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ON THE STABILITY AND ERGODICITY OF AN ADAPTIVE

SCALING METROPOLIS ALGORITHM

MATTI VIHOLA

Abstract. This paper considers the stability and ergodicity of an adaptive ran-
dom walk Metropolis algorithm. The algorithm adjusts the scale of the symmetric
proposal distribution continuously, based on the observed acceptance probability.
A strong law of large numbers is shown to hold for functionals bounded on com-
pact sets and growing at most exponentially as ‖x‖ → ∞, assuming that the target
density is smooth enough and has either compact support or super-exponentially
decaying tails.

1. Introduction

Markov chain Monte Carlo (MCMC) is a general method often used to approximate
integrals of the type

I :=

∫

Rd

f(x)π(x)dx < ∞

where π is a probability density function [see, e.g., 9, 14, 17]. The method is based
on a Markov chain (Xn)n≥1 that can be simulated in practice, and for which In :=
∑n

k=1 f(Xk) → I as n → ∞. Such a chain can be constructed, for example, as
follows. Assume q is a zero-mean Gaussian probability density, and let X1 ≡ x1 for
some fixed point x1 ∈ R

d. For n ≥ 2, recursively,

(S1) simulate Yn = Xn−1 + θWn, where Wn are independent random vectors dis-
tributed according to q, and

(S2) with probability αn = min{1, π(Yn)/π(Xn−1)} the proposal is accepted and
Xn = Yn; otherwise the proposal is rejected and Xn = Xn−1.

This symmetric random-walk Metropolis algorithm will produce, with any positive
scalar parameter θ, a valid chain, i.e. that In → I almost surely as n → ∞ [see,
e.g. 13, Theorem 1]. However, the efficiency of the method, i.e. the speed of the
convergence In → I, is crucially affected by the choice of θ. For too large θ, very
few proposals become accepted, and the chain mixes poorly. For too small θ, most
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of the proposals Yn become accepted, but the steps Xn −Xn−1 are small, preventing
good mixing. In fact, previous results indicate that the acceptance probability is
closely related with the efficiency of the algorithm. The “rule of thumb” is that the
acceptance probability αn should be on the average about 0.234 [18, 19], although
this choice is not always optimal [8]. In practice, such a θ is usually found by several
trial runs, which can be laborious and time-consuming.

So called adaptive MCMC algorithms have gained popularity since the seminal
work of Haario, Saksman, and Tamminen [10]. Several other such algorithms have
been proposed after Andrieu and Robert [2] noticed the connection between Robbins-
Monro stochastic approximation and adaptive MCMC [1, 3, 6, 15, 16]. The Adaptive
Scaling Metropolis (ASM) algorithm considered in this paper optimises the scaling
of the proposal distribution adaptively, based on the observed acceptance probability
[3, 5, 6, 16]. Namely, in the step (S1) of the above algorithm, θ is replaced with a
random variable θn−1 set initially to θ1 > 0, and for n ≥ 2 defined through recursion

(S3) log θn = log θn−1 + cn−γ(αn − α∗)

where α∗ is the desired mean acceptance probability, e.g. α∗ = 0.234, and c > 0 and
γ ∈ (1/2, 1] are constants.

It is not obvious that such an algorithm is valid, i.e. that In → I. In fact, there
are examples of adaptive MCMC schemes that destroy the correct ergodic properties
[15]. To ensure the validity of such an algorithm, it is essential that the effect of the
adaptation “diminishes” in some sense as n → ∞. For many practical algorithms,
however, showing the adaptation to diminish turns out to be a difficult task. Current
ergodicity results on adaptive MCMC algorithms assume some “uniform” behaviour
for all the possible MCMC kernels [5, 6, 15]. In the context of the ASM algorithm, this
means essentially that θn must be restricted to a predefined set [a, b] with some 0 <
a ≤ b < ∞. Alternatively, one can use a general “reprojection and reinitialisation”
technique with a sequence of such sets [an, bn] with an ց 0 and bn ր ∞ as proposed
by Andrieu and Moulines [1], or stabilisation methods that modify the adaptation
rule to ensure stable behaviour [3]. Roberts and Rosenthal [16] have also suggested
using a fixed “non-adaptive” proposal distribution component within the adaptive
scheme; [7] provides analysis on this alternative.

It is a common belief that many of the proposed adaptive MCMC algorithms,
including the ASM algorithm described above, are inherently stable and thereby
do not require such artificial restrictions or stabilisation structures. There is some
empirical evidence of the stability, but few theoretical results. In particular, Saksman
and Vihola [20] verify that the Adaptive Metropolis algorithm has the correct ergodic
properties and is stable, provided the target distribution π has super-exponentially
decaying tails with regular contours. The next section shows that the stability and
ergodicity of the ASM algorithm can be verified under similar conditions fairly easily,
without any artificial stabilisation.
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2. The Main Results

Throughout this section, suppose that the process (Xn, θn)n≥1 follows the ASM
recursion (S1)–(S3) described in Section 1. Before stating the first ergodicity result,
consider the following condition on the regularity of a collection of sets.

Definition 1. Suppose that {Ai}i∈I with each Ai ⊂ R
d are such that there is a

unique outer-pointing normal ni(x) for each x in the boundary ∂Ai. Then, {Ai}i∈I

have uniformly continuous normals if for all ǫ > 0 there is a δ > 0 such that for any
i ∈ I it holds that ‖ni(x) − ni(y)‖ ≤ ǫ for all x, y ∈ ∂Ai such that ‖x − y‖ ≤ δ.

This definition essentially states that the boundaries ∂Ai must be regular enough
to ensure that if one looks at ∂Ai at a small enough scale, it will look almost like a
plane.

