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1. Introduction

The rapid development and wide application of computer techniques permits to collect and store a

huge amount data, where the number of measured variables is usually large. Such high dimensional

data occur in many modern scientific fields, such as micro-array data in biology, stock market

analysis in finance and wireless communication networks. Traditional estimation or test tools are

no more valid, or perform badly for such high-dimensional data, since they typically assume a large

sample size n with respect to the number of variables p. A better approach in this high-dimensional

data setting would be based on asymptotic theory which has both n and p approaching infinity.

To illustrate this purpose, let us mention the case of Hotelling’s T 2-test. The failure of T 2-test

for high-dimensional data has been mentioned as early as by Dempster (1958). As a remedy,

Dempster proposed a so-called non-exact test. However, the theoretical justification of Dempster’s

test arises much later in Bai and Saranadasa (1996) inspired by modern random matrix theory

(RMT). These authors have found necessary correction for the T 2-test to compensate effects due

to high dimension.

In this paper, we consider two LR tests concerning covariance matrices. We first give a theoret-

ical explanation for the fail of these tests in high-dimensional data context. Next, with the aid of

random matrix theory, we provide necessary corrections to these LR tests to cope with the high

dimensional effects.

First, we consider the problem of one-sample covariance hypothesis test. Suppose that x follows

a p-dimensional Gaussian distribution N(µp, Σp) and we want to test

H0 : Σp = Ip , (1.1)

where Ip denotes the p-dimensional identity matrix. Note that testing Σp = A with an arbitrary

covariance matrix A can always be reduced to the above null hypothesis by the transformation

A− 1
2 x.

Let (x1, · · · ,xn) be a sample from x, where we assume p < n. The sample covariance matrix is

S =
1

n

p∑

i=1

(xi − x)(xi − x)∗, (1.2)

and set

L∗ = trS − log |S| − p . (1.3)

The likelihood ratio test statistic is

Tn = n · L∗. (1.4)

Keeping p fixed while letting n → ∞, then the classical theory depicts that Tn converges to the

χ2
1
2
p(p+1)

distribution under H0.
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However, as it will be shown, this classical approximation leads to a test size much higher than

the nominal test level in the case of high-dimensional data, because Tn approaches infinity for

large p. As seen from Table 1 in §3, for dimension and sample sizes (p, n) = (50, 500), the realized

size of the test is 22.5% instead of the nominal 5% level. The result is even worse for the case

(p, n) = (300, 500), with a 100% test size.

Based on a recent CLT for linear spectral statistics (LSS) of large-dimensional sample covariance

matrices (Bai and Silverstein , 2004), we construct a corrected version of Tn in §3. As shown by

the simulation results of §3.1, the corrected test performs much better in case of high dimensions.

Moreover, it also performs correctly for moderate dimensions like p = 10 or 20. For dimension

and sample sizes (p, n) cited above, the sizes of the corrected test are 5.9% and 5.2%, respectively,

both close to the 5% nominal level.

The second test problem we consider is about the equality between two high-dimensional

covariance matrices. Let xi = (x1i, x2i, · · · , xpi)
T , i = 1, · · · , n1 and yj = (y1j , y2j , · · · , ypj)

T ,

j = 1, · · · , n2 be observations from two p-dimensional normal populations N(µk, Σk), k = 1, 2,

respectively. We wish to test the null hypothesis

H0 : Σ1 = Σ2 . (1.5)

The related sample covariance matrices are

A =
1

n1

n1∑

i=1

(xi − x)(xi − x)∗, B =
1

n2

n2∑

i=1

(yi − y)(yi − y)∗,

where x , y are the respective sample means. Let

L1 =
|A|

n1
2 · |B|

n2
2

|c1A + c2B|
N
2

, (1.6)

where N = n1 + n2 and ck denote nk

N , k = 1, 2. The likelihood ratio test statistic is

TN = −2 logL1,

and when n1, n2 → ∞, we get

TN = −2 logL1 ⇒ χ2
1
2
p(p+1) (1.7)

under H0. Of cause, in this limit scheme, the data dimension p is held fixed.

However, employing this χ2 limit distribution for dimensions like 30 or 40, increases dramatically

the size of the test. For instance, simulations in §4.1 show that, for dimension and sample sizes

(p, n1, n2) = (40, 800, 400), the test size equals 21.2% instead of the nominal 5% level. The result is

worse for the case of (p, n1, n2) = (80, 1600, 800), leading to a 49.5% test size. The reason for this

fail of classical LR test is the following. Modern RMT indicates that when both dimension and

sample size are large, the likelihood ratio statistic TN drifts to infinity almost surely. Therefore,
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the classical χ2 approximation leads to many false rejections of H0 in case of high-dimensional

data.

Based on recent CLT for linear spectral statistics of F -matrices from RMT, we propose a

correction to this LR test in §4. Although this corrected test is constructed under the asymptotic

scheme n1 ∧ n2 → +∞, yn1
= p/n1 → y1 ∈ (0, 1), yn2

= p/n2 → y2 ∈ (0, 1), simulations

demonstrate an overall correct behavior including small or moderate dimensions p. For example,

for the above cited dimension and sample sizes (p, n1, n2), the sizes of the corrected test equal

5.6% and 5.2%, respectively, both close to the nominal 5% level.

Related works include Ledoit and Wolf (2002), Srivastava (2005) and Schott (2007). These

authors propose several procedures in the high-dimensional setting for testing that i) a covariance

matrix is an identity matrix, proportional to an identity matrix (spherecity) and is a diagonal

matrix or ii) several covariance matrices are equal. These procedures have the following common

feature: their construction involves some well-chosen distance function between the null and the

alternative hypotheses and rely on the first two spectral moments, namely the statistics trSk and

trS2
k from sample covariance matrices Sk. Therefore, the procedures proposed by these authors

are different from the likelihood-based procedures we consider here. Another important difference

concerns the Gaussian assumption on the random variables used in all these references. Actually,

for testing the equality between two covariance matrices, the correction proposed in this paper

applies equally for non-Gaussian and high-dimensional data leading to a valid pseudo-likelihood

test.

The rest of the paper is organized as following. Preliminary and useful RMT results are recalled

in §2. In §3 and §4, we introduce our results for the two tests above. Proofs and technical derivations

are postponed to the last section.

2. Useful results from the random matrix theory

We first recall several results from RMT, which will be useful for our corrections to tests. For any

p×p square matrix M with real eigenvalues
(
λM

i

)
, FM

n denotes the empirical spectral distribution

(ESD) of M , that is,

FM
n (x) =

1

p

p∑

i=1

1λM
i

≤x, x ∈ R.

We will consider random matrix M whose ESD FM
n converges (in a sense to be precised ) to a

limiting spectral distribution (LSD) FM . To make statistical inference about a parameter θ =
∫

f(x)dFM (x), it is natural to use the estimator

θ̂ =

∫
f(x)dFM

n (x) =
1

p

p∑

i=1

f(λM
i ),

which is a so-called linear spectral statistic (LSS) of the random matrix M .



