the least angle regression (LARS) algorithm of [6] for L1-penalized regression, otherwise

known as the Lasso, which allows it to be updated on-line. More recently, [3] developed an

2

alternative approach to on-line L1-penalized regression based on recursive least squares. The

Lasso is solved by using the shooting algorithm, a pathwise co-ordinate optimization algorithm

[9]. The resulting procedure is related to adaptive recursive least squares algorithms which

have been routinely applied, for instance, in the domain of adaptive filtering. Finally, we

note how neither approach considers a multivariate response or the issue of multicollinearity

among covariates.

In this work we aim to unify these two problems into a single framework by proposing

an efficient incremental and sparse partial least squares (PLS) algorithm for on-line variable

selection and tracking of multivariate data streams. PLS regression is an extension of the

multiple linear regression model and assumes the existence of a handful of latent factors

explaining the variation observed in the data. It has the favorable properties in that it can

be used to deal with situations where the data is multicollinear and in problems where the

response is multivariate.

The format of this paper is as follows. First, in Section 2.1, we briefly review PLS regres-

sion with emphasis on a recent development called Bridge PLS, which was originally proposed

for off-line learning by [10]. This algorithm is very appealing to us because, unlike other PLS

procedures, is not iterative and allows for significant reductions in computational complexity.

In Section 3.1 we propose a new algorithm to perform sparse Bridge PLS. We achieve sparsifi-

cation of the regression coefficients by means of a soft-thresholding rule in the computational

of the singular value decomposition (SVD). This rule effectively applies a Lasso-like penalty,

although many other penalties could be easily used within the same framework. Then in Sec-

tion 3.2, our second contribution, an incremental and adaptive version of our sparse Bridge

PLS algorithm called incremental Sparse Bridge PLS (iSB-PLS) is proposed for real-time

applications. The final algorithm is based on the Adaptive Simultaneous Iterations method

for sequential updating of the eigenstructure of a covariance matrix [7]. This has the effect of

introducing an adaptive behavior, so that changes in the important variables can be tracked

in a timely manner. Experimental results using both artificial and real data are presented in

Section 4 and conclusive remarks are found in Section 5.

3

2 Bridge Partial least squares regression

2.1 Partial least squares regression

Partial least squares (PLS) regression is a method of dimensionality reduction concerned with

modeling the relationship between some input data X ∈ R
n×p and the response or output

Y ∈ R
n×q [12]. The assumption underlying PLS is that both X and Y are generated by a

small number, R, of latent factors

X =
R

∑

r=1

s(r)b(r)T + E, Y =
R

∑

r=1

s(r)w(r)T + F

where s(r) ∈ R
n×1 are the latent factors and b(r) ∈ R

p×1 and w(r) ∈ R
q×1 are the factor

loadings of X and Y , respectively. E and F are matrices of residuals with no assumed

distribution. PLS finds the latent factors such that the covariance between input and output

is maximized. In order to extract the full complement of latent factors, each one must be

extracted sequentially. Once a factor has been extracted, a rank one deflation of the X and

Y matrices is performed by subtracting the contribution of the current factor from the data,

and a new iteration begins. The PLS literature is extensive and many methods exist for

extracting the latent factors (see, for example [18] for a recent review of PLS variants). The

various algorithms usually differ beyond computation of the first latent factor by how the

input and output data matrices are deflated.

In this work we focus on the commonly used PLS-2 algorithm [18]. The algorithm it-

eratively finds R hidden factors of X such that S = XU where S = [s(1), ...s(R)]. U =

[u(1), ..., u(R)] is a matrix of weights corresponding to the direction of maximal covariance

between X and Y . These are found by solving the following optimization problem:

u(r) = max
u

[cov(Xu, Y)]2 s.t. ‖u‖ = 1 (1)

Because it is assumed that X and Y are related through the hidden factors and the factors

underlying X are a good predictor of Y , the response can be rewritten as

Y = XUW + F (2)

This leads to the regression model

Ŷ = Xβ̂ + F (3)

4

where β̂ = ŨŴ are the estimated coefficients. For all values of r, we define

M (r) = X(r)TY (r)

that is the covariance matrix between input and output streams. The weight vector u(r) is

found by solving Eq (1) which is equivalent to solving

ũ(r) = arg max
u

(

uTM (r)M (r)Tu
)

s.t. ‖u‖ = 1 (4)

which is the normalized eigenvector corresponding to the largest eigenvalue of M (r)M (r)T.

Alternatively, this is the first left singular vector of the singular value decomposition (SVD)

of M (r). The loading vectors for both Y and X are found by performing univariate regressions

w(r) =
s(r)TY (r)

s(r)Ts(r)
b(r) =

s(r)TX(r)

s(r)Ts(r)
(5)

After the extraction of the first factor, in order to extract subsequent factors X and Y

must be deflated by subtracting the current latent factor to give X(r+1) = X(r) − s(r)b(r)T

and Y (r+1) = Y (r) − s(r)w(r)T. The same procedure is then repeated until all factors are

extracted. Clearly, this is not very efficient because it involves the computation of an SVD

at each iteration.