Theorem 2. Assume π has a compact support X ⊂ R
d, and π is continuous, bounded,

and bounded away from zero on X. Moreover, assume that the set X has a uniformly
continuous normal in the sense of Definition 1. Then, for any 0 < α∗ < 1/2 and a
bounded function f , the strong law of large numbers holds, i.e.

(1)
1

n

n
∑

k=1

f(Xk)
n→∞
−−−→

∫

Rd

f(x)π(x)dx almost surely.

Theorem 2 follows as a special case of Theorem 22 in Section 5.
Let us consider next target distributions π with unbounded supports, satisfying

the following conditions formulated in [20].

Assumption 3. The density π is bounded, bounded away from zero on compact
sets, differentiable, and

(2) lim
r→∞

sup
‖x‖≥r

x

‖x‖ρ · ∇ log π(x) = −∞

for some ρ > 1. Moreover, the contour normals satisfy

(3) lim
r→∞

sup
‖x‖≥r

x

‖x‖
·

∇π(x)

‖∇π(x)‖
< 0.

This assumption is very near to the conditions introduced by Jarner and Hansen
[12] to ensure the geometric ergodicity of a (non-adaptive) Metropolis algorithm,
and considered by Andrieu and Moulines [1] in the context of adaptive MCMC. In
particular, [1, 12] assume that π fulfils the contour regularity condition (3). Instead
of (2), they assume a super-exponential decay on π,

lim
r→∞

sup
‖x‖≥r

x

‖x‖
· ∇ log π(x) = −∞

which is only slightly more general than (2). See [12] for examples and discussion on
the conditions.
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Theorem 4. Suppose π fulfils Assumption 3 and there is a t0 > 0 such that the
contour sets {Lt}0<t≤t0 where Lt := {x ∈ R

d : π(x) ≥ t} have uniformly continuous
normals in the sense of Definition 1. Assume the function f is bounded on compact
sets, and grows at most exponentially, i.e. f(x) ≤ c1e

c2‖x‖ for all ‖x‖ ≥ 1 with some
constants 0 ≤ c1, c2 < ∞. Then, for any 0 < α∗ < 1/2, the strong law of large
numbers (1) holds.

Theorem 4 is a special case of Theorem 24 in Section 5.

Remark 5. For many practical target densities satisfying Assumption 3 the tail con-
tours are (essentially) scaled copies of each other, in which case they have automat-
ically uniformly continuous normals. This indicates that Theorem 4 is practically a
counterpart of [20, Theorem 13] verifying the ergodicity of the Adaptive Metropolis
algorithm.

Remark 6. The “safe” values for the desired acceptance rate stipulated by Theorems
2 and 4 are 0 < α∗ < 1/2. This range is often sufficient, as the most commonly
used values for a random-walk Metropolis algorithms are probably α∗ = 0.234 and
α∗ = 0.44, and it has been suggested that values 0.1 ≤ α∗ ≤ 0.4 should work well in
most cases [8, 16, 18, 19].

Remark 7. The results below hold for the above algorithmic setting, but allow some
modifications. Most importantly, one can use also a non-Gaussian proposal dis-
tribution q. In particular, the results hold for a heavy-tailed multivariate Student
proposals. Moreover, one can employ a different weight sequence than cn−γ in (S3);
the essential assumption is that the sum of square weights must be finite.

The rest of the paper is organised as follows. Section 3 describes a general adap-
tive MCMC scheme, and a generalised version of the above described ASM algorithm
within that framework. Section 4 develops stability results for this process. In par-
ticular, Corollary 15 ensures the stability of the sequence θn with the assumptions of
Theorem 2, and Proposition 18 controls the growth of θn when π fulfils the conditions
of Theorem 4. Once the stability results are obtained, the ergodicity is verified in
Section 5 by the results in [20].

3. Notations and Framework

The adaptive MCMC process considered here evolves in a measurable space X×S,
where X is the space of the “MCMC” chain (Xn)n≥1 and S = R the space of the
adaptation parameter chain (Sn)n≥1. The process starts at some given X1 ≡ x1 ∈ X

and S1 ≡ s1 ∈ S, and for n ≥ 1, follows the recursion1

Xn+1 =

{

Yn+1, if Un+1 ≤ αSn(Xn, Yn+1)

Xn, otherwise
(4)

Sn+1 = Sn + ηn+1H(Sn, Xn, Yn+1)(5)

1The recursion of (5) can be considered as Robbins-Monro stochastic approximation; see [1, 2, 4]
and references therein.
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where the acceptance probability αs : X×X → [0, 1] for each s ∈ S, and H : S×X×
X → KH is an adaptation function, with KH ⊂ R compact. The random variables Un

and Yn are assumed to be Fn-measurable; Un+1 is independent on Fn and uniformly
distributed on [0, 1], and Yn+1 depends on Fn only via Xn and Sn. Namely, Yn are
distributed by the proposal density qs so that P(Yn+1 ∈ A | Fn) =

∫

A
qSn(Xn, y)dy.

The sequence of non-negative step sizes ηn decays to zero.
Hereafter, consider the following generalisation of the ASM algorithm of Section

1, formulated in the above framework. In that case, X ⊂ R
d is the support of π and

the family of proposal densities are defined as qs(x, y) := qs(x − y) with

qs(z) := [φ(s)]−dq([φ(s)]−1z)

where the template probability density q on R
d is symmetric, and the scaling function

φ : R → (0,∞) is increasing and surjective. To shed light on this definition, let Y be
distributed according to q. Then, φ(s)Y is distributed according to qs. In the context
of the particular version of the algorithm described in Section 1, one has φ(s) = es

and Sn = log θn. The acceptance probability is the Metropolis-Hastings ratio2

αs(x, y) := α(x, y) := min

{

1,
π(y)

π(x)

}

.

The adaptation function H is defined as H(s, x, y) := H(x, y) := α(x, y) − α∗ where
α∗ is the constant desired acceptance rate, and the non-negative step sizes satisfy3
∑∞

k=1 ηk = ∞ and
∑∞

k=1 η2
k < ∞.