Z. Bai, D. Jiang, J. Yao and S. Zheng/Corrected LRT on Large covariance matrices 5

2.1. CLT for LSS of a high-dimensional sample covariance matrix

Let {ξki ∈ C, i, k = 1, 2, · · · } be a double array of i.i.d. complex variables with mean 0 and variance

1. Set ξi = (ξ1i, ξ2i, · · · , ξpi)
T , the vectors (ξ1, · · · , ξn) is considered as an i.i.d sample from some p-

dimensional distribution with mean 0p and covariance matrix Ip. Therefore the sample covariance

matrix is

Sn =
1

n

n∑

i=1

ξiξ
∗
i . (2.1)

For 0 < θ ≤ 1, let a(θ) = (1 −
√

θ)2 and b(θ) = (1 +
√

θ)2. The Marčenko-Pastur distribution

of index θ, denoted as F θ, is the distribution on [a(θ), b(θ)] with the following density function

gθ(x) =
1

2πθx

√
[b(θ) − x][x − a(θ)], a(θ) ≤ x ≤ b(θ).

Let

yn =
p

n
→ y ∈ (0, 1)

and F y, F yn be the Marčenko-Pastur law of index y and yn, respectively. Let U be an open set of

the complex plane, including [I(0,1)(y)a(y), b(y)], and A be the set of analytic functions f : U 7→ C.

We consider the empirical process Gn := {Gn(f)} indexed by A ,

Gn(f) = p ·
∫ +∞

−∞
f(x) [Fn − F yn ] (dx), f ∈ A, (2.2)

where Fn is the ESD of Sn. The following theorem will play a fundamental role in next derivations,

which is a specialization of a general theorem from Bai and Silverstein (2004) (Theorem 1.1).

Theorem 2.1. Assume that f1, · · · , fk ∈ A, and {ξij} are i.i.d. random variables, such that

Eξ11 = 0, E|ξ11|2 = 1, E|ξ11|4 < ∞. Moreover, p
n → y ∈ (0, 1) as n, p → ∞.

Then:

(i) Real Case. Assume {ξij} are real and E(ξ4
11) = 3. Then the random vector (Gn(f1), · · · , Gn(fk))

weakly converges to a k-dimensional Gaussian vector with mean vector,

m(fj) =
fj (a(y)) + fj (b(y))

4
− 1

2π

∫ b(y)

a(y)

fj(x)√
4y − (x − 1 − y)2

dx, j = 1, · · · , k, (2.3)

and covariance function

υ (fj , fℓ) = − 1

2π2

∮ ∮
fj(z1)fℓ(z2)

(m(z1) − m(z2))2
dm(z1)dm(z2), j, ℓ ∈ {1, · · · , k} (2.4)

where m(z) ≡ mF y(z) is the Stieltjes Transform of F y ≡ (1 − y)I[0,∞) + yF y. The contours in

(2.4) are non overlapping and both contain the support of F y.

(ii) Complex Case. Assume {ξij} are complex and Eξ2
11 = 0 , E(|ξ11|4) = 2. Then the

conclusion of (i) also holds, except the mean vector is zero and the covariance function is half of

the function given in (2.4).



Z. Bai, D. Jiang, J. Yao and S. Zheng/Corrected LRT on Large covariance matrices 6

It is worth noticing that Theorem 1.1 in Bai and Silverstein (2004) covers more general sam-

ple covariance matrices of form S′
n = T

1/2
n SnT

1/2
n where (Tn) is a given sequence of positive-

definite Hermitian matrices. In the “white” case Tn ≡ I as considered here, in a recent preprint

Pastur and Lytova (2008), the authors offer a new extension of the CLT where the constraints

E|ξ11|4 = 3 or 2, as stated above, are removed.

2.2. CLT for LSS of high-dimensional F matrix

Let {ξki ∈ C, i, k = 1, 2, · · · } and {ηkj ∈ C, j, k = 1, 2, · · · } are two independent double ar-

rays of i.i.d. complex variables with mean 0 and variance 1. Write ξi = (ξ1i, ξ2i, · · · , ξpi)
T and

ηj = (η1j , η2j , · · · , ηpj)
T . Also, for any positive integers n1, n2, the vectors (ξ1, · · · , ξn1

) and

(η1, · · · , ηn2
) can be thought as independent samples of size n1 and n2, respectively, from some

p-dimensional distributions. Let S1 and S2 be the associated sample covariance matrices, i.e.

S1 =
1

n1

n1∑

i=1

ξiξ
∗
i and S2 =

1

n2

n2∑

j=1

ηjη
∗
j

Then, the following so-called F-matrix generalizes the classical Fisher-statistics for the present

p-dimensional case,

Vn = S1S
−1
2 (2.5)

where n2 > p. Here we use the notation n = (n1, n2).

Let

yn1
=

p

n1
→ y1 ∈ (0, 1), yn2

=
p

n2
→ y2 ∈ (0, 1). (2.6)

Under suitable moment conditions, the ESD FVn
n of Vn has a LSD Fy1,y2

, which has a density [See

P72 of Bai and Silverstein (2006)], given by

ℓ(x) =





(1 − y2)
√

(b − x)(x − a)

2πx(y1 + y2x)
, a ≤ x ≤ b,

0, otherwise.

(2.7)

where a = (1 − y2)
−2 (1 −√

y1 + y2 − y1y2)
2

and b = (1 − y2)
−2 (1 +

√
y1 + y2 − y1y2)

2
.

Similar to previously, let Ũ be an open set of the complex plane, including the interval

[
I(0,1)(y1)

(1 −√
y1)

2

(1 +
√

y2)2
,

(1 +
√

y1)
2

(1 −√
y2)2

]
,

and Ã be the set of analytic functions f : Ũ 7→ C. Define the empirical process G̃n := {G̃n(f)}
indexed by Ã

G̃n(f) = p ·
∫ +∞

−∞
f(x)

[
FVn

n − Fyn1
,yn2

]
(dx), f ∈ Ã. (2.8)

Here Fyn1
,yn2

is the limiting distribution in (2.7) but with ynk
instead of yk, k = 1, 2.
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Recently, Zheng (2008) establishes a general CLT for LSS of large-dimensional F matrix. The

following theorem is a simplified one quoted from it, which will play an important role.

Theorem 2.2. Let f1, · · · , fk ∈ Ã, and assume:

For each p, (ξij1 ) and (ηij2 ) variables are i.i.d., 1 ≤ i ≤ p, 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2. Eξ11 =

Eη11 = 0, E|ξ11|4 = E|η11|4 < ∞, yn1
= p

n1
→ y1 ∈ (0, 1), yn2

= p
n2

→ y2 ∈ (0, 1).