Our first step towards a sparse but also computationally efficient implementation of PLS is

to adopt a SVD-based PLS algorithm which extracts the latent factors in a non-iterative way.

First, note that the deflation steps above are necessary because if rank(Y) < rank(X), then

the covariance matrix MMT will be rank deficient and so the number of PLS components

which can be extracted without deflation will be limited to rank(Y). For instance, in the

case of univariate response, R separate SVD computations must be performed. This is the

main limiting factor in developing an efficient on-line sparse PLS algorithm that we intent

to remove. In order to circumvent this problem, we propose an approach that avoids the

deflation steps altogether, thus requiring only one SVD computation for the extraction of all

the latent factors.

2.2 Bridge PLS

Bridge PLS (BPLS) [10] is a recent development which ensures that the full complement

of PLS components may be extracted in one step by adding a ridge term to the eigenvalue

5

problem. This ensures that the covariance matrix is full rank so we are no longer limited by

the rank of Y in the number of components we are able to extract. This is a very important

step as it opens the possibility for efficient on-line PLS implementations.

This goal is achieved by introducing a new covariance matrix

H = αXTX + (1− α)MMT (6)

where 0 ≤ α ≤ 1 is a ridge parameter. It can be noticed that H is a weighted sum between

the covariance matrix of X and the covariance matrix of X and Y . When α = 0, this yields

regular PLS and setting α = 1 yields a principal components regression. Therefore, BPLS

can be thought of as biasing the PLS solution towards the PCA solution. The contribution

of the ridge parameters can be further seen by rearranging Eq. (6) to obtain

H = XT
(

αI + (1− α)Y Y T
)

X (7)

In this form, it can be noticed that the effect of the ridge parameters is to add a small constant

to the diagonal of Y Y T. Since

rank(αI + (1− α)Y Y T) = rank(XTX) (8)

this prevents H from becoming rank deficient.

All BPLS weights are then obtained in one step by solving the following modified PLS

optimization problem

Ũ = arg max
U

(

UTHU
)

s.t. ‖U‖ = 1 (9)

so that Ũ = [ũ(1), ..., ũ(R)] are the first R eigenvectors of H. The latent factors, S are then

computed as XŨ . The corresponding Y -loadings are

Ŵ =
(

STS
)−1

STY (10)

It is not necessary to compute the X-loadings which are normally only required to deflate

X. The final PLS regression coefficients are given by β̂ = ŨŴ . In our experiments we set

α = 10−5 so that H becomes full rank, yet all PLS directions may be extracted accurately

after computing the SVD of H only once; see [10] for related discussions.

The computational benefits gained by removing the necessity to perform R− 1 additional

SVD computations in the off-line case is a saving in computation time of O(Rnp2). As

6

discussed in the following section, reducing the PLS problem to a single SVD computation

provides the key element for performing variable selection in an efficient way in both off-line

and on-line scenarios.

3 New methods for sparse modelling

3.1 Sparse Bridge PLS

In the previous section we briefly reviewed Bridge PLS, a new and efficient method of per-

forming PLS regression which finds the PLS weights by means of a single SVD computation.

In this section we observe that the PLS weights can be made sparse by using a penalized form

of the SVD which leads us to a novel and efficient method of variable selection based on the

Bridge PLS framework.

A regularized SVD method has recently been introduced by [20] as an efficient device to

perform PCA with sparse loading vectors. The method relies on the best low rank approxi-

mation property of the SVD. Briefly, this is achieved by reformulating the PCA optimization

problem as a regression between X and its best low rank approximation, which is solved by

an SVD application. The loading vectors are then made sparse by applying a component-wise

thresholding operation.

In this section we use the sparse SVD method of [20] in order to achieve an efficient

variable selection algorithm within the Bridge PLS framework. We first calculate H as in Eq.

(6) and define the SVD of H = UDV T. The bridge PLS criterion in Eq. 9 can be written as

regression by whereby the criterion to be minimized is the residual sum of squares between

H and its low rank approximation, as follows:

min
ũ,ṽ

∥

∥H − ũṽT
∥

∥

2
(11)

where ũ and ṽ ∈ R
p×1 are restricted to be vectors with unit norm so that a unique solution

may be obtained. It is known that the product of the first left and right singular vectors,

u(1)v(1) is the best rank one approximation of H. Therefore Eq. 11 is solved by setting

ũ = u(1) and ṽ = v(1). We obtain sparse loadings by imposing a penalty on ũ and removing

its scale constraint as follows

min
ũ,ṽ

∥

∥H − ũṽT
∥

∥

2
+ p(ũ) s.t. ‖ṽ‖ = 1 (12)