Define the expected acceptance rate at x ∈ X with parameter s ∈ S as

A(x, s) :=

∫

X

α(x, y)qs(x − y)dy.

Clearly, the adaptation rule decreases Sn whenever A(Xn, Sn) < α∗, and vice versa.
So, it is plausible that the algorithm would result in Sn → s∗ such that A(s∗) = α∗,
where

A(s) :=

∫

X

A(x, s)π(x)dx

is the expected acceptance rate over the target density π. In this paper, however, the
convergence of Sn is not the main concern, but the stability of it, as it turns out to
be crucial for the validity of the ASM algorithm.

The Metropolis transition kernel with a proposal density qs is given as

(6) Ps(x, A) := 1A(x)

∫

Rd

[1 − α(x, y)]qs(x − y)dy +

∫

A

α(x, y)qs(x − y)dy

where 1A stands for the characteristic function of the set A. Using the kernels Ps,
one can write (4) as P(Xn+1 ∈ A | Xn = x, Sn = s) = Ps(x, A). As usual, integration

2Note that Yn+1 may lie outside X, but (Xn)n≥1 ⊂ X almost surely.
3The case

∑∞

k=1
ηk < ∞ is not considered as it yields a trivially bounded Sn and prevents effective

adaptation.
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of a function f with respect to a kernel is denoted as

Psf(x) :=

∫

X

f(y)Ps(x, dy).

Let V ≥ 1 be a function. The V -norm of a function f is defined as

‖f‖V := sup
x

|f(x)|

V (x)
.

The closed ball in R
d is written as B(x, r) := {y ∈ R

d : ‖x−y‖ ≤ r}, and the distance
of a point x ∈ R

d from the set A ⊂ R
d is denoted as d(x, A) := inf{‖x− y‖ : y ∈ A}.

4. Stability

This section develops stability results, starting with a simple theorem on the general
process given in Section 3. This theorem is auxiliary for the present paper, but may
have applications with other adaptive MCMC algorithms of similar type.

Theorem 8. Suppose (Xn, Sn)n≥1 follow the general recursions (4) and (5), and the
step sizes satisfy

∑∞
n=1 η2

n < ∞.

(i) If there is a constant a < ∞ such that for all n ≥ 1

E [H(Sn, Xn, Yn+1) | Fn] ≤ 0 whenever Sn ≥ a,

then lim supn→∞ Sn < ∞ a.s.
(ii) If also

∑

n ηn = ∞, and there is a non-decreasing sequence of constants (an)n≥1 ⊂
R such that

E [H(Sn, Xn, Yn+1) | Fn] ≤ b whenever Sn ≥ an

for some b < 0, then lim supn→∞(Sn − an) ≤ 0 a.s.

Proof. Let Wn := H(Sn−1, Xn−1, Yn)1{Sn−1≥a} for n ≥ 2, and define the martingale
(Mn,Fn)n≥1 by setting M1 := 0, and Mn :=

∑n
k=2 dMk for n ≥ 2 with the differences

dMn := ηn(Wn − E [Wn | Fn−1]). Clearly,

∞
∑

k=2

E
[

dM2
k

∣

∣ Fk−1

]

≤ 4c2
∞
∑

k=2

η2
k < ∞

where c = supx∈KH
|x|. This implies that Mn converges to an a.s. finite limit M∞

[e.g. 11, Theorem 2.15].
Let (τk)k≥1 be the exit times of Sn from (−∞, a), defined as τk := inf{n > τk−1 :

Sn ≥ a, Sn−1 < a} using the conventions τ0 = 0, S0 < a, and inf ∅ = ∞. Define also
the latest exit from (−∞, a) by σn := sup{τk : k ≥ 1, τk ≤ n}. Whenever Sn ≥ a,
one can write Sn = Sσn + (Mn − Mσn) + Zσn,n where

Zm,n :=
n
∑

k=m+1

ηnE [Wn | Fn−1] ≤ 0
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by assumption. In this case,

(7) Sn ≤ Sσn + (Mn − Mσn) ≤ max{|S1|, a + cησn} + 2 sup
k≥1

|Mk| ≤ C

where C is a.s. finite. If Sn < a the claim is trivial and (i) holds.
Assume then (ii). If Sn < an for all n greater than some N1(ω) < ∞, the claim

is trivial. Suppose then that Sn ≥ an infinitely often. Define (τk)k≥1 as the exit
times of Sn from (−∞, an) as above. The times τk are all a.s. finite in this case (and
Sn returns to (−∞, an) infinitely often), for suppose the contrary; then the last exit
times σn are bounded by some σn ≤ σ < ∞, and for n ≥ σ one may write

Sn = Sσ + (Mn − Mσ) + Zσ,n ≤ Cσ + Zσ,n

where Mn and Zn,m are defined as above, using Wn := H(Sn−1, Xn−1, Yn)1{Sn−1≥an−1},
and the random variable Cσ is a.s. finite as in (7). Now, Zσ,n → −∞ a.s. as n → ∞,
so Sn < an a.s. for sufficiently large n, which is a contradiction.

Fix an ǫ > 0 and let N0 = N0(ω, ǫ) be such that for all n ≥ N0, it holds that
cησn ≤ ǫ/3 and that |Mk −M∞| ≤ ǫ/3 a.s. for all k ≥ σn. The claim follows from the
estimate

Sn ≤ Sσn + (Mn − Mσn) = Sσn−1 + ησnH(Sσn−1, Xσn−1, Yσn) + (Mn − Mσn)

≤ aσn + ǫ/3 + |Mn − M∞| + |M∞ − Mσn | ≤ an + ǫ

for all n ≥ N0. �

Remark 9. Theorem 8 generalises for an unbounded adaptation function H under
suitable additional assumptions. For example, assuming

lim sup
n→∞

|ηn+1H(Sn, Xn, Yn+1)| = 0 and
∞
∑

k=1

|ηn+1H(Sn, Xn, Yn+1)|
2 < ∞

hold almost surely, the proof applies with obvious changes. Moreover, the function
H may depend additionally on Un+1 (or Xn+1).