Then

(i) Real Case. Assume (ξij) and (ηij) are real, E|ξ11|2 = E|η11|2 = 1, then the random vector(
G̃n(f1), · · · , G̃n(fk)

)
weakly converges to a k-dimensional Gaussian vector with the mean vector

m(fj) = lim
r→1+

[(2.9) + (2.10) + (2.11)]

1

4πi

∮

|ζ|=1

fj(z(ζ))

[
1

ζ − 1
r

+
1

ζ + 1
r

− 2

ζ + y2

hr

]
dζ (2.9)

+
β · y1(1 − y2)

2

2πi · h2

∮

|ζ|=1

fj(z(ζ))
1

(ζ + y2

hr )3
dζ (2.10)

+
β · y2(1 − y2)

2πi · h

∮

|ζ|=1

fj(z(ζ))
ζ + 1

hr

(ζ + y2

hr )3
dζ, j = 1, · · · , k, (2.11)

where z(ζ) = (1 − y2)
−2
[
1 + h2 + 2hR(ζ)

]
, h =

√
y1 + y2 − y1y2, β = E|ξ11|4 − 3, and the

covariance function as 1 < r1 < r2 ↓ 1

υ(fj, fℓ) = lim
1<r1<r2→1+

[(2.12) + (2.13))]

− 1

2π2

∮

|ζ2|=1

∮

|ζ1|=1

fj(z(r1ζ1))fℓ(z(r2ζ2))r1r2

(r2ζ2 − r1ζ1)2
dζ1dζ2, (2.12)

−β · (y1 + y2)(1 − y2)
2

4π2h2

∮

|ζ1|=1

fj (z(ζ1))

(ζ1 + y2

hr1
)2

dζ1

∮

|ζ2|=1

fℓ (z(ζ2))

(ζ2 + y2

hr2
)2

dζ2 (2.13)

j, ℓ ∈ {1, · · · , k}.

(ii) Complex Case. Assume (ξij) and (ηij) are complex, E(ξ2
11) = E(η2

11) = 0, then the conclu-

sion of (i) also holds, except the means are lim
r→1+

[(2.10) + (2.11)] and the covariance function is

lim
1<r1<r2→1+

[
1

2
· (2.12) + (2.13)

]
, where β = E|ξ11|4 − 2.

We should point out that Zheng’s CLT for F -matrices covers more general situations then those

cited in Theorem 2.2. In particular, the fourth-moments E|ξ11|4 and E|η11|4 can be different.

The following lemma will be used in §4 for an application of Theorem 2.2 to obtain the formula

(4.5) and (4.6).

Lemma 2.1. For the function f(x) = log(a + bx), x ∈ R, a, b > 0, let (c, d) be the unique

solution to the equations 



c2 + d2 = a(1 − y2)
2 + b(1 + h2),

cd = bh,

0 < d < c.
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Analogously, let γ, η be the constants similar to (c, d) but for the function g(x) = log(α+βx), α >

0, β > 0. Then, the mean and covariance functions in (2.9) and (2.12) equal to

m(f) =
1

2
log

(c2 − d2)h2

(ch − y2d)2
,

υ(f, g) = 2bhd−1c−1 log
cγ

cγ − dη
.

3. Testing the hypothesis that a high-dimensional covariance matrix is equal to a

given matrix

To test the hypothesis H0 : Σp = Ip, let be the sample covariance matrix S and likelihood ratio

statistic Tn as defined in (1.2) and (1.4), respectively. For ξi = xi − µp, the array {ξi}i=1,··· ,n

contains p-dimensional standard normal variables under H0. Let

Sn =
1

n

n∑

i=1

ξiξ
∗
i .

and

L̃∗ = trSn − log |Sn| − p.

Theorem 3.1. Assuming that the conditions of Theorem 2.1 hold, L∗ is defined as (1.3) and

g(x) = x − log x − 1. Then, under H0 and when n → ∞

T̃n = υ(g)−
1
2 [L∗ − p · F yn(g) − m(g)] ⇒ N (0, 1) , (3.1)

where F yn is the Marčenko-Pastur law of index yn.

Proof. Because the difference between S and Sn is a rank-1 matrix, S and Sn have the same LSD.

So, L∗ and L̃∗ have the same asymptotic distribution. We also have

L̃∗ = trSn − log |Sn| − p

=

p∑

i=1

(λsn

i − log λsn

i − 1) = p ·
∫

(x − log x − 1)dFn(x)

= p ·
∫

g(x)d (Fn(x) − F yn(x)) + p · F yn(g),

so that

Gn(g) = L̃∗ − p · F yn(g). (3.2)

By Theorem 2.1, Gn(g) weakly converges to a Gaussian vector with the mean

m(g) = − log (1 − y)

2
(3.3)

and variance

υ(g) = −2 log (1 − y) − 2y. (3.4)
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for the real case, which are calculated in §5. For the complex case, the mean m(g) is zero and the

variance is half of υ(g). Then, by (3.2) we arrive at

L̃∗ − p · F yn(g) ⇒ N (m(g), υ(g)) , (3.5)

where

F yn(g) = 1 − yn − 1

yn
log (1 − yn) (3.6)

can be calculated by the density of LSD of sample covariance matrix in §5. Because L̃∗ and L∗

have the same asymptotic distribution and (3.5), finally we get

T̃n = υ(g)−
1
2 [L∗ − p · F yn(g) − m(g)] ⇒ N (0, 1) .

3.1. Simulation study I

For different values of (p, n), we compute the realized sizes of traditional likelihood ratio test (LRT)

and the corrected likelihood ratio test (CLRT) proposed previously. The nominal test level is set

to be α = 0.05, and for each (p, n), we run 10,000 independent replications with real Gaussian

variables. Results are given in Table 1 and Figure 1 below.

CLRT LRT

(p, n ) Size Difference with 5% Power Size Power

(5, 500) 0.0803 0.0303 0.6013 0.0521 0.5233

(10, 500) 0.0690 0.0190 0.9517 0.0555 0.9417

(50, 500) 0.0594 0.0094 1 0.2252 1

(100, 500) 0.0537 0.0037 1 0.9757 1

(300, 500) 0.0515 0.0015 1 1 1

Table 1

Sizes and powers of the traditional LRT and the corrected LRT, based on 10,000 independent applications with
real Gaussian variables. Powers are estimated under the alternative Σp = diag(1, 0.05, 0.05, 0.05, . . .).

As seen from Table 1, the traditional LRT always rejects H0 when p is large, like p = 100 or 300,

while the sizes produced by the corrected LRT perfectly matches the nominal level. For moderate

dimensions like p = 50, the corrected LRT still performs correctly while the traditional LRT has

a size much higher than 5%.

4. Testing the equality of two high-dimensional covariance matrices

Let (xi), i = 1, · · · , n1 and (yj), j = 1, · · · , n2 be observations from two normal populations

N(µk, Σk), k = 1, 2, respectively. We examine the test defined in (1.5) and (1.6). The aim is to
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find a good scaling of the LR statistic TN , such that the scaled statistic weakly converges to some

limiting distribution. Let

ξi = Σ− 1
2 (xi − µ1), ηi = Σ− 1

2 (yi − µ2)

where Σ = Σ1 = Σ2 denotes the common covariance matrix under H0. Note that in a strict

sense, the vectors (xi), (yi) and the matrices Σ, Σ1, Σ2 depend on p. However we do not signify

this dependence in notations for ease of statements. Due to Gaussian assumption, the arrays

(ξi)i=1,··· ,n1
and (ηj)j=1,··· ,n2

contain i.i.d. N(0, 1) variables, for which we can apply Theorem 2.2.