7

where p(·) could be one of a number of penalty functions (see, for instance [9]). In this work,

we concentrate on the Lasso penalty, which places a restriction on the L1 norm of ũ. This

amount to the following optimization problem:

min
ũ,ṽ

∥

∥H − ũṽT
∥

∥

2
+ γ ‖ũ‖ (13)

where γ is a parameter which controls the sparsity of the solution. If γ is large enough, it

will force some variables to be exactly zero. The problem of Eq. (13) can be solved in an

iterative fashion by first setting ũ = u(1) and ṽ = v(1) as before. Since ũ and ṽ are rank one

vectors, the Lasso penalty can be applied as a component-wise soft thresholding operation on

the elements of ũ (see, for instance, [9]). The sparse ũ are found by applying the threshold

component-wise as follows:

ũ∗ = sgn
(

HTṽ
) (∣

∣HTṽ
∣

∣− γ
)

+

ṽ∗ = Hũ∗/ ‖Hũ∗‖

We then set ũ = ũ∗ and ṽ = ṽ∗ and iteratively apply Eq. (14) until ‖ũ∗ − ũ‖ < τ where

τ is an arbitrarily small constant. The procedure above allows all the PLS weight vectors

to be extracted and made sparse at once without the need to recompute an SVD for each

dimension.

The remaining of the Bridge PLS algorithm proceeds as before, using the newly cal-

culated weights. This leads to latent factors S = XU , and the matrix of Y loadings is

W = (STS)−1STY . The final sparse PLS regression coefficients are β̂ = UW . Algorithm 1

describes the Sparse Bridge PLS (SB-PLS) procedure in full.

8

Initialize U = I, γ = 0;

Data: Input X and output Y

Result: Sparse regression coefficients β

M ←− XTY ;

C ←− XTX;

H ←− αC + (1− α)MMT;

U,D, V ← SVD(H)

for r ← 1 to R do

while ‖u(r) − u∗‖ > τ do

γ(r) ← findRoot(u(r));

u∗ ← sgn
(

Hv(r)
) (

|Hv(r)| − γ(r)
)

+
;

v(r) ← Hu∗

‖Hu∗‖ ;

u(r) ← u∗;

end

u(r) ← u(r)

‖u(r)‖
;

end

s← xU ;

w ← ys

sTs
;

β ← UsT;

Algorithm 1: The Sparse Bridge PLS algorithm

The parameter γ controls the degree of sparsity. In some situations, such as in financial

applications (e.g. Section 4.2), the user may wish to have direct control over the number of

variables to be selected. In such a case, it is necessary to select a value of γ to induce the

correct degree of sparsity in the solution. One naive method of achieving this would be to

perform an exhaustive search through the parameter space until a value of γ is found which

selects the correct number of variables. However, this is inefficient and the value of γ which

selects the desired number of variables is constantly changing. An alternative consists of

using a rootfinding algorithm which performs an efficient search of the parameter space. For

instance, we could define a function related to the thresholding operation

f(γ) =

p
∑

i=1

I (sgn(ui)(|ui| − γ)+ > 0)− θ (14)

9

where I is an indicator function which finds the non-zero elements of u after the threshold

has been applied. Eq (14) performs the componentwise thresholding operation on the weight

vector, u and calculates the difference between the number of non-zero elements in u and the

target θ, a constant. The rootfinding algorithm is a procedure which finds the value of γ such

that f(γ) = 0.

Brent’s algorithm is a popular choice as it combines the advantages of other simpler

methods (see, for instance, [8]). The most computationally expensive portion of Brent’s

algorithm is the bisection rootfinding method which is essentially a binary search and so

it follows that the maximum additional computational time added is if only the bisection

method is applied. The worst case binary search complexity is O(log2 N) where N is the

number of possible values that γ can take which is determined by the initial guesses γ1 and

γ2. The maximum computational time added by the rootfinding algorithm is O (Rnp log2 N),

i.e. the complexity of the penalization function multiplied by the complexity of the bisection

rootfinding algorithm. In practice, some calibration is needed to determine an appropriate

initial guess so as to reduce N as much as possible. In our experience, convergence of this

specific rootfinding algorithm was normally achieved in less than five iterations. However,

our method of choice is a simpler rootfinding algorithm: γ is assigned a value equal to the

(p − θ)th largest component of |u| where p is the number of elements in u. Applying the

threshold operation with this value of γ will cause all but θ of the elements in u to become 0.

This replaces the computational effort required to search the parameter space with a much

less expensive sort operation of O(Rp log p) which makes it more suitable for application in

an on-line algorithm.

Another sparse PLS algorithm for off-line learning has been proposed by [14]. However,

their method is based on the standard PLS regression algorithm described in Section 2.1 and

thus requires R separate SVD computations to extract all R latent factors.

3.2 Incremental Sparse Bridge PLS

In this section we develop the Sparse Bridge PLS algorithm to be used for variable selection

in the streaming data setting. We call the resulting algorithm incremental Sparse Bridge

PLS (iSB-PLS). In this case, we no longer assume we have access to the full data matrix

X ∈ R
n×p. Instead the data arrives sequentially at each time point, t, as xt ∈ R

1×p. Similarly,

10

the response arrives is observable only at discrete time points as yt ∈ R
1×q.