Hereafter, consider the adaptive scaling Metropolis (ASM) algorithm described in
Section 3. One can give simple conditions under which the result of Theorem 8
applies. This is due to the fact that one can write

E [H(Sn, Xn, Yn+1) | Fn] = A(Xn, Sn) − α∗,

so in light of Theorem 8, it is sufficient to find out when A(x, s) is below or above α∗.

Proposition 10. Assume π is supported on a compact set X ⊂ R
d and α∗ > 0.

Then, there is b < 0 and a ∈ R such that

(8) E [H(Sn, Xn, Yn+1) | Fn] ≤ b whenever Sn ≥ a.

Proof. Without loss of generality, one can assume 0 ∈ X. Let ǫ > 0 be sufficiently
small so that

∫

B(0,ǫ)
q(z)dz ≤ α∗/2, and let a be sufficiently large so that φ(s) ≥
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diam(X)ǫ−1 for all s ≥ a. Then, for all x ∈ X,
∫

X

α(x, y)qs(x − y)dy ≤

∫

X

[φ(s)]−dq([φ(s)]−1z)dz =

∫

[φ(s)]−1X

q(u)du

≤

∫

B(0,ǫ)

q(u)du ≤
α∗

2

That is, (8) holds with b = −α∗/2 < 0, whenever s ≥ a. �

Before stating the next result bounding the conditional expectation to the opposite
direction, let us consider a condition on the tails of π.

Assumption 11. There is a λ > 0 such that Lλ := {y ∈ R
d : π(y) ≥ λ} is compact

and π is continuous on Lλ. Moreover, the sets in the collection {Lt}0<t≤λ have
uniformly continuous normals in the sense of Definition 1.

Proposition 12. Suppose the target density π satisfies Assumption 11. Then, for
any α∗ < 1/2, there are a ∈ R and b > 0 such that

(9) E [H(Sn, Xn, Yn+1) | Fn] ≥ b, whenever Sn ≤ a.

Before giving the proof of Proposition 12, let us outline the simple intuition behind
it. For all s small enough, the mass of qs(·) is essentially concentrated on a small
ball B(0, ǫ). If one looks the target π only on B(x, ǫ), there are essentially two
alternatives. The first one is that π is approximately constant on that small ball and
A(x, s) ≈ 1. The second alternative is that π decreases very rapidly to one direction,
in which case the set {y : π(y) ≥ π(x)} looks like a half-space on the ball B(x, ǫ),
and A(x, s) ? 1/2.

Let us start with a lemma on this “half-space approximation.”

Lemma 13. Suppose that the sets {Ai}i∈I with Ai ⊂ R
d have uniformly continuous

normals in the sense of Definition 1. Then, for any ǫ > 0, there is a δ > 0 such
that for any i ∈ I, any x ∈ Ai and any 0 ≤ r ≤ δ, there is a half-space T such that
B(x, r) ∩ T ⊂ B(x, r) ∩ Ai, and the distance d(x, T ) ≤ ǫr.

The claim is geometrically evident. The technical verification is given in Appendix
A.

Proof of Proposition 12. Fix an 0 < ǫ∗ < 1, and let M ≥ 1 be sufficiently large so
that

(10)

∫

B(0,φ(s)M)

qs(z)dz =

∫

B(0,M)

q(z)dz ≥ 1 − ǫ∗

and for any plane P , it holds that

(11)

∫

{d(z,P )≤φ(s)M−1}

qs(z)dz =

∫

{d(z,P )≤M−1}

q(z)dz ≤ ǫ∗.
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By compactness of Lλ and positivity of π one can find δ1 > 0 such that for all
x, y ∈ Lλ with ‖x − y‖ ≤ δ1, it holds that | log π(x) − log π(y)| ≤ ǫ∗/e so that

1 − min

{

1,
π(y)

π(x)

}

= e0 − emin{0,log π(y)−log π(x)} ≤ e| log π(y) − log π(x)| ≤ ǫ∗.

Let δ2 > 0 be sufficiently small to satisfy Lemma 13 with the choice ǫ = M−2.
Choose a small enough a ∈ R so that φ(a)M ≤ min{δ1, δ2}. Let s ≤ a, denote

rs := φ(s)M , and write for any x ∈ Lλ
∫

X

α(x, y)qs(x − y)dy ≥

∫

B(x,rs)∩Lλ

α(x, y)qs(x − y)dy

≥ (1 − ǫ∗)

∫

B(x,rs)∩Lλ

qs(x − y)dy

since rs ≤ δ1. Denote by T the half-space from Lemma 13, such that B(x, rs) ∩ T ⊂
B(x, rs) ∩ Lλ and the distance d(x, T ) ≤ M−2rs. One obtains
∫

X

α(x, y)qs(x − y)dy ≥ (1 − ǫ∗)

∫

B(x,rs)∩T

qs(x − y)dy

≥ (1 − ǫ∗)

∫

B(x,rs)∩T̃

qs(x − y)dy −

∫

{d(y,P )≤M−2rs}

qs(x − y)dy

≥
1

2
(1 − ǫ∗)2 − ǫ∗

where T̃ is the half-space with the boundary plane P parallel to the boundary of T ,
and passing through x. The last inequality follows from (10) with the symmetry of
qs and (11), respectively. The same estimate holds for any x ∈ Lt with t > 0.