Let

S1 =
1

n1

n1∑

i=1

ξiξ
∗
i = Σ− 1

2 CΣ− 1
2

S2 =
1

n2

n2∑

j=1

ηjη
∗
j = Σ− 1

2 DΣ− 1
2 ,

where

C =
1

n1

n1∑

i=1

(xi − µ1)(xi − µ1)
∗,

D =
1

n2

n2∑

j=1

(yj − µ2)(yj − µ2)
∗.

Note that

Vn = S1S
−1
2

forms a random F-matrix and we have

L̃1 =
|S1|

n1
2 · |S2|

n2
2

|c1S1 + c2S2|
N
2

=
|C|

n1
2 · |D|

n2
2

|c1C + c2D|
N
2

. (4.1)

Theorem 4.1. Assuming that the conditions of Theorem 2.2 hold under H0, L1 as defined in

(1.6) and

f(x) = log(yn1
+ yn2

x) − yn2

yn1
+ yn2

log x − log(yn1
+ yn2

).

Then, under H0 and as n1 ∧ n2 → ∞,

T̃N = υ(f)−
1
2

[
−2 logL1

N
− p · Fyn1

,yn2
(f) − m(f)

]
⇒ N (0, 1) . (4.2)

Proof. As A − C and B − D are rank-1 random matrices, AB−1 and CD−1 have the same LSD.

Also by (4.1), L̃1 and L1 have the same asymptotic distribution. Because

− 2

N
log L̃1 = − 2

N
log

(
|S1|

n1
2 · |S2|

n2
2

|c1S1 + c2S2|
N
2

)

= log |c1V
−1
n + c2| − c1 · log |V −1

n |

=

p∑

i=1

log(c1λ
Vn

i + c2) − c1 · log(λVn

i )
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= p ·
∫

[log(c1x + c2) − c1 · log(x)] dFVn
n (x).

Define f(x) = log(c1x+ c2)− c1 · log(x), by c1 = n1

N =
yn2

yn1
+yn2

and c2 = n2

N =
yn1

yn1
+yn2

, also it can

be written as

f(x) = log(yn1
+ yn2

x) − yn2

yn1
+ yn2

log x − log(yn1
+ yn2

). (4.3)

From

− 2 log L̃1

N
= p ·

∫
f(x)dFVn

n (x)

= p ·
∫

f(x)d
(
FVn

n (x) − Fyn1
,yn2

(x)
)

+ p · Fyn1
,yn2

(f),

we get

G̃n(f) = −2 log L̃1

N
− p · Fyn1

,yn2
(f). (4.4)

By Theorem 2.2, G̃n(f) weakly converges to a Gaussian vector with mean

m(f) =
1

2

[
log

(
y1 + y2 − y1y2

y1 + y2

)
− y1

y1 + y2
log(1 − y2) −

y2

y1 + y2
log(1 − y1)

]
(4.5)

and variance

υ(f) = − 2y2
2

(y1 + y2)2
log(1 − y1) −

2y2
1

(y1 + y2)2
log(1 − y2) − 2 log

y1 + y2

y1 + y2 − y1y2
(4.6)

for the real case, which are calculated by Lemma 2.1 in §5. For the complex case, the mean m(f)

is zero and the variance is half of υ(f). In other words,

− 2 log L̃1

N
− p · Fyn1

,yn2
(f) ⇒ N (m(f), υ(f)) , (4.7)

where

Fyn1
,yn2

(f) =
−(yn1

+ yn2
− yn1

yn2
)

yn1
yn2

log (yn1
+ yn2

− yn1
yn2

)

+
(yn1

+ yn2
− yn1

yn2
)

yn1
yn2

log (yn1
+ yn2

) +
yn1

(1 − yn2
)

yn2
(yn1

+ yn2
)

log (1 − yn2
)

+
yn2

(1 − yn1
)

yn1
(yn1

+ yn2
)

log (1 − yn1
),

is derived by use of the density of Fyn1
,yn2

in §5. Because L̃1and L1 have the same asymptotic

distribution and by (4.7), we get by letting n1 ∧ n2 → ∞,

T̃N = υ(f)−
1
2

[
−2 logL1

N
− p · Fyn1

,yn2
(f) − m(f)

]
⇒ N (0, 1) .
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Figure 1. Realized sizes of the traditional LRT and the corrected LRT for different dimensions p with real Gaussian
variables. 10 000 independent runs with 5% nominal level and sample size n = 500.

(y1, y2)=(0.05, 0.05)
CLRT LRT

(p, n1, n2 ) Size Difference with 5% Power Size Power

(5, 100, 100) 0.0770 0.0270 1 0.0582 1

(10, 200, 200) 0.0680 0.0180 1 0.0684 1

(20, 400, 400) 0.0593 0.0093 1 0.0872 1

(40, 800, 800) 0.0526 0.0026 1 0.1339 1

(80, 1600, 1600) 0.0501 0.0001 1 0.2687 1

(160, 3200, 3200) 0.0491 -0.0009 1 0.6488 1

(320, 6400, 6400) 0.0447 -0.0053 0.9671 1 1

(y1, y2)=(0.05, 0.1)
CLRT LRT

(p, n1, n2 ) Size Difference with 5% Power Size Power

(5, 100, 50) 0.0781 0.0281 0.9925 0.0640 0.9849

(10, 200, 100) 0.0617 0.0117 0.9847 0.0752 0.9904

(20, 400, 200) 0.0573 0.0073 0.9775 0.1104 0.9938

(40, 800, 400) 0.0561 0.0061 0.9765 0.2115 0.9975

(80, 1600, 800) 0.0521 0.0021 0.9702 0.4954 0.9998

(160, 3200, 1600) 0.0520 0.0020 0.9702 0.9433 1

(320, 6400, 3200) 0.0510 0.0010 1 0.9939 1

Table 2

Sizes and powers of the traditional LRT and the corrected LRT based on 10,000 independent replications using
real Gaussian variables. Powers are estimated under the alternative Σ1Σ−1

2
= diag(3, 1, 1, 1, · · · ). Upper:

y1 = y2 = 0.05. Bottom: y1 = 0.05, y2 = 0.1.
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4.1. Simulation study II

For different values of (p, n1, n2), we compute the realized sizes of the traditional LRT and the

corrected LRT with 10,000 independent replications. The nominal test level is α = 0.05 and we

use real Gaussian variables. Results are summarized in Table 2 and Figure 2.

As we can see, when the dimension p increases, the traditional LRT leads to a dramatically

high test size while the corrected LRT remains accurate. Furthermore, for moderate dimensions

like p = 20 or 40, the sizes of the traditional LRT are much higher than 5%, whereas the ones

of corrected LRT are very close. By a closer look at the column showing the difference with 5%,

we note that this difference rapidly decrease as p increases for the corrected test. Figure 2 gives a

vivid sight of these comparisons between the traditional LRT and the corrected LRT in term of

test sizes.

4.2. A pseudo-likelihood test for high-dimensional non-Gaussian data

As said in Introduction, previous related works as Ledoit and Wolf (2002), Srivastava (2005)

or Schott (2007) all assume Gaussian variables. In contrast, Theorem 4.1 applies for general

distributions having a fourth moment. For these non Gaussian data, we consider the corrected

LRT as generalized pseudo-likelihood ratio test (or Gaussian LRT).

