
ar
X

iv
:0

90
3.

54
26

v1
  [

cs
.IT

]  
31

 M
ar

 2
00

9

Testing goodness-of-fit via rate distortion
Peter Harremoës
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Abstract— A framework is developed using techniques from
rate distortion theory in statistical testing. The idea is first to do
optimal compression according to a certain distortion function
and then use information divergence from the compressed em-
pirical distribution to the compressed null hypothesis as statistic.
Only very special cases have been studied in more detail, but
they indicate that the approach can be used under very general
conditions.

I. I NTRODUCTION

There are many well-known examples of a fruitful interplay
between information theory and statistics. It started with[1]
and [2] and is well described in [3]. Information divergenceor
Kullback Leibler information plays a central role in measur-
ing the distance between probability distributions. Statistical
testing is often delicate if the sample size is small compared
with size of the alphabet (sample space). If the alphabet is a
continuous set the normal approach in statistics is to discretize
the alphabet, but information is lost during discretization, and
often it is not clear how one should discretize the space.

Rate distortion theory was developed as a theoretical frame-
work for lossy compression. An obvious example is image
compression, but rate distortion theory often fails for this
kind of application for three reasons. First of all it is often
very difficult to specify an appropriate distortion function.
Secondly, the statistics of the source is often not known.
Thirdly, in most cases it is impossible to calculate the rate
distortion function exactly and even a numerical calculation
may be very involved due to the number of variables.

Although rate distortion theory was developed for lossy
compression we claim that the ideas are very useful for
statistical analysis.

II. L IKELIHOOD RATIO TESTING

On a finite sample space of sizek one can use information
divergence as statistics for testing goodness of fit. This is
the likelihood ratio test. We want to test a null hypothesis
H0 : P = P0. An iid sampleω from P of size n is made
and the null hypothesis is accepted ifD (Empn (ω) ‖P0) is
smaller than some value and rejected if it exceeds this value.
The critical value is determined by the significance level. If
P0 is the uniform distribution thenH (Empn (ω)) = log k −
D (Empn (ω) ‖P0) so in this case it makes no difference
whether one uses entropy or information divergence. Using
large deviation theory one will see that no other test is
more Bahadur efficient than the likelihood ratio test. The

distribution of 2nD (Empn (ω) ‖P0) will will converge to a
χ2 distribution withk degrees of freedom, so determining the
values correspond to different significance levels is simple.

This method cannot be used directly if the sample space is
infinite andP0 is continuous. IfP0 is a distribution onR with
continuous distribution functionF then a popular method for
testing goodness of fit is the divideR into k bins of equal
probability. As one want to keep points together if they are
close on the real axis the bins should be chosen of the form
[

F−1
(

j−1
k

)

; F−1
(

j
k

)[

. If f maps a point into its bin then
P0 is mapped into a uniform distribution so we can use the
entropyH (f (Empn (ω))) as statistic to test goodness of fit.
The idea is then to increase the number of bins slowly asn
increases. Recently it was proved that entropy is more Bahadur
efficient than other power statistics ifk is increased so slowly
that the mean number of samples per binn/k tends to infinity
for n → ∞, see [4], [5] and references in there. This condition
will hold if for instancek = n1/2 and this choice of number
of bins will also ensure that distribution of entropy will be
asymptotically Gaussian.

It is easy to divideR into k bins of equal probability for
a continuous distribution but it is not obvious how to do the
same for distributions onR2 or in higher dimensions. Even in
one dimension it is far from obvious why the bins should be
of equal probability. Maybe a different choice of bins would
sometimes give a test that in one or another sense is more
efficient. To get better founded criteria for how to choose bins
we need a distortion function.