Although streaming data introduces some challenges, it also offers some computational

advantages. For instance, since each observed data vector is of rank one, updating Bridge

PLS at each time point is greatly simplified compared to performing Bridge PLS on the full

(n × p) data matrix. The matrix of latent factors is computed as S = XU ∈ R
1×R. This

means the matrix inversion required for the computation of the Y -loading matrix reduces to

a division by a scalar.

The main challenge with applying the sparse Bridge PLS algorithm to streaming data

is implementing an efficient method to calculate and update the SVD of H. Since H is a

weighted sum between two covariance matrices we are unable to find its eigenvectors using

standard recursive least squares methods. Recursive least squares algorithms require as input

the current estimate of the inverse covariance matrix and the new data observation whereas we

essentially only have access to a time-varying covariance matrix. Our solution to this problem

consists in using the Adaptive SIM algorithm [7], a generalization of the power method which

is able to adapt to changes in the data. When a new data point xt and its corresponding

response yt arrives, we update the individual covariance matrices as follows

Ct = λCt−1 + xT
t xt

Mt = λMt−1 + xT
t yt

(15)

where λ is a forgetting factor which exponentially downweights the contribution of past data

points to the current covariance matrix. The Bridge PLS covariance matrix Ht of Eq. (6)

is constructed by summing the weighted PCA and PLS covariance matrices Ct and MtM
T
t ,

which leads to

Ht = αCt + (1− α)MtM
T
t (16)

At each time point, the estimate of the eigenvectors of the covariance matrix, H are updated

by performing one iteration of the SIM algorithm as follows:

Q = HtUt−1

Ut = orth(Q)
(17)

where the function orth(Q) ensures that the columns of the matrix Q are mutually orthogonal.

This allows the columns of Ut to converge to different ordered eigenvectors of H as the true

eigenvectors of H form an orthogonal basis. This step is necessary becuase, under the power

11

method, every column of Ut if left un-normalized will converge to the principal eigenvector of

H. We use the Gram-Schmidt orthogonalization procedure as follows

u(r) =
[

Ip×p −
∑r−1

k=1 u(k)u(k)T
]

q(r) u(1) = q(1)

u(r) = u(r)

‖u(r)‖

(18)

which has a computational complexity of O(pR2).

Once the weight vectors Ut have been updated, they are made sparse using the a modified

version of the iterative regularized SVD algorithm used for Sparse Bridge PLS in Section 3.1.

Since our algorithm is on-line and the solution is updated when a new data point arrives,

we no longer iteratively apply the thresholding operation and instead apply it directly to the

current estimate of the eigenvector. The simplified sparsification process for the rth weight

vector is

u∗ = sgn
(

u(r)
) (

|u(r)| − γ(r)
)

+

u∗ = u∗

‖u∗‖

(19)

The final steps of the Bridge PLS algorithm proceed as in the off-line case. The latent vectors

S are computed as S = XU . However since the number of observations is effectively one, S

will be an R-vector and the Y -loadings can be computed as

W = Y TS/(STS) (20)

The sparse PLS regression coefficients are β̂ = UW so that the regression estimate at time t

is ŷt = xtUW . Algorithm (2) details the resulting iSB-PLS procedure in full

12

Initialize U = I, m0 = 0, γ = 0, C0 = 0;

Data: Input xt and output yt

at time t

Result: Sparse regression coefficients βt

at time t

mt ←− λmt−1 + xT
t yt;

Ct ←− λCt−1 + xT
t xt;

Ht ←− αCt + (1− α)mtm
T
t ;

for r ← 1 to R do

a(r) ← Htu
(r);

q(r) ←
[

Ip×p −
∑r−1

k=1 u(k)u(k)T
]

a(r), q(1) ← a(1);

u(r) ← q(r)/
∥

∥q(r)
∥

∥;

γ(r) ← findRoot(u(r));

u∗ ← sgn
(

u(r)
) (

|u(r)| − γ(r)
)

+
;

u∗ ← u∗

‖u∗‖ ;

u
(r)
t ← u∗;

end

s← xUt;

w ← ys

sTs
;

βt ← Uts
T;

Algorithm 2: The iSB-PLS algorithm

In the initialization phase, we set U0 = [u
(1)
0 , ...u

(R)
0] = Ip×R to ensure that the initial

estimates of the eigenvectors are mutually orthogonal. We also initialize m0 = 0, γ = 0, and

C0 = 0. The forgetting factor, λ is chosen to be between between zero and one. When λ = 1,

no data forgetting takes place, whereas λ = 0 has the effect of setting the sample size to the

present data point only. Therefore, as the values of λ get close to zero, the algorithm becomes

more adaptive and the selected variables may change more often.