Moreover, the methods proposed by these authors all rely on an appropriate normalization of the

trace of squared difference between two sample covariances following the idea of Bai and Saranadasa

(1996). We believe that their method would strongly depend on the normality assumption (which

was supported by simulation results below). On the other hand, based on general understanding,

the LRT contains much higher information from data and its poor performance observed up to now

is just caused by its large bias when dimension is large. Thus, from the intuitive understanding,

we are confined ourselves to modify the LRT.

Let us develop in more details an example. Assume that x follows a normalized t-distribution

with 5 degree of freedom, that is x =
√

3
5 t(5), x and y are i.i.d., hence Ex = Ey = 0, E|x|2 =

E|y|2 = 1 and E|x|4 = E|y|4 = 9. We still employ the result in Theorem 4.1 for the test of equality

between two covariance matrices, where

m1(f) =
1

2

[
log

(
y1 + y2 − y1y2

y1 + y2

)
− y1

y1 + y2
log(1 − y2) −

y2

y1 + y2
log(1 − y1)

+
6y2

1y2

(y1 + y2)2
+

6y1y
2
2

(y1 + y2)2

]
(4.8)

and

υ1(f) = − 2y2
2

(y1 + y2)2
log(1 − y1) −

2y2
1

(y1 + y2)2
log(1 − y2) − 2 log

y1 + y2

y1 + y2 − y1y2
(4.9)
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instead of m(f) and υ(f) for real case, respectively. (4.8) and (4.9) are calculated in §5.
The following Table 3 summarizes a simulation study where we compare this corrected pseudo-

LRT with the test proposed in Schott (2007). We use 1,000 independent replications with the

above t-distributed variables. Again, the nominal test level is α = 0.05. As we can see, the corrected

pseudo-LRT performs correctly while Schott’s test is no more valid here since the variables are

not Gaussian.

(y1, y2)=(0.05, 0.1)
(p, n1, n2 ) CLRT Size Schott’s Size

(10,100, 200) 0.067 0.517

(20, 200, 400) 0.065 0.603

(40, 400, 800) 0.054 0.703

(80, 800, 1600) 0.048 0.764

(160, 1600, 3200) 0.045 0.826

(320, 3200, 6400) 0.051 0.854

Table 3

Sizes of the corrected pseudo-likelihood ration test and Schott’s test for the case of y1 = 0.1, y2 = 0.05, based on
1,000 independent replications with normalized t-distributed variables with 5 degrees of freedom.

5. Proofs

Proof of (3.3)

By Theorem 2.1, for g(x) = x− log x− 1, by using the variable change x = 1 + y − 2
√

y cos θ, 0 ≤
θ ≤ π, we have

m(g) =
g (a(y)) + g (b(y))

4
− 1

2π

∫ b(y)

a(y)

g(x)√
4y − (x − 1 − y)2

dx

=
y − log(1 − y)

2
− 1

2π

∫ π

0

[1 + y − 2
√

y cos θ − log(1 + y − 2
√

y cos θ) − 1] dθ

=
y − log(1 − y)

2
− 1

4π

∫ 2π

0

[
y − 2

√
y cos θ − log |1 −√

yeiθ|2
]
dθ

= − log(1 − y)

2
,

where

∫ 2π

0

log |1 −√
yeiθ|2dθ = 0 is calculated in Bai and Silverstein (2004).

Proof of (3.4)

For g(x) = x − log x − 1, by Theorem 2.1, we have

υ(g) = − 1

2π2

∮ ∮
g(z1)g(z2)

(m(z1) − m(z2))2
dm(z1)dm(z2)
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and

g(z1)g(z2) = z1z2 − z1 log z2 − z2 log z1 + log z1 log z2

−z1 + log z1 − z2 + log z2 + 1.

It is easy to see that υ(1,1) = 0, where 1 means constant function equals to 1. For Stieltjes

transform of F y, the following equation is given in Bai and Silverstein (2004), for z ∈ C+,

z = − 1

m(z)
+

y

1 + m(z)
. (5.1)

Let mi = m(zi), i = 1, 2. For fixed m2, we have on a contour enclosed 1, (y − 1)−1 and -1, but

not 0,

∮
log (z(m1))

(m1 − m2)2
dm1 =

∮ 1
m2

1

− y
(1+m1)2

− 1
m1

+ y
1+m1

1

(m1 − m2)
dm1

=

∮
(1 + m1)

2 − ym2
1

ym1(m1 − m2)

(
−1

m1 + 1
+

1

m1 − 1
y−1

)
dm1

= 2πi ·
(

1

m2 + 1
− 1

m2 − 1
y−1

)
.

and
∮ − 1

m1
+ y

1+m1

(m1 − m2)2
dm1

= y

∮
(

1

1 + m1
+

1 − y

y
) · [1 − (1 + m1)]

−1 · (m2 + 1)−2 · (1 − m1 + 1

m2 + 1
)−2dm1

= y

∮
(

1

1 + m1
+

1 − y

y
) ·

∞∑

j=0

(1 + m1)
j(m2 + 1)−2

∞∑

ℓ=1

ℓ(
m1 + 1

m2 + 1
)ℓ−1dm1

= 2πi · y

(m2 + 1)2
.

Then we also get υ(−z1 + log z1, 1) = 0. Similarly, υ(1, −z2 + log z2) = 0. Furthermore,

υ(z1, z2) =
y2

πi

∮
1

(m2 + 1)2
(

1

1 + m2
+

1 − y

y
)

∞∑

j=0

(1 + m2)
jdm2 = 2y,

and

υ(z1, log z2) =
y

πi

∮
(

1

m2 + 1
− 1

m2 − 1/(y − 1)
)(

1

1 + m2
+

1 − y

y
) · [1 − (1 + m2)]

−1dm2

=
y

πi

∮
(

1

m2 + 1
− 1

m2 − 1/(y − 1)
)(

1

1 + m2
+

1 − y

y
)

∞∑

j=0

(1 + m2)
jdm2

= 2y.

By a computation in Bai and Silverstein (2004), we know that υ(log z1, log z2) = −2 log(1 − y).

Finally, we obtain

υ(g) = υ(z1, z2) + υ(log z1, log z2) − 2υ(z1, log z2)
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+υ(−z1 + log z1,1) + υ(1,−z2 + log z2) + υ(1,1)

= −2 log(1 − y) − 2y.

Proof of (3.6)

Since F yn is the Marčenko-Pastur law of index yn, by using the variable change x = 1 + yn −
2
√

yn cos θ, 0 ≤ θ ≤ π we have

F yn(g) =

∫ b(yn)

a(yn)

x − log x − 1

2πxyn

√
(b(yn) − x)(x − a(yn))dx

=
1

2πyn

∫ π

0

[
1 − log(1 + yn − 2

√
yn cos θ) + 1

1 + yn − 2
√

yn cos θ

]
4yn sin2 θdθ

=
1

2π

∫ 2π

0

[
2 sin2 θ − 2 sin2 θ

1 + yn − 2
√

yn cos θ

(
log |1 −√

yneiθ|2 − 1
)]

dθ

= 1 − yn − 1

yn
log(1 − yn),

where
1

2π

∫ 2π

0

2 sin2 θ

1 + yn − 2
√

yn cos θ
log |1 −√

yneiθ|2dθ =
yn − 1

yn
log(1 − yn) − 1

is calculated in Bai and Silverstein (2004).