III. T HE RATE DISTORTION TEST

Consider a distributionQ on a setΩ with a distortion
functiond : Ω×Ω → R. For a distortion leveld0 the optimal
coupling at distortion leveld0 is given by a Markov kernel
Ψd0

: Ω → M1
+ (Ω) . We shall useΨd0

to smooth the empiri-
cal distribution so that we can compare it with the null hypoth-
esisH0, i.e. we shall useD (Ψd0

(Empn (ω)) ‖Ψd0
(Q)) as

statistic for testing goodness of fit. There are various waysto
approximateD (Ψd0

(Empn (ω)) ‖Ψd0
(Q)) numerically. We

shall not discuss this problem. In general the rate distortion
function and Ψd0

cannot be calculated exactly but using
iterative methods like the Arimoto Blahut algorithm they can
be approximated. We shall discuss three examples where the
rate distortion function andΨd0

are given by explicit formulas.
Example 1 (Test of uniformity): We consider a setA with

l elements. The set has no particular structure so we use
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Hamming distortion as distortion function. Our null hypothesis
is P = U whereu denotes the uniform distribution onA. In
this case the Markov kernelΨd0

has the form

Ψd0
: x → αδx + (1 − α)U

for some valueα ∈ [0; 1] determined byd0. The Markov ker-
nel maps the uniform distribution into the uniform distribution.
Therefore the statistic of the rate distortion test has the form

D (αEmpn (ω) + (1 − α) U‖U) .

This statistic is closely related to the idea oflocal alternatives
often studied in statistics.

Example 2 (Normality test): We consider the real numbers
with squared Euclidian distance as distortion function. Our null
hypothesis isP = Φ whereΦ denotes the standard Gaussian
distribution. The optimal Markov kernel for the rate distortion
problem sendsx into the distribution ofαx +

(

1 − α2
)1/2

Z
where Z is a standard Gaussian random variable. We see
that the Gaussian distribution is mapped into it self. Thus the
statistic of the rate distortion test is

D
(

αX +
(

1 − α2
)1/2

Z‖Φ
)

where we have identified the random variable

αX +
(

1 − α2
)1/2

Z

with its distribution. This Markov kernel can be rewritten as

D
(

αX +
(

1 − α2
)1/2

Z‖Φ
)

= D

(

X +

(

1

α2
− 1

)1/2

Z‖Φ
(

0, α2
)

)

so the Markov kernels essentially smooth data by adding an
independent Gaussian random variable with varianceα−2−1.
The idea of smoothing data is well-known in statistics.

Example 3 (Test of uniformity of angular data): In this ex-
ample we consider data with values on the circles1 that
we can identify with R/2πZ. See [6] for references. As
distortion function we shall use4 cos2

(

θ2−θ1

2

)

, i.e. squared
Euclidean distance between points on a circle. We shall testthe
hypothesisP = U whereU denotes the uniform distribution
on the circle. The optimal Markov kernel is a smoothing by
adding a von Mises distribution

exp (κ cos (θ))

2πI0 (κ)

where I0 is the modified Bessel function of order0 with
parameterκ determined by the distortion level [7], [8]. The
Markov kernel maps the uniform distribution into the uniform
distribution.

IV. L IMITS FOR EXTREME VALUES OFβ

Often the rate distortion curve is parametrized by its slope
β. Here we shall discuss the effect of choosing very small or
very large values ofβ when the sample is kept fixed. We shall
go through our three main examples from this point of view.

Example 4 (Test of uniformity continued): Small or large
values ofβ corresponds to small or large values ofα. For
α = 1 we get the statistic

D (Empn (ω) ‖U)

which is the likelihood ratio test. Forα close to0 we use that
information divergence is anf -divergence withf (x) = x lnx
so that

d

dα
D (αEmpn (ω) + (1 − α)U‖U)

=
d

dα

l
∑

i=1

1

l
f

(

αp̂ (i) + (1 − α) 1
l

1
l

)

=

l
∑

i=1

1

l

(

p̂ (i) −
1

l

)

f ′

(

αp̂ (i) + (1 − α) 1
l

1
l

)

and

d

dα
D (αEmpn (ω) + (1 − α)U‖U)

=

l
∑

i=1

1

l

(

p̂ (i) −
1

l

)2

f ′′

(

αp̂ (i) + (1 − α) 1
l

1
l

)

.

Thus a second order Taylor expansion gives

D (αEmpn (ω) + (1 − α) U‖U) ≈
f ′′ (1)

2

l
∑

i=1

1

l

(

p̂ (i) −
1

l

)2

=
χ2 (Empn (ω) , U)

2l2
.