In the on-line case the complexity introduced by the penalization function decreases as

we operate only on a single data point at a time (i.e. n = 1). This makes the complexity of

the penalization function at each time point O(Rp).

13

4 Experimental results

4.1 Simulated data

In this section we report on two simulation experiments designed to demonstrate the per-

formance of the sparse PLS algorithm as an off-line and on-line variable selection method.

The input is simulated by first introducing three hidden factors whose temporal evolution is

governed by an autoregressive (AR) process of first order in the following way:

Ft,j = δjFt−1,j + ǫt,j for t = 2 . . . , 400 (21)

where Ft,j indicates the value of factor j at time t, starting with an arbitrary initial value

at time t = 1, and independently for j = 1, 2, 3. The parameter δj is the autoregressive

coefficient for factor j, and we use δ1 = 0.1, δ2 = 0.4, δ3 = 0.2. The error terms in each one

of the three factors follow a normal distribution with variance set to 12.25 and means given

by, respectively, 0,−1.5 and 1.5. Each input is generated as

xt,i = Ft,j + ηt ηt ∼ N(0, 1) (22)

where xt,i indicates the values of data stream i at time t, for t = 1, . . . , 400 and i = 1, . . . , 60.

The index j indicates that each stream depends only on a given time-varying hidden factor.

Specifically, we create three groups of data streams by setting j = 1 for 1 ≤ i ≤ 20, j = 2 for

21 ≤ i ≤ 40 and j = 3 for 41 ≤ i ≤ 60.

Using these simulated data streams, we show that the off-line sparse Bridge PLS can ac-

curately select the correct variables where the underlying factors which make up the response

do not change over time. We also show how, for such stationary data, both on-line and off-line

algorithms lead to the same solution after convergence has taken place in the on-line case. In

the off-line case, we consider only the first 100 data points and create a univariate response

variable by assigning coefficients to one group of variables, which have been sampled from a

normal distribution centered at 10 and with low variance. Likewise, we assign smaller valued

coefficients to the second group of variables by sampling from a normal distribution centered

at 5 with a low variance. The third group of variables are designated ”inactive variables” and

assigned a zero coefficient. For ease of visualization and interpretation of the results, we have

chosen to define a univariate response, however the SB-PLS and iSB-PLS algorithms can also

be used in cases where the response is multivariate (e.g. see Section 4.2).

14

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es
PLS component 1

5 10 15 20 25 30 35 40 45 50
40

60

80

100

PLS component 2

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es

5 10 15 20 25 30 35 40 45 50
40

60

80

100

SB−PLS
iSB−PLS λ = 1

SB−PLS
iSB−PLS λ = 1

Figure 1: Results of 500 runs with simulated static data showing the percentage of correctly

estimated variables by SB-PLS (using the whole data set) and iSB-PLS (incrementally). The

shaded area shows the Monte Carlo error (standard deviation) of correctly selected variables.

Figure 1 shows the in-sample result of a Monte Carlo simulation consisting of 500 runs

of the sparse Bridge PLS algorithm on simulated data with static coefficients. It can be

seen that the off-line algorithm is able to correctly select all of the variables corresponding

to the most important factor in both the first and second PLS components The blue line

corresponds to the performance of the on-line iSB-PLS algorithm on the same data with a

forgetting factor of 1. The shaded area shows the Monte Carlo error of the iSB-PLS result.

It can be seen that the performance of the on-line algorithm quickly converges to the off-line

algorithm within 35 data points. This suggests that after a brief learning period, the result

obtained by the iSB-PLS algorithm is equivalent to that of the off-line algorithm in the case

of stationary data, and they are both correct.

Furthermore, in order to test the adaptive behavior of the iSB-PLS algorithm using the

15

input data streams described in Eq. (22), we generate an univariate output by introducing

time-dependent regression coefficients. Until time t = 100, all the variables associated with

the first hidden factor strongly contribute to the output, and their regression coefficients are

selected by sampling from a normal distribution centered at 10 and with low variance. Anal-

ogously, the variables associated with the second hidden factors have regression coefficients

with mean 5 and with low variance. The variables associated with the third hidden factor are

assigned zero coefficients. In order to introduce a non-stationary behavior, all the non-zero

coefficients in the two groups of ”active variables” are swapped at t = 101. At t = 301 until

the end of the period, the first group of variables is assigned a zero coefficient and the group

associated with the third hidden factor is assigned a coefficient sampled from a normal dis-

tribution centred around 10. In this way, the important predictors change over time and we

expect these changes to be picked up in almost real-time by the algorithm. In this setting,

we set R = 2 and the sparsity parameter γ is chosen automatically by the algorithm so that,

at any given time, exactly 20 variables are selected. The forgetting factor λ is set to 0.98

to ensure a rapid adjustment when the coefficients switch while also keeping the switching

frequency low to gain stability in the selected variables.