Proof of Lemma 2.1

We use the variable change x = (1 − y2)
−2(1 + h2 − 2h cos θ), where h =

√
y1 + y2 − y1y2. When

c, d satisfy c2 + d2 = a(1 − y2)
2 + b(1 + h2), cd = bh, 0 < d < c, we have

f(z(ξ)) = log(a + bz(ξ)) = log

(
|c + dξ|2
(1 − y2)2

)
.

Similarly,

g(z(ξ)) = log(α + βz(ξ)) = log

(
|γ + ηξ|2
(1 − y2)2

)
.

Let

f̃(z(ξ)) = log

(
(c + dξ)

2

(1 − y2)2

)
and g̃(z(ξ)) = log

(
(γ + ηξ)

2

(1 − y2)2

)
.

Note that f(z(ξ)) = ℜ(f̃(z(ξ))) and g(z(ξ)) = ℜ(g̃(z(ξ))). By Theorem 2.2, we have

m(f) =
1

4πi

∮

|ξ|=1

f(z(ξ))

[
1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + y2

hr

]
dξ

=
1

4π

∫ 2π

0

f(z(eiθ))

[
1

eiθ − 1
r

+
1

eiθ + 1
r

− 2

eiθ + y2

hr

]
eiθdθ

=
1

4π

∫ 2π

0

f(z(eiθ))

[
1

e−iθ − 1
r

+
1

e−iθ + 1
r

− 2

e−iθ + y2

hr

]
e−iθdθ
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=
1

8π

∫ 2π

0

f(z(eiθ))

{[
1

eiθ − 1
r

+
1

eiθ + 1
r

− 2

eiθ + y2

hr

]
eiθ +

[
1

e−iθ − 1
r

+
1

e−iθ + 1
r

− 2

e−iθ + y2

hr

]
e−iθ

}
dθ

=
1

8π
ℜ
{∫ 2π

0

f̃(z(eiθ))

[(
1

eiθ − 1
r

+
1

eiθ + 1
r

− 2

eiθ + y2

hr

)
eiθ +

(
r

r − eiθ
+

r

r + eiθ
− 2hr

y2eiθ + hr

)]
dθ

}

= ℜ
{

1

8πi

∮

|ξ|=1

f̃(z(ξ))

[(
1

ξ − 1
r

+
1

ξ + 1
r

− 2

ξ + y2

hr

)

+

(
r

r − ξ
+

r

r + ξ
− 2hr

y2ξ + hr

)
ξ−1

]
dξ

}

=
1

4

(
f̃(z(

1

r
)) + f̃(z(−1

r
)) − 2f̃(z(− y2

hr
))

)

→ r↓1 1

4

[
f̃(z(1)) + f̃(z(−1)) − 2f̃(z(−y2

h
))
]

=
1

2
log

(c2 − d2)h2

(ch − y2d)2
.

Let mj = − 1+hrjξj

1−y2
, where |ξj | = 1, j = 1, 2, r2 ↓ r1, and r1 ↓ 1. By Theorem 2.2, we have

υ(f, g) = − 1

2π2

∮

|ξ2|=1

{∮

|ξ1|=1

f(z(r1ξ1))

(r2ξ2 − r1ξ1)2
· r1r2dξ1

}
g(z(r2ξ2))dξ2.

When r1 ↓ 1, − d
cr1

and 0 are poles. We can then choose r1 so that − c
dr1

is a not a pole. Then

we get
∮

|ξ1|=1

log(a + bz(r1ξ1))

(r2ξ2 − r1ξ1)2
· r1r2dξ1

=

∮

|ξ1|=1

(log(a + bz(r1ξ1)))
′

r1ξ1 − r2ξ2
· r2dξ1

=

∮

|ξ1|=1

[
bhr1ξ1

(r1ξ1 − r2ξ2)(c + dr1ξ1)c
· 1

ξ1 + d
cr1

− bhr−1
1

(r1ξ1 − r2ξ2)(c + dr1ξ1)c
· 1

(ξ1 + d
cr1

)ξ1

· r2

]
dξ1

= 2πi

(
bhd−1c−1

ξ2
− bhd−1r2

d + cr2ξ2

)
.

So,

υ(f, g) = − i

π

∮

|ξ2|=1

(
bhd−1c−1

ξ2
− bhd−1r2

d + cr2ξ2

)
log (α + βz(r2ξ2)) dξ2.

Since the function g(x) = log(α + βx) is analytic, when r2 > 1 but sufficiently close to 1, we have

|g(z(rξ2)) − g(z(ξ2))| ≤ K(r − 1),
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for some constant K. Thus we have
∣∣∣∣∣

∮

|ξ|2=1

[g(z(r2ξ2)) − g(z(ξ2))]

(
bhd−1c−1

ξ2
− bhd−1r2

d + cr2ξ2

)
dξ2

∣∣∣∣∣

→ 0 as r2 ↓ 1,

where the estimations are done according to| arg(ξ2)| or | arg(ξ2) − π| ≤
√

r2 − 1 or not. Thus,

υ(f, g) = − i

π

∮

|ξ2|=1

g(z(ξ2))

(
bhd−1c−1

ξ2
− bhd−1r2

d + cr2ξ2

)
dξ2 + R(r2)

where R(r2) → 0, as r2 ↓ 1. Because g(z(ξ2)) = log

(
|γ + ηξ2|2
(1 − y2)2

)
, for γ, η satisfying γ2 + η2 =

α(1 − y2)
2 + β(1 + h2), γη = βh, 0 < η < γ, and if g̃(z(ξ2)) = log

(
(γ + ηξ2)

2

(1 − y2)2

)
, we have

g(z(ξ2)) = ℜ (g̃(z(ξ2))). Therefore,

υ(f, g) = − i

π

∮

|ξ|2=1

g(z(ξ2))

(
bhd−1c−1

ξ2
− bhd−1r2

d + cr2ξ2

)
dξ2

=
1

π

∫ 2π

0

g(z(eiθ))

(
bhd−1c−1

eiθ
− bhd−1r2

d + cr2eiθ

)
eiθdθ

= θ→2π−θ 1

π

∫ 2π

0

g(z(eiθ))

(
bhd−1c−1

e−iθ
− bhd−1r2

d + cr2e−iθ

)
e−iθdθ

=
1

2π

∫ 2π

0

g(z(eiθ))

[(
bhd−1c−1

eiθ
− bhd−1r2

d + cr2eiθ

)
eiθ + bhd−1c−1 − bhd−1r2

deiθ + cr2

]
dθ

=
1

2π
ℜ
{∫ 2π

0

g̃(z(eiθ))

[(
bhd−1c−1

eiθ
− bhd−1r2

d + cr2eiθ

)
eiθ + bhd−1c−1 − bhd−1r2

deiθ + cr2

]
dθ

}

= ℜ
{

1

2πi

∮

|ξ|2=1

g̃(z(ξ2))

[(
bhd−1c−1

ξ2
− bhd−1r2

d + cr2ξ2

)
+

(
bhd−1c−1 − bhd−1r2

dξ2 + cr2

)
ξ−1
2

]
dξ2

}

= bhd−1c−1

[
g̃(z(0)) − g̃(z(− d

cr2
))

]

→ bhd−1c−1

[
g̃(z(0)) − g̃(z(−d

c
))

]

= 2bhd−1c−1 log
cγ

cγ − dη
.