Thus using a small value ofα approximately corresponds to
replace the likelihood ratio test with aχ2 test.

Example 5 (Normality test continued): Small or large val-
ues ofβ corresponds to small or large values ofα. If the i′th
observation is denotedxi then

D (Ψd0
(Empn (ω)) ‖Ψd0

(Φ))

= D

(

Ψd0

(

1

n

n
∑

i=1

δxi

)

‖Ψd0
(Φ)

)

= D

(

1

n

n
∑

i=1

Ψd0
(δxi

) ‖Ψd0
(Φ)

)

=
1

n

n
∑

i=1

D (Ψd0
(δxi

) ‖Ψd0
(Φ))

+
1

n

n
∑

i=1

D



Ψd0
(δxi

) ‖
1

n

n
∑

j=1

Ψd0

(

δxj

)





=
1

n

n
∑

i=1

x2
i

2

+
1

n

n
∑

i=1

D



Ψd0
(δxi

) ‖
1

n

n
∑

j=1

Ψd0

(

δxj

)



 .



For large values ofα we only smooth a little so the different
observations smoothed are approximately singular. Thus

D (Ψd0
(Empn (ω)) ‖Ψd0

(Φ)) ≈
1
n

∑n
i=1 x2

i

2
+ log n.

In this case the use of rate distortion statistic is approxi-
mately equivalent to the use of the statistic1

n

∑n
i=1 x2

i . This
statistic is sufficient for alternatives in the exponentialfamily
Φ
(

0, σ2
)

, σ > 0.
For small values ofα we use a different expansion. We

use that D
(

αX +
(

1 − α2
)1/2

Z‖Φ
)

has a leading term
determined by the mean value ofX. Therefore the statistic
essentially reduces to1n

∑n
i=1 x2

i . This statistic is sufficient
for alternatives in the exponential familyΦ (µ, 1) .

Example 6 (Uniformity of angular data continued): Small
or large values ofβ corresponds to small or large values of
κ. For small values ofκ we have

exp (κ cos (θ))

2πI0 (κ)
≈ 1 + κ cos (θ) .

For observationsθ1, θ2, ..., θn the smoothed distribution ap-
proximately has density

1

n

n
∑

i=1

(1 + κ cos (θ − θ1))

= 1 +
κ

n

n
∑

i=1

(cos (θ − θi))

= 1 +
κ

n

n
∑

i=1

(

cos θ
sin θ

)

·

(

cos θi

sin θi

)

= 1 + κ

(

cos θ
sin θ

)

·
1

n

n
∑

i=1

(

cos θi

sin θi

)

.

The rate distortion statistic will approximately be given by
1
n

∑n
i=1

(

cos θi

sin θi

)

. By rotational symmetry the information

divergence does not depend on the direction of the vector
1
n

∑n
i=1

(

cos θi

sin θi

)

. Thus the use of the rate distortion

statistic is essentially equivalent to the use of the statistic
∥

∥

∥

∥

1
n

∑n
i=1

(

cos θi

sin θi

)∥

∥

∥

∥

2

2

. This is the most used statistic for

testing uniformity of angular data.
We have

D (Ψd0
(Empn (ω)) ‖U)

=
1

n

n
∑

i=1

D (Ψd0
(δθi

) ‖U)

+
1

n

n
∑

i=1

D



Ψd0
(δθi

) ‖
1

n

n
∑

j=1

Ψd0

(

δxj

)





= D (Ψd0
(δ0) ‖U)

+
1

n

n
∑

i=1

D



Ψd0
(δθi

) ‖
1

n

n
∑

j=1

Ψd0

(

δxj

)



 .

For large values ofκ the term

1

n

n
∑

i=1

D



Ψd0
(δθi

) ‖
1

n

n
∑

j=1

Ψd0

(

δxj

)





will be dominated by the pair(θi, θj) , i 6= j for which
cos (θi − θj) is maximal.