Figure 2 shows the results of a single run of this experiment. Clearly, the first PLS

component is able to accurately select the most important group of variables. The second

component always selects the second most important group of variables whilst mostly ignoring

the group of variables selected by the first component. Neither component selects the inactive

variables suggesting the algorithm is correctly able to distinguish important predictors from

noise. As the coefficients switch, the algorithm only requires few data points before it detects

the changes and adapts itself. Faster adaptation may be achieved by controlling the forgetting

factor λ.

Figure 3 reports on the mean percentage of correctly selected variables in both compo-

nents by the iSB-PLS algorithm in a Monte Carlo simulation consisting of 500 runs of this

experiment. The solid line shows the mean percentage of correctly selected variables by the

first and second PLS components. The shaded area shows the Monte Carlo error. It is clear

that in the portions where the data is stationary, iSB-PLS will correctly select the important

variables with very little error. In response to a change in the important factors, the percent-

age of correctly selected variables instantly decreases and quickly adapts to the new data. The

16

simulated pattern with three hidden factors

time

re
gr

es
si

on
 c

oe
ffi

ci
en

ts

50 100 150 200 250 300 350 400

20

40

60

Estimated pattern with 1st PLS Component

time

se
le

ct
ed

 s
tr

ea
m

s

50 100 150 200 250 300 350 400

10

20

30

40

50

60

Estimated pattern with 2nd PLS Component

time

se
le

ct
ed

 s
tr

ea
m

s

50 100 150 200 250 300 350 400

10

20

30

40

50

60

Figure 2: Results of test with simulated data. The top figure shows how, at any time, there

are three blocks of data streams: active streams having larger (black) and smaller (gray)

regression coefficients, and inactive streams (white) which only contributes to noise. Each

block is related to a different hidden factor. The bottom figure shows the data streams

selected on-line by each PLS component.

17

PLS Component 1

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es

0 50 100 150 200 250 300 350 400
20

40

60

80

100

PLS Component 2

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es

0 50 100 150 200 250 300 350 400
20

40

60

80

100

Figure 3: Results of 500 runs with simulated data for λ = 0.98. The solid line shows the

mean percentage of correctly selected variables in each component. The shaded area shows

the Monte Carlo error (standard deviation) of correctly selected variables.

algorithm eventually selects the correct variables after some settling time. However, during

this time the variability of the result increases.

Figure 4 shows the effect of changing the forgetting factor, λ. When λ = 1, no forgetting

takes place and the algorithm is very slow to adapt to changes. When λ = 0.9, the algorithm

adapts to changes quickly. However a smaller forgetting factor causes the solution to become

unstable as the algorithm is very sensitive to small changes and noise in the data. This can

be seen by observing the larger Monte Carlo error during the periods of stationary data in

the case where λ = 0.9.

18

PLS component 1 λ = 1

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es

0 50 100 150 200 250 300 350 400
20

40

60

80

100

PLS component 1 λ = 0.9

time

%
 o

f c
or

re
ct

ly

 s
el

ec
te

d
va

ria
bl

es

0 50 100 150 200 250 300 350 400
20

40

60

80

100

Figure 4: Percentage of correctly selected variables by the first component for different values

of λ.

19

4.2 An application to index tracking

An example application of the iSB-PLS algorithm lies in the financial domain and is related

to the index tracking problem. The objective of index tracking is to select a small portfolio of

assets and determine weights, which represent a proportion of the total investment capital, so

that the returns achieved by the portfolio track very closely those achieved by a benchmark

index. Our application of a sparse algorithm to the portfolio selection and index tracking

problem is supported by work in [5] who propose sparse portfolios based on Lasso penalized

regression. Furthermore the use of a latent factor model for index tracking is supported by

evidence which suggests that the first principal component of index returns captures the mar-

ket factor (see, for example [1]). Our framework unifies these two approaches by combining

dimensionality reduction by projection onto latent factors with variable selection using a reg-

ularized regression. For this application, we use published data from the S&P and Nikkei

indices as described in [4].

To motivate the use of an incremental algorithm for index tracking, we present an example

of tracking with two off-line methods. We perform ”enhanced tracking” (see, for instance,

[2]) of the S&P index. This consists of performing index tracking in the case where the target

asset to be tracked are the index returns plus an additional 15% annual returns. We use the

LARS algorithm of [6] and our sparse Bridge PLS algorithm with one latent factor. Figure 5

shows the in-sample results of enhanced tracking of the S&P100 index using a static portfolio

of 10 stocks selected from 98. Despite using the in-sample result, it is clear that using a

static portfolio for a long period of time leads to poor tracking performance and in both

cases the artificial portfolios underperform the index. This is due to the financial index being

non-stationary and suggests that a scheme for rebalancing the portfolio would produce better

tracking performance.

We have tested the iSB-PLS algorithm in a more involved setting where: (a) two indices

(the S&P and the Nikkei) need to be simultaneously tracked, so the response is bivariate, and

(b) both benchmark indices have been enhanced as previously described. The total number

of available stocks is 323 and we set the portfolio size to 10. The forgetting factor is λ = 0.99

and we constrain the selected stock to be associated to the main latent factor only, so that

R = 1, as in [1].