To conclude,
∫

X

α(x, y)qs(x − y)dy ≥
1

2
−

1

2

(

1

2
− α∗

)

for all x ∈ X and for any α∗ < 1/2 by selecting ǫ∗ = ǫ∗(α∗) > 0 to be sufficiently
small, implying (9) with b = (1/2 − α∗)/2 > 0. �

Remark 14. Assumption 11 in Proposition 12 is not minimal. For example, the sets
Lt could have convex holes that do not have uniformly continuous normals, and one
could still obtain Proposition 12.

As an easy corollary of the propositions above, one establishes the stability of the
ASM process.

Corollary 15. Assume the target density π is compactly supported, and satisfies
Assumption 11. Then, for the ASM process (Xn, Sn)n≥1 with any 0 < α∗ < 1/2,
there are a.s. finite A1 and A2 such that

(12) A1 ≤ Sn ≤ A2

for all n ≥ 1.
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Proof. The conditions of Propositions 10 and 12 are satisfied, so there are constants
−∞ < a1 < a2 < ∞ and b < 0 such that

E [H(Sn, Xn, Yn+1) | Fn] ≤ b whenever Sn ≥ a2,

E [H(Sn, Xn, Yn+1) | Fn] ≥ −b whenever Sn ≤ a1.

Theorem 8 applied to −Sn and Sn guarantees that a1 ≤ lim infn→∞ Sn and lim supn→∞ Sn ≤
a2, respectively, from which one obtains a.s. finite A1 and A2 for which (12) holds. �

The rest of this section considers targets π with an unbounded support. Under
a suitably regular π, it is shown that the growth of Sn can be controlled. To start
with, consider the following properties for the scaling function φ and the the template
proposal distribution q.

Assumption 16. The scaling function φ is piecewise differentiable, and there are
constants h, c > 0 and κ ≥ 1 such that

φ′(x + ξ) ≤ c max{1, φκ(x)}

for all x ∈ R and all 0 ≤ ξ ≤ h.

Assumption 16 is not restrictive, and it clearly holds for any polynomially or ex-
ponentially increasing φ.

Assumption 17. The template proposal density q can be written as q(z) = q̂(‖Σ−1z‖)
where Σ ∈ R

d×d is a symmetric and positive definite matrix, and q̂ : [0,∞) → (0,∞)
is a bounded, decreasing, and differentiable function. Moreover, the derivative of q̂
satisfies

(i) there is an ǫ∗ > 0 and 0 ≤ a < b < ∞ such that for all 0 ≤ ǫ ≤ ǫ∗, the following
bounds hold

q̂′(x) − 2q̂′(x + ǫ) ≥ c1, for all a ≤ x ≤ b,
∫ ∞

0

min{0, q̂′(x) − 2q̂′(x + ǫ)}dx ≥ −c2e
−c3ǫ−1

with some constants c1, c2, c3 > 0.
(ii) there are constants c4, c5 > 0 such that

∫ ∞

0

rd|q̂′(θ−1r)|dr ≤ c4θ
c5
0

for all 0 < θ < θ0.

Assumption 17 stipulates that q is elliptically symmetric and the contours of q
have main axes proportional to the eigenvalues of Σ. Moreover, the decay rate of
q along any ray is determined by q̂ satisfying the technical conditions (i) and (ii).
Lemma 28 in Appendix B shows that Assumption 17 holds for Gaussian and Student
distributions q.

The following estimate for the at most polynomial growth of φ(Sn) is crucial for
the ergodicity result obtained in Theorem 24.
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Proposition 18. Suppose π satisfies Assumptions 3 and 11. Suppose also that the
scaling function φ satisfies Assumption 16 and the template density q fulfils Assump-
tion 17 (i). Then, for the ASM process (Xn, Sn)n≥1 with 0 < α∗ < 1/2, and for any
β > 0, there is an a.s. positive Θ1 = Θ1(ω) and an a.s. finite Θ2 = Θ2(ω, β), such
that

Θ1 ≤ φ(Sn) ≤ Θ2n
β .

Before the proof, let us consider an estimate of A(x, s) depending on both x and
s.

Lemma 19. Assume π satisfies Assumption 3. Then, for any ǫ > 0, there is a
constant c = c(ǫ) ≥ 1 such that A(x, s) ≤ ǫ for all φ(s) ≥ c max{1, ‖x‖}.

Proof. Let r1 ≥ 1 be sufficiently large so that for some γ > 0 it holds that x
‖x‖

·
∇π(x)

‖∇π(x)‖
< −γ and x

‖x‖ρ · ∇ log π(x) < −γ for all ‖x‖ ≥ r1. Increase r1, if necessary, so

that for any ‖x‖ ≥ r1 one can write Lπ(x) = {y : π(y) ≥ π(x)} = {ru : u ∈ Sd, 0 ≤
r ≤ g(u)} where Sd := {u ∈ R

d : ‖u‖ = 1} is the unit sphere and the function
g : Sd → (0,∞) parameterises the boundary of Lπ(x). Notice also that the contour

normal condition implies the existence of an M ≥ 1 such that Lπ(x) ⊂ B(0, M‖x‖)
for all ‖x‖ ≥ r1.

Write for ‖x‖ ≥ r2 := Mr1

A(x, s) =

∫

Rd

α(x, y)qs(x − y)dy

≤

∫

{d(y,Lπ(x))≤‖x‖}

qs(x − y)dy + sup
y∈Rd

qs(x − y)

∫

{d(y,Lπ(x))>‖x‖}

α(x, y)dy.

The first term can be estimated from above by
∫

B(0,M‖x‖+‖x‖)

qs(x − y)dy ≤

∫

B(0,(M+2)‖x‖)

qs(z)dz =

∫

B(0,r(s,x))

q(u)du ≤
ǫ

2

whenever r(s, x) := [φ(s)]−1(M + 2)‖x‖ ≤ ǫ∗ for some small enough ǫ∗ = ǫ∗(ǫ) > 0,
as in the proof of Proposition 10.