Proof of (4.5) and (4.6)

Because ξ and η are Gaussian variables, for real case, β = E|ξ|4 − 3 = 0, then (2.10), (2.11) and

(2.13) are all 0. Consider (2.9) and (2.12), as ynk
→ yk, k = 1, 2,, by the computations done in

the proof of Lemma 2.1, we see that termes tending to zero could be neglected in the considered

contour integrals. Hence we can put ynk
= yk, k = 1, 2 and use

f(x) = log(y1 + y2x) − y2

y1 + y2
log x − log(y1 + y2)
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instead of f(x) = log(yn1
+ yn2

x) − yn2

yn1
+ yn2

log x − log(yn1
+ yn2

). Consider the variable change

x = (1−y2)
−2(1+h2−2h cos θ), where z(ξ) = (1−y2)

−2
[
1 + h2 + 2hR(ξ)

]
, h =

√
y1 + y2 − y1y2.

As

log(yn1
+ yn2

z(ξ)) = log

(
|h + y2ξ|2
(1 − y2)2

)
,

log(z(ξ)) = log

(
|1 + hξ|2
(1 − y2)2

)
,

we have by Lemma 2.1,

m(f) =
1

2

[
log

(h2 − y2
2)h

2

(h2 − y2
2)

2
− y2

y1 + y2
log

(1 − h2)h2

(h − y2h)2

]

=
1

2

[
log

(
y1 + y2 − y1y2

y1 + y2

)
− y1

y1 + y2
log(1 − y2) −

y2

y1 + y2
log(1 − y1)

]
,

and

υ(f) = υ
(
log(yn1

+ yn2
x)
)

+
y2
2

(y1 + y2)2
υ
(
log x

)
− 2y2

y1 + y2
υ
(
log x, log(yn1

+ yn2
x)
)

= 2 log
h2

h2 − y2
2

+ 2
y2
2

(y1 + y2)2
log

1

1 − h2
− 4y2

y1 + y2
log

1

1 − y2

= − 2y2
2

(y1 + y2)2
log(1 − y1) −

2y2
1

(y1 + y2)2
log(1 − y2) − 2 log

y1 + y2

y1 + y2 − y1y2
.

Proof of Fyn1
,yn2

(f)

By (4.3) and the density of Fyn1
,yn2

(f) (the limiting distribution in (2.7) but with ynk
in place of

yk, k = 1, 2. ), where hn =
√

yn1
+ yn2

− yn1
yn2

, an = (1− yn2
)−2 (1 −√

yn1
+ yn2

− yn1
yn2

)
2

and

bn = (1−yn2
)−2 (1 +

√
yn1

+ yn2
− yn1

yn2
)
2
. Using the substitution x = (1−yn2

)−2
(
1 + h2

n − 2hn cos θ
)
, 0 <

θ < π, we have

√
(bn − x)(x − an) =

2hn sin θ

(1 − yn2
)2

, dx =
2hn sin θdθ

(1 − yn2
)2

;

x =

∣∣1 − hneiθ
∣∣2

(1 − yn2
)2

, yn1
+ yn2

x =

∣∣hn − yn2
eiθ
∣∣2

(1 − yn2
)2

.

Therefore,

F yn1
,yn2 (f)

=

∫ bn

an

f(x)
(1 − yn2

)
√

(bn − x)(x − an)

2πx(yn1
+ yn2

x)
dx

= (1 − yn2
)

∫ bn

an

[
log (yn1

+ yn2
x) − yn2

yn1
+ yn2

log x

] √
(bn − x)(x − an)

2πx(yn1
+ yn2

x)
dx

−log (yn1
+ yn2

)
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=
2(1 − yn2

)

π

∫ π

0

[
log

∣∣hn − yn2
eiθ
∣∣2

(1 − yn2
)2

− yn2

yn1
+ yn2

log

∣∣1 − hneiθ
∣∣2

(1 − yn2
)2

]

· h2
n sin2 θ

|1 − hneiθ|2 |hn − yn2
eiθ|2

dθ − log (yn1
+ yn2

)

=
2(1 − yn2

)

π

∫ π

0

[
log
∣∣hn − yn2

eiθ
∣∣2 − yn2

yn1
+ yn2

log
∣∣1 − hneiθ

∣∣2
]

· h2
n sin2 θ

|1 − hneiθ|2 |hn − yn2
eiθ|2

dθ − 2

(
1 − yn2

yn1
+ yn2

)
log(1 − yn2

) − log (yn1
+ yn2

)

= ℜ
{

2(1 − yn2
)

π

∫ 2π

0

[
log(hn − yn2

eiθ) − yn2

yn1
+ yn2

log(1 − hneiθ)

]

h2
n sin2 θ

|1 − hneiθ|2 |hn − yn2
eiθ|2

dθ

}
− 2yn1

yn1
+ yn2

log(1 − yn2
) − log (yn1

+ yn2
)

= ℜ
{
−(1 − yn2

)

2πi

∮

|z|=1

[
log(hn − yn2

z) − yn2

yn1
+ yn2

log(1 − hnz)

]

· h2
n(z − z−1)2

z |1 − hnz|2 |hn − yn2
z|2

dz

}
− 2yn1

yn1
+ yn2

log(1 − yn2
) − log (yn1

+ yn2
)

= ℜ
{

yn2
− 1

yn2

· 1

2πi

∮

|z|=1

[
log(hn − yn2

z) − yn2

yn1
+ yn2

log(1 − hnz)

]

· (z2 − 1)2

z(z − hn)(z − 1
hn

)(z − yn2

hn
)(z − hn

yn2

)
dz

}
− 2yn1

yn1
+ yn2

log(1 − yn2
) − log (yn1

+ yn2
).

There are three poles inside the unit circle: 0, hn, yn2
/hn. Their corresponding residues are

R(0) =
yn2

− 1

yn2

log(hn),

R(hn) =
(h2

n − 1)

(h2
n − yn2

)

[
log(hn) + log(1 − yn2

) − yn2

yn1
+ yn2

log(1 − h2
n)

]
,

R(
yn2

hn
) =

(y2
n2

− h2
n)

yn2
(yn2

− h2
n)

[
log(h2

n − y2
n2

) − log(hn) − yn2

yn1
+ yn2

log(1 − yn2
)

]
.

Therefore,

F yn1
,yn2 (f) = R(0) + R(hn) + R(

yn2

hn
)− 2yn1

yn1
+ yn2

log(1 − yn2
) − log (yn1

+ yn2
)

=
−(yn1

+ yn2
− yn1

yn2
)

yn1
yn2

log (yn1
+ yn2

− yn1
yn2

)

+
(yn1

+ yn2
− yn1

yn2
)

yn1
yn2

log (yn1
+ yn2

) +
yn1

(1 − yn2
)

yn2
(yn1

+ yn2
)

log (1 − yn2
)
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+
yn2

(1 − yn1
)

yn1
(yn1

+ yn2
)

log (1 − yn1
).