In order to assess whether our procedure selects and tracks the important variables over

20

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5
cu

m
ul

at
iv

e
re

tu
rn

s

time

S&P 100

index
SB−PLS
LARS

Figure 5: Comparison of enhanced tracking (+15% annual returns) of the S&P using a static

portfolio of 10 stocks chosen using SB-PLS and LARS.

time, we compare its performance with the average returns obtained from a population of 1000

portfolios of the same size, with each portfolio being made of a randomly selected subset of

assets. To make sure that the comparison is fair, the portfolio weights are also time-varying

and are obtained by using a recursive least squares method with the same λ parameter.

This comparison is made in order to determine whether the ability to update the portfolio

composition in response to perceived changes in the market is really advantageous in an index

tracking application.

Figure 6 shows the results of this test. It can be seen that iSB-PLS consistently overper-

forms both indices and selects a small portfolio achieving exactly the target annual returns

of +15%. In comparison, the random portfolio underperforms the S&P index by 32.07% and

the Nikkei by 8.42%. Our results suggest that the importance of certain stocks in the index

is not constant over time so the ability to detect and adapt to these changes is certainly

advantageous. Using a model that assumes a time-varying latent factor driving the asset re-

turns is also advantageous in this setting, since its existence in real markets has been heavily

documented in the financial literature. The bottom plot of Figure 6 is a heatmap illustrat-

ing how the make-up of the portfolio selected by iSB-PLS changes during the entire period.

Specifically, it shows the existence of a few important stocks that are held for the majority

of the period whereas other assets are picked and dropped more frequently throughout the

period, further suggesting that it is advantageous to be able to adapt the constituents of a

21

tracking portfolio. However, associated with every change made to the portfolio are transac-

tion costs. If too many changes take place, the costs will outweigh the returns so an intelligent

rebalancing strategy must be developed which finds a trade-off between good tracking and

low transaction costs.

5 Conclusions

In this work we have presented an on-line algorithm for variable selection in a multivariate

regression context based on streaming data. As far as we are aware, this is the first such

algorithm which combines dimensionality reduction and variable selection for data streams in

a unified framework. From the simulation results we have shown that the algorithm is able

to accurately select variables associated with the important factors underlying the data. In

the case of non-stationary data where the important factors are changing, iSB-PLS is able to

accurately track the changes.

We have identified a number of open questions and avenues for further research. iSB-PLS

requires the specification of a number of parameters which are currently pre-specified by the

user. The question of how to select, in an on-line and adaptive manner, the number of PLS

components and the number of variables per component is an important one and we are

currently working towards the development of self-tuning procedures.

There are several methods in the literature for automatically updating the individual

model parameters. A mechanism for adapting the sparsity parameter, γt at each time point

was proposed by [3]. They achieve this by evaluating the Akaike information criterion (AIC)

of the model with a value of γt−1, γt−1 + c and γt−1− c, where c is some small constant. The

value of γt which is used at that time point is the one which minimizes the AIC. This method

could be incorporated into iSB-PLS as a simple adaptive solution to the variable selection

portion of the model selection problem.

A method for selecting the number of principal components on-line using the concept of

signal energy was proposed by [21]. The energy at time t, Et is defined as the variance of

the sequence up to xt. The retained energy Êt is defined as the variance of the reconstructed

sequence up to xtUt. The algorithm ensures that the retained energy is within the bounds

fEEt < Êt < FEEt. The upper and lower bounds are chosen so that retained energy is

between 95% and 98% of the true energy of the signal. If the retained energy is too low, a

22

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

cu
m

ul
at

iv
e

re
tu

rn
s

S&P 100

time

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

time

cu
m

ul
at

iv
e

re
tu

rn
s

Nikkei

time

se
le

ct
ed

 in
pu

t s
tr

ea
m

s

on−line portfolio

50 100 150 200 250

2

4

6

8

10

input streams

100 200 300

index iSB−PLS random

Figure 6: Bivariate enhanced tracking (+15% annual returns) of the S&P and Nikkei indices

using a dynamic portfolio of 10 stocks.

23

new principal component is added to the model. Likewise, if the retained energy is too high,

the least important principal component is removed from the model. A similar method for

incremental PLS could be implemented for iSB-PLS.

A method to select the number of PLS projections on-line was proposed by [22] who use

an approximation of leave-one-out cross validation. The algorithm initially sets the number

of projections, R = 2 and recursively keeps track of a mean squared error term, e
(r)
t as a

function of the number of components, using a forgetting factor in the following way

e
(r)
t+1 = λe

(r)
t + (yt − ŷt)

2 (23)

where ŷt is the estimated response at time, t. If at time t + 1 adding a new PLS component

causes a large enough reduction in error, the number of PLS components is increased. If

adding the new component does not decrease the error enough, the number of PLS components

is not changed.