For the latter term, notice that supy∈Rd qs(x−y) = [φ(s)]−d supz∈Rd q(z) ≤ c1[φ(s)]−d.
The integral can be estimated by polar integration as

∫

{d(y,Lπ(x))>‖x‖}

α(x, y)dy ≤ cd sup
u∈Sd

∫ ∞

r>g(u)+‖x‖

rd−1elog π(ru)−log π(g(u)u)dr

where cd is the surface measure of the sphere Sd. Since ‖x‖ ≥ r2, one has that
g(u) ≥ r1 ≥ 1, and from the gradient decay condition, one obtains that for r > g(u)+1

log π(ru) − log π(g(u)u) =

∫ r

g(u)

tu

‖tu‖
· ∇ log π(tu)dt ≤ −γ

∫ r

g(u)

tρ−1dt

≤ −γg(u)ρ−1[r − g(u)]
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from which
∫ ∞

r>g(u)+‖x‖

rd−1elog π(ru)−log π(g(u)u)dr ≤

∫ ∞

0

e−
γw
2 dw sup

r>g(u)+‖x‖

rd−1e−
γ
2
g(u)ρ−1[r−g(u)].

Consequently,
∫

{d(y,Lπ(x))>‖x‖}

α(x, y)dy ≤
2

γ
sup

g̃≥1, r̃>1
exp

[

(d − 1) log(g̃ + r̃) −
γ

2
g̃ρ−1r̃

]

≤ c2

with a constant c2 > 0 whenever ‖x‖ ≥ r2.
To sum up, there is a c3 > 0 such that for ‖x‖ ≥ r2 and

φ(s) ≥ c3 max{1, ‖x‖} ≥ max

{

1, c1c2
2

ǫ
,

(M + 2)‖x‖

ǫ∗

}

it holds that A(x, s) ≤ ǫ. For any ‖x‖ < r2 there is a r2 ≤ ‖x0‖ ≤ Mr2 such
that π(x0) ≤ π(x). Consequently, α(x, y) ≤ α(x0, y) for all y ∈ R

d and therefore
A(x, s) ≤ A(x0, s). To conclude, A(x, s) ≤ ǫ for all φ(s) ≥ Mc3 max{1, ‖x‖}. �

Having Lemma 19 and the lower bound from Proposition 12, the proof of Propo-
sition 18 can be obtained fairly easily using the a growth condition established in
[20].

Proof of Proposition 18. Proposition 12 applied with Theorem 8 for −Sn gives an
a.s. finite A1 such that A1 ≤ Sn. Since φ > 0 is increasing, the variable Θ1 := φ(A1)
is a.s. positive, showing the lower bound.

To check the polynomial growth condition for φ(Sn), it is first verified that ‖Xn‖
grows at most polynomially. Fix an ǫ > 0, and let θ1 = θ1(ǫ) > 0 and a1 = a1(ǫ) ∈ R

be such that θ1 = φ(a1), and that P(B1) ≥ 1− ǫ, with B1 := {Θ1 ≥ θ1} = {A1 ≥ a1}.
Let V (x) := cππ−1/2(x), where the constant cπ := [supx π(x)]1/2 ensures that V ≥ 1.
Proposition 26 in Appendix B shows that the drift inequality

(13) PsV (x) ≤ V (x) + b

holds for all φ(s) ≥ θ1 > 0 with some b = b(θ1) < ∞. Construct an auxiliary process
(X ′

n, S ′
n)n≥1 coinciding with (Xn, Sn)n≥1 in B1 by setting (X ′

n, S ′
n) = (Xτn , Sτn) where

the stopping times τn are defined as

τn :=

{

n, if Sk ≥ θ1 for all 1 ≤ k ≤ n

inf{1 ≤ k ≤ n − 1 : Sk+1 < θ1}, otherwise.

Having the inequality (13), set β ′ = κβ and use Proposition 10 of [20] to obtain the
bound ‖X ′

n‖ ≤ Θǫn
β′

for some a.s. finite Θǫ. The ǫ > 0 was arbitrary, so one can let
ǫ → 0 and obtain an a.s. finite Θ such that ‖Xn‖ ≤ Θnβ′

. Applying Lemma 19, one
obtains that A(Xn, Sn) ≤ α∗/2 whenever φ(Sn) ≥ Θ′nβ′

with Θ′ := c1 max{1, Θ}.
Fix again an ǫ > 0 and let θ2 = θ2(ǫ) < ∞ be such that P(B2) ≥ 1− ǫ where B2 :=

{Θ′ ≤ θ2}. Construct an auxiliary process (X ′
n, S ′

n)n≥1 coinciding with (Xn, Sn)n≥1
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in B2 by stopping the process if Sk > θ2k
β′

as in the construction above. Theorem 8
ensures that

lim sup
n→∞

[S ′
n − ãn] ≤ 0

where ãn are defined so that φ(ãn) = θ2n
β′

. That is, S ′
n ≤ ãn + En with En → 0

almost surely. Consider Assumption 16 and take N0 so large that En < h for all
n ≥ N0. Then, φ(x + h) = φ(x) + hφ′(x + ξ) for some 0 ≤ ξ ≤ h, and hence
φ(x + h) ≤ c2 max{1, φ(x)κ}. For n ≥ N0, one has

φ(S ′
n) ≤ φ(ãn + En) ≤ c2 max{1, φ(ãn)

κ} = c2 max{1, θκ
2nκβ′

} ≤ θ′2n
β.