Proof of (4.8) and (4.9)

Because x and y are random variables from normalized t-distribution with 5 degree of freedom,

x and y are i.i.d., Ex = Ey = 0, E|x|2 = E|y|2 = 1 and E|x|4 = E|y|4 = 9. For real case,

β = E|ξ|4 − 3 = 6, (2.9) and (2.12) items are the same to the Gaussian variables. Consider

the items (2.10), (2.11) and (2.13). As the same explanation in Proof of (4.5) and (4.6), we use

f(x) = log(y1 + y2x) − y2

y1+y2
log x − log(y1 + y2) instead.

For (2.10), we have

β · y1(1 − y2)
2

2πi · h2

∮

|ξ|=1

[
log

|h + y2ξ|2
(1 − y2)2

− y2

y1 + y2
log

|1 + hξ|2
(1 − y2)2

− log(y1 + y2)

]

· 1

(ξ + y2

hr )3
dξ

=
β · y1(1 − y2)

2

2πi · h2

∮

|ξ|=1

2R
{

log(h + y2ξ) −
y2

y1 + y2
log(1 + hξ)

}
· 1

(ξ + y2

hr )3
dξ

=
β · y1(1 − y2)

2

2πi · h2

∮

|ξ|=1

{
log(h + y2ξ) + log(h + y2ξ)

− y2

y1 + y2

[
log(1 + hξ) + log(1 + hξ)

]}
· 1

(ξ + y2

hr )3
dξ

=
β · y1(1 − y2)

2

2πi · h2

∮

|ξ|=1

[
log(h + y2ξ) −

y2

y1 + y2
log(1 + hξ)

]




1

(ξ + y2

hr )3
+

(
hr
y2

)3

ξ

(hr
y2

+ ξ)3


 dξ

=
β · y1(1 − y2)

2

2πi · h2
· 2π · 1

2

[
log(h + y2ξ) −

y2

y1 + y2
log(1 + hξ)

]′′ ∣∣∣∣∣
ξ=− y2

hr

=
β · y1(1 − y2)

2

2h2

[
− y2

2

(h + y2ξ)2
+

y2

y1 + y2

h2

(1 + hξ)2

] ∣∣∣∣∣
ξ=− y2

hr

=
βy2

1y2

2(y1 + y2)2
.

For (2.11), we have

β · (1 − y2)

4πi

∮

|ξ|=1

[
log

|h + y2ξ|2
(1 − y2)2

− y2

y1 + y2
log

|1 + hξ|2
(1 − y2)2

− log(y1 + y2)

]

·ξ
2 − y2

h2r2

(ξ + y2

hr )2

[
1

ξ −
√

y2

hr

+
1

ξ +
√

y2

hr

− 2

ξ + y2

hr

]
dξ

=
β · (1 − y2)y2

2πi · h

∮

|ξ|=1

[
log

|h + y2ξ|2
(1 − y2)2

− y2

y1 + y2
log

|1 + hξ|2
(1 − y2)2

− log(y1 + y2)

]

·
[

ξ + 1
hr

(ξ + y2

hr )3

]
dξ
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=
β · (1 − y2)y2

2πi · h

∮

|ξ|=1

2R
{

log(h + y2ξ) −
y2

y1 + y2
log(1 + hξ)

}
·
[

ξ + 1
hr

(ξ + y2

hr )3

]
dξ

=
β · (1 − y2)y2

2πi · h

∮

|ξ|=1

[
log(h + y2ξ) + log(h + y2ξ)

− y2

y1 + y2

(
log(1 + hξ) + log(1 + hξ)

) ]
·
[

ξ + 1
hr

(ξ + y2

hr )3

]
dξ

=
β · (1 − y2)y2

2πi · h

∮

|ξ|=1

[
log(h + y2ξ) −

y2

y1 + y2
log(1 + hξ)

]

·
[ ξ + 1

hr

(ξ + y2

hr )3
+

h2r2

y3
2

(ξ + hr)

(ξ + hr
y2

)3

]
dξ

=
β · (1 − y2)y2

2πi · h 2πi · 1

2

(
[log(h + y2ξ) −

y2

y1 + y2
log(1 + hξ)] · (ξ +

1

hr
)

)′′
∣∣∣∣∣
ξ=− y2

hr

=
βy1y

2
2

2(y1 + y2)2
.

Therefore,

m1(f) =
1

2

[
log

(
y1 + y2 − y1y2

y1 + y2

)
− y1

y1 + y2
log(1 − y2) −

y2

y1 + y2
log(1 − y1)

+
6y2

1y2

(y1 + y2)2
+

6y1y
2
2

(y1 + y2)2

]
.

For covariance, we have

∮

|ξ|=1

f
(

1+h2+2hR(ξ)
(1−y2)2

)

(ξ + y2

hr )2
dξ

=

∮

|ξ|=1

[
log

|h + y2ξ|2
(1 − y2)2

− y2

y1 + y2
log

|1 + hξ|2
(1 − y2)2

− log(y1 + y2)

]
· 1

(ξ + y2

hr )2
dξ

=

∮

|ξ|=1

2R
{

log(h + y2ξ) −
y2

y1 + y2
log(1 + hξ)

}
· 1

(ξ + y2

hr )2
dξ

=

∮

|ξ|=1

{
log(h + y2ξ) + log(h + y2ξ)

− y2

y1 + y2

[
log(1 + hξ) + log(1 + hξ)

]}
· 1

(ξ + y2

hr )2
dξ

=

∮

|ξ|=1

[
log(h + y2ξ) −

y2

y1 + y2
log(1 + hξ)

]



1

(ξ + y2

hr )2
+

(
hr
y2

)2

(ξ + hr
y2

)2


 dξ

= 2πi ·
[
log(h + y2ξ) −

y2

y1 + y2
log(1 + hξ)

]′ ∣∣∣∣∣
ξ=− y2

hr

= πi ·
[

y2

h + y2ξ
+

y2

y1 + y2

h

1 + hξ

] ∣∣∣∣∣
ξ=− y2

hr

= 0.
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So, (2.13) becomes,

−β · (y1 + y2)(1 − y2)
2

4π2h2

∮

|ξ1|=1

f
(

1+h2+2hR(ξ1)
(1−y2)2

)

(ξ1 + y2

hr1
)2

dξ1

∮

|ξ2|=1

f
(

1+h2+2hR(ξ2)
(1−y2)2

)

(ξ2 + y2

hr2
)2

dξ2 = 0

Finally,

υ1(f) = − 2y2
2

(y1 + y2)2
log(1 − y1) −

2y2
1

(y1 + y2)2
log(1 − y2) − 2 log

y1 + y2

y1 + y2 − y1y2
.
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Figure 2. Sizes of the traditional LRT and the corrected LRT based on 10,000 independent replications using real
Gaussian variables. Left: y1 = y2 = 0.05. Right: y1 = 0.05, y2 = 0.1.
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