V. HODGE AND LEHMAN EFFICIENCY

For testing uniformity with Hamming distortion we see that
if we do not compress data (α = 1) the rate distortion test gives
the statisticD (Empn (ω) ‖U) which is known to be Bahadur
efficient for testing uniformity. This is in general not the case.
For a rate distortion test of normality little compression gives
a statistic that is efficient for Gaussian alternatives withmean
zero and variance different from 1, but it is obviously not
efficient against other alternatives with mean 0 and variance 1.
Similarly the rate distortion test of uniformity of angulardata
depends of the maximal value ofcos (θi − θj) , i 6= j but not
on values of all other observed angles which is obviously not
efficient. So the question is how much one should to compress
in order to get an efficient test against any alternative.

There are several ways of measuring efficiency among
which the following are most important. In this short note it
is neither possible to give all definitions nor proofs in details.

Hodge and Lehman efficiencyAn alternative hypothesis
and a significance level are fixed. One is interested in the
sample size that is needed to achieve a certain large power of
the test.

Bahadur efficiency An alternative hypothesis and a power
level are fixed. One is interested in the sample size that is
needed to achieve a certain small significance level of the test.

Pitman efficiency The alternative is moved closer when
the sample size is increased. This is done in a way so that the
power of the test is constant. One is interested in the sample
size that is needed to achieve a certain fixed significance level
of the test.

The Hodge and Lehman efficiency is often the easiest to
calculate but most tests are equally efficient in this sense.
More tests can be distinguished by their Pitman efficiency.
The Bahadur efficiency is often the most sensitive and at the
same time often the hardest to calculate.

Theorem 7: Assume that the spaceΩ is compact and that
the distortion function is continuous. Letdn denote a decreas-
ing sequence of distortion values. Assume thatQ generates
data. Then

Q (D (Ψdn
(Empn (ω)) ‖Ψdn

(Q)) ≥ ε) → 0 for n → ∞

if dn tends to0 sufficiently slowly.
Proof: It is sufficient to show that

Q (D (Ψδ (Empn (ω)) ‖Ψδ (Q)) ≥ ε) → 0

for any fixed distortion levelδ > 0. Weak convergence means
that Empn (ω) converges toQ in the Wasserstein sense.
Continuity of the distortion functiond implies thatΨδ is weak
continuous on the set of probability measures.



Theorem 8: Let dn denote a decreasing sequence of distor-
tion values. Assume thatQ generates data. Then

lim inf D (Ψdn
(Empn (ω)) ‖Ψdn

(P )) ≥ D (Q‖P )

almost surely.
Proof: This follows by lower semi-continuity of informa-

tion becauseΨdn
(Empn (ω)) tends toQ andΨdn

(P ) tends
to P in the weak topology.

If P denotes an alternative to a nul-hypothesisQ then
according to Sanov’s theorem for a fixed significance level the
best achievable type 2 error decreases likeexp (−nD (Q‖P )) .
The two previous theorems together implies that the rate-
distortion test on a compact set with a continuous distortion
function achieves the same exponential decrease in type 2
error. Hence, the rate distortion test is efficient in the sense of
Hodge and Lehman.

VI. BAHADUR EFFICIENCY

We shall analyze this question in the case of testing uni-
formity of angular data because this is of particular simplicity
because angles can be identified with elements ofSO (2).

Theorem 9: Let dn denote a decreasing sequence of distor-
tion values. Assume thatP generates data. Then

lim inf D (Ψdn
(Empn (ω)) ‖U) ≥ D (P‖U)

almost surely.
Proof: The proof is essentially the same as the proof of

Theorem 8.
The theorem implies that for anyK < D (P‖U) we have

D (Ψdn
(Empn (ω)) ‖U) ≥ K eventually almost surely so if

P is the distribution of the alternative hypothesis then and the
power of the test is kept fixed, then the acceptance regions of
alternativeP in the rate distortion test must have the form
D (Ψdn

(Empn (ω)) ‖U) ≥ Kn for Kn → D (P‖U) . In
order to determine the Bahadur efficiency we have to bound
the probability ofD (Ψdn

(Empn (ω)) ‖U) ≥ Kn under the
null hypothesis that data are generated by a uniform distribu-
tion. Now partition the set of angles[0; 2π[ into kn intervals
of length 2π/kn. We choosekn such that n

k log k → ∞ for
n → ∞. Let Fn denote theσ-algebra generated by these
intervals. Then

lim−
1

n
Pr
(

D
(

Empn (ω)|Fn
‖U|Fn

)

≥ Kn

)

= D (P‖U) .