Summing up, there is an a.s. finite Θ′
2 such that

φ(S ′
n) ≤ Θ′

2n
β

on B2. Finally, letting ǫ → 0, one can find an a.s. finite Θ2 such that φ(Sn) ≤
Θ2n

β . �

Remark 20. It is possible to obtain Corollary 15 and Proposition 18 when using the
ASM algorithm within some other adaptation framework. For example, ASM can
be combined with the Adaptive Metropolis algorithm as suggested in [5] and [3]. In
particular, one could assume that there is another (Fn-measurable) parameter S̃n in
addition to Sn, so that Yn+1 ∼ qSn,S̃n

(Xn, ·) with

qs,s̃(x, y) := qs,s̃(x − y) := [φ(s)]−dqs̃([φ(s)]−1(x − y))

where {qs̃}s̃∈S̃
is a suitably “uniform” family of probability densities. If there are

integrable q+, q− ≥ 0 such that q−(z) ≤ qs̃(z) ≤ q+(z) for all s̃ ∈ S̃ and with
∫

Rd q−(z)dz > 0 as suggested in [7], then Corollary 15 can be easily verified to hold.
Similarly, Proposition 18 can be shown to hold if additionally all {qs̃}s̃∈S̃

satisfy
Assumption 17 (i).

5. Ergodicity

Section 4 described conditions under which the ASM algorithm was shown to be
stable, or to have a controlled growth. This section formulates strong laws of large
numbers for the ASM process, following the technique introduced in [20]. For this
purpose, an alternative theoretical adaptation recursion is formulated, applying a
sequence of restriction sets K1 ⊂ K2 ⊂ · · · ⊂ Kn ⊂ S.

Assume (X̃n, S̃n)n≥1 follow the adaptation framework described in Section 3. As-

sume S̃1 ≡ s̃1 ∈ K1, and instead of (5) let (S̃n)n≥1 follow the “truncated” recursion

(14) S̃n+1 = σn+1

(

S̃n, ηn+1H(S̃n, X̃n, Ỹn+1)
)

where the restriction functions σn : S × S → S are defined as

σn(s, s′) :=

{

s + s′, if s + s′ ∈ Kn

s, otherwise.
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That is, σn ensures that S̃n ∈ Kn for all n ≥ 1. Observe that if Kn = S for all n ≥ 1,
then the truncated recursion (14) reduces to the original adaptation recursion (5).

Before stating an ergodicity result for this truncated chain, four technical assump-
tions are listed, which must hold for some constants c ≥ 1 and ǫ ≥ 0.

(A1) For each s ∈ S, the transition probability Ps has π as the unique invariant
distribution.

(A2) For each n ≥ 1, the following uniform drift and minorisation conditions hold
for all s ∈ Kn

PsV (x) ≤ λnV (x) + bn1Cn(x), ∀x ∈ X

Ps(x, A) ≥ δnνs(A), ∀x ∈ Cn, ∀A ⊂ X

where Cn ⊂ X is a subset (a minorisation set), V : X → [1,∞) is a drift
function such that supx∈Cn

V (x) ≤ bn, and νs is a probability measure on X,
concentrated on Cn. Furthermore, the constants λn ∈ (0, 1) and bn ∈ (0,∞)
are increasing, and δn ∈ (0, 1] is decreasing with respect to n, and they are
polynomially bounded so that

max{(1 − λn)−1, δ−1
n , bn} ≤ cnǫ.

(A3) For all n ≥ 1 and any r ∈ (0, 1], there is c′ = c′(r) ≥ 1 such that for all
s, s′ ∈ Kn,

‖Psf − Ps′f‖V r ≤ c′nǫ ‖f‖V r |s − s′|.

(A4) The inequality |H(S̃n, X̃n, Ỹn+1)| ≤ cnǫ holds almost surely.

Theorem 21. Assume (A1)–(A4) hold and let f be a function with ‖f‖V β < ∞ for
some β ∈ (0, 1). Assume ǫ < κ−1

∗ min{1/2, 1 − β}, where κ∗ ≥ 1 is an independent
constant, and that

∑∞
k=1 kκ∗ǫ−1ηk < ∞. Then,

(15)
1

n

n
∑

k=1

f(X̃k)
n→∞
−−−→

∫

X

f(x)π(x)dx almost surely.

Proof. This theorem is a straightforward modification of Theorem 2 in [20]. In par-
ticular, the assumption (A4) here is slightly simpler than assumption (A4) in [20],
and the changes required for the proof are obvious. �

The following first main result considers the case of compactly supported π.

Theorem 22. Suppose π has a compact support X ⊂ R
d, and π is continuous,

bounded, and bounded away from zero on X. Moreover, assume that the set X has a
uniformly continuous normal in the sense of Definition 1, and the template proposal
density q satisfies Assumption 17. Then, for the ASM process (Xn, Sn)n≥1 with any
0 < α∗ < 1/2 and a bounded function f , the strong law of large numbers holds, i.e.

(16)
1

n

n
∑

k=1

f(Xk)
n→∞
−−−→

∫

Rd

f(x)π(x)dx

almost surely.
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Proof. Corollary 15 ensures that for any δ > 0, there are −∞ < a
(δ)
1 < a

(δ)
2 < ∞ such

that P(B(δ)) ≥ 1 − δ, where

B(δ) := {∀n ≥ 1, a
(δ)
1 ≤ Sn ≤ a

(δ)
2 }.

Set K
(δ)
n := K(δ) := [a

(δ)
1 , a

(δ)
2 ] for all n ≥ 1, and construct the truncated process

(X̃
(δ)
n , S̃

(δ)
n ) using these restriction sets in (14). Define θ

(δ)
1 := φ(a

(δ)
1 ) > 0 and θ

(δ)
2 :=

φ(a
(δ)
2 ) < ∞.