Since both parameters must be selected and updated so that the correct number of fac-

tors and the correct number of variables per factor are chosen, there needs to be a unified

framework for measuring the model fit and determining what parameters need to be changed

and when. We have identified one potential way to achieve this by monitoring the percentage

of explained covariance between X and Y at every time point. Since PLS maximizes the

covariance between X and Y , if the monitored percentage of explained covariance becomes

lower than some threshold the model parameters should be updated. [20] describe a method

for quantifying the percentage of variance accounted for by sparse principal components.

However, it remains to be seen whether this can be adapted for iSB-PLS.

The forgetting factor λ has also been pre-selected, however a number of techniques exist

for learning this parameter from the data in a streaming fashion. These techniques have been

discussed in the literature concerning on-line learning of neural networks, as in [19], and other

time-varying processes, as in [16]. Furthermore, we are planning to apply these methods to

related financial applications such as further extensions of index tracking for building market

neutral portfolios and detecting market inefficiencies for algorithmic trading, as in [2] and

[15], respectively. We are considering other applications in the field of text mining involving

news feeds.

24

References

[1] C. Alexander and A. Dimitriu. Sources of over-performance in equity markets: mean

reversion, common trends and herding. Technical report, ISMA Center, University of

Reading, UK, 2005.

[2] C. Alexander and A. Dimitriu. Equity indexing: Optimize your passive investments.

Quantitative Finance, 4(3), 2008.

[3] C. Anagnostopoulos, D. Tasoulis, D. J. Hand, and N. M. Adams. Online optimisation

for variable selection on data streams. In Proc. of the 18th European Conf. on Artificial

Intelligence, 2008.

[4] J. Beasley, N. Meade, and T. J. Chang. An evolutionary heuristic for the index tracking

problem. European Journal of Operational Research, 148:621643, 2003.

[5] J. Brodie, I. Daubechies, C. D. Mol, C. Giannone, and I. Loris. Sparse and stable

markowitz portfolios. European Central Bank Working Paper Series, 936, 2008.

[6] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of

Statistics, 32:407–499, 2004.

[7] S. Erlich and K. Yao. Convergences of adaptive block simultaneous iteration method for

eigenstructure decomposition. Signal Processing, 37, 1994.

[8] G. Forsythe. Computer Methods for Mathematical Computations. Prentice Hall, 1976.

[9] J. Friedman, E. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.

The Annals of Applied Statistics, 1(2):302–332, 2007.

[10] L. Gidskehaug, H. Stdkilde-Jrgensen, M. Martens, and H. Martens. Bridge-PLS re-

gression: two-block bilinear regression without deflation. Journal of Chemometrics, 18,

2004.

[11] S. Haykin. Adaptive Filter Theory. Prentice Hall, 2001.

[12] A. Hoskuldsson. Pls regression methods. Journal of Chemmometrics, 2, 1988.

25

[13] S.-P. Kim, Y. N. Rao, D. Edogmus, and J. C. Principe. Tracking of multivariate time-

variant systems based on on-line variable selection. 2004 IEEE Workshop on Machine

Learning for Signal Processing, 2004.

[14] K. Lê Cao, D. Rossouw, C. Robert-Granié, and P. Besse. Sparse PLS: variable selection

when integrating omic data. Technical report, INRA, 2008.

[15] G. Montana, K. Triantafyllopoulos, and T. Tsagaris. Data stream mining for market-

neutral algorithmic trading. In Proceedings of the ACM Symposium on Applied Comput-

ing, pages 966–970, 2008.

[16] M. Niedźwiecki. Identification of time-varying processes. Wiley, 2000.

[17] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple

time-series. In Proceedings of the 31st International Conference on Very Large Data

Bases, pages 697 – 708, 2005.

[18] R. Rosipal and N. Krämer. Overview and recent advances in partial least squares. pages

34–51. 2006.

[19] D. Saad, editor. On-Line Learning in Neural Networks. Number 17 in Publications of

the Newton Institute. Cambridge, 1999.

[20] H. Shen and J. Huang. Sparse principal component analysis via regularized low rank

matrix approximation. Journal of Multivariate Analysis, 2008.

[21] J. Sun, S. Papadimitriou, and C. Faloutsos. Distributed pattern discovery in multiple

streams. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and

Data Mining, Singapore, 2006.

[22] S. Vijayakumar, A. D’Souza, and S. Schaal. Incremental online learning in high dimen-

sions. Neural Computation, 17:2602–2634, 2005.

[23] J. Weng, Y. Zhang, and W. S. Hwang. Candid covariance-free incremental principal

component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,

25(8):1034–1040, 2003.

26

	Introduction
	Bridge Partial least squares regression
	Partial least squares regression
	Bridge PLS

	New methods for sparse modelling
	Sparse Bridge PLS
	Incremental Sparse Bridge PLS

	Experimental results
	Simulated data
	An application to index tracking

	Conclusions