We are interested in

D (Ψdn
(Empn (ω)) ‖U) = D (Ψdn

(Empn (ω)) ‖Ψdn
(U))

and not D
(

Empn (ω)|Fn
‖U|Fn

)

but each subinterval has

length2π/kn so
∣

∣

∣

∣

∣

log
dΨdn

(Empn (ω))

dΨdn
(U)

− log
dEmpn (ω)|Fn

dU|Fn

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

log

exp(κn cos(0))
2πI0(κ)

exp(κn cos(θ))
2πI0(κ)

∣

∣

∣

∣

∣

∣

= κn |cos (0) − cos (2π/kn)| .

Therefore

lim−
1

n
Pr (D (Ψdn

(Empn (ω)) ‖U) ≥ Kn) = D (P‖U)

if the the test is Bahadur efficient if

κn |cos (0) − cos (2π/kn)|

n
→ 0

for n → ∞. An expansion of cosine around0 shows that the
condition is equivalent to

κn

nk2
n

→ 0 for n → ∞.

If we choosekn = nγ where γ < 1 we get the sufficient
condition

κn

n1+2γ
→ 0 for n → ∞.

This leads us to the following theorem.
Theorem 10: The rate distortion test of uniformity of an-

gular data has smoothing by a von Mises distribution with
parameterκn. If κn → ∞ for n → ∞ and there exist
η ∈ [1; 3[ such that

κn

nη
→ 0 for n → ∞,

then the rate distortion test is Bahadur efficient.
The method sketched here can be extended to prove Bahadur

efficiency of rate distortion test of the uniformity on compact
groups [7], [8].

VII. D ISCUSSION

A new statistical test is proposed. It is based on a rate
distortion function. By specifying the distortion function one
does not have to divide the data into bins as this is build
into the test. We have discussed the test in detail for a few
examples. The example with testing uniformity of angular data
can be extended to compact groups. There is no standard
procedure for testing uniformity on a group, but there are
many competing tests for the Gaussian distribution. In [9],
[10] and [11] it has been shown by simulations that tests
based on estimation entropy are more powerful than many
other test for normality that one can find in the literature. The
author has done some simulation to compare these tests with
the test proposed here. These simulations indicates that the
rate distortion test has a good power, but these results are still
preliminary and will not be presented in this short note.

We saw that the rate distortion test has good Bahadur
efficiency for angular data. We conjecture that the proposed
test has high Bahadur efficiency in any case where it can
be applied. It is not clear how to formulate this conjecture
precisely, and it may be hard to prove because the rate
distorting function normally cannot be calculated exactly.

A nice feature about the rate distortion test is that one can
get a clear understanding of the effect of very small or very
large compression. In our examples very small or very large
compression in the rate distortion test corresponds to other
familiar test like χ2-testing, and this may actually be used
to give new interpretations of these tests. This is in contrast



with the common approach via discretizations. It is simply
difficult to analyze the effect of discretize data into very few
bins because 2 gives an absolute lower bound on how many
bins one can use if the analysis should not become trivial.

Another conjecture that has been supported by numerical
calculations is that the rate distortion statistics is asymp-
totically Gaussian. As it is now we have to Monte Carlo
simulate the rate distortion statistics, and each simulation
involves a numerical calculation of the rate distortion function.
If it can be proved that the distribution of the rate distortion
statistics is asymptotically Gaussian it means that the number
of simulations can be reduces significantly because one just
has to estimate mean and variance in order to be able to
calculate the critical value for a specified significance level.

In this paper some simple examples where the rate distor-
tion function can be calculated exactly, have been discussed.
There are other examples than these where the rate distortion
function can be calculated exactly. One interesting example is
the Poisson process discussed in [12]. The setup is slightly
different than the one presented here and therefore we cannot
discuss it in this short paper. Nevertheless the ideas presented
in this paper can be used to construct a test of whether a
random process is a Poisson process. Contrary to the examples
discussed in this paper this test of the Poisson process is
completely new in the sense that it does not relate to any
established statistical test.
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