Let us next verify above assumptions with some c ≥ 1 and ǫ = 0, and for V ≡ 1.
The assumption (A1) holds by construction of the Metropolis process. For (A2), take
Cn := X for all n ≥ 1, and notice that PsV (x) = 1 for all x ∈ X and s ∈ S. By
Assumption 17 (i) one can estimate for all s ∈ K(δ) and all x ∈ X,

Ps(x, A) ≥

∫

A

α(x, y)qs(x − y)dy ≥

(

inf
x,y∈X, s∈K(δ)

qs(x − y)

)
∫

A

π(y)

supz∈X
π(z)

dy

≥ θ−d
2

(

inf
|z|≤diam(X)

q̂(‖θ−1
1 Σ−1z‖)

)

c1νs(A) ≥ δνs(A)

with a δ > 0, where νs(A) := ν(A) := c−1
1

∫

A
π(y)

supz∈X π(z)
dy and c1 > 0 chosen so that

ν(X) = 1. Assumption 16 ensures that the derivative of φ is bounded on the compact

set K
(δ)
n . Therefore, the Frobenius norm ‖φ(s)Σ − φ(s′)Σ‖ ≤ c2|s − s′| with some

c2(δ) > 0, and Proposition 27 in Appendix B implies (A3). Finally, it holds that
|H(S̃n, X̃n, Ỹn+1)| ≤ c, implying (A4).

All (A1)–(A4) hold and
∑∞

k=1 k−1ηk ≤ (
∑∞

k=1 k−2)1/2(
∑∞

k=1 η2
k)

1/2 < ∞, so The-

orem 21 yields a strong law of large numbers for the truncated process X̃
(δ)
n . Since

(X̃
(δ)
n )n≥1 coincides with the original ASM process (Xn)n≥1 in B(δ), the strong law of

large numbers applies for Xn(ω) with almost every ω ∈ B(δ). Since δ > 0 is arbitrary,
(16) holds almost surely. �

Remark 23. Theorem 21 is actually a version of Theorem 2 of [20], which is a mod-
ification of Proposition 6 in [1]. Theorem 22 could be obtained also using other
techniques, in particular, the mixingale approach described in [6, 10], or the coupling
technique of [15] (resulting in a weak law of large numbers). These other techniques
do not, however, apply directly to Theorem 24 below, where Theorem 21 is applied
in full strength.

Finally, the second main result considers target densities π with unbounded sup-
port.

Theorem 24. Suppose π satisfies Assumptions 3 and 11. Assume the function f is
bounded on compact sets, and grows at most exponentially, i.e. f(x) ≤ c1e

c2‖x‖ for all
‖x‖ ≥ 1 with some constants 0 ≤ c1, c2 < ∞. Then, for the ASM process (Xn, Sn)n≥1

with any 0 < α∗ < 1/2, the strong law of large numbers (16) holds.
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Proof. Proposition 18 ensures that for any ǫ′ > 0 there are a.s. positive Θ1 and
a.s. finite Θ2 such that

(17) Θ1 ≤ φ(Sn) ≤ Θ2n
ǫ′.

Now, similarly as in the proof of Theorem 22, for any δ > 0, one can find 0 < θ
(δ)
1 ≤

θ
(δ)
2 < ∞ such that

(18) P(∀n ≥ 1 : θ
(δ)
1 ≤ Sn ≤ θ

(δ)
2 nǫ′) ≥ 1 − δ

and construct (X̃
(δ)
n , S̃

(δ)
n )n≥1 using the restriction sets K

(δ)
n := [a

(δ)
1 , a

(n,δ)
2 ], where

φ(a
(δ)
1 ) = θ

(δ)
1 and φ(a

(δ,n)
2 ) = θ

(δ)
2 nǫ′.

Let V (x) := cV π−1/2(x) with cV := (supx π(x))1/2. The assumptions (A1) and
(A4) hold as verified in the proof of Theorem 22. Proposition 26 in Appendix B
with the fact det(θΣ) = θd det(Σ) yields (A2) with ǫ = dǫ′. Assumption 16 ensures

that φ′(s) ≤ cφκ(s), from which |φ(s) − φ(s′)| ≤ c(θ
(δ)
2 nǫ′)κ|s − s′| ≤ c̃nκǫ′|s − s′|.

Now, Proposition 27 in Appendix B shows (A3) with ǫ = c2κǫ′. To conclude, the
assumptions (A1)–(A4) hold with constants (c, ǫ), where ǫ = ǫ(δ, ǫ′) > 0 can be
selected to be arbitrarily small, and c = c(δ, ǫ) < ∞.

In particular, one can let ǫ be sufficiently small to ensure that κ∗ǫ < 1/3 and
ρ−ǫ > 1. Then,

∑∞
k=1 kκ∗ǫ−1ηk < ∞ as in the proof of Theorem 22 and V (x) ≥ c3e

‖x‖.
Theorem 21 ensures that the strong law of large numbers holds in the set (18), and
a.s. by letting δ → 0. �

Acknowledgements

The author wishes to thank Prof. Eero Saksman for comments significantly im-
proving the presentation of the paper.

References
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[5] Y. Atchadé and G. Fort. Limit theorems for some adaptive MCMC algorithms
with subgeometric kernels. URL http://arxiv.org/abs/0807.2952. Preprint,
July 2008.
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Appendix A. Half-Space Approximation

Proof of Lemma 13. Fix an ǫ′ > 0. By the uniform smoothness of {∂Ai}i∈I , one can
let δ > 0 be so small that ‖ni(y) − ni(z)‖ ≤ ǫ′ for all i ∈ I and y, z ∈ ∂Ai with
‖y − z‖ ≤ 2δ.

Fix an i ∈ I, an x ∈ Ai, and a r ∈ [0, δ]. If B(x, r) \ Ai = ∅, one can let T be any
half-space passing through x. Suppose next B(x, r)\Ai 6= ∅, and let y ∈ B(x, r)∩∂Ai.
Consider the open cones

C− := {y + z : ni(y) · z < −ǫ′‖z‖}

C+ := {y + z : ni(y) · z > ǫ′‖z‖}

illustrated in Figure 1. We shall verify that B(y, 2δ) ∩ C− ⊂ B(y, 2δ) ∩ Ai and

http://probability.ca/jeff/research.html
http://arxiv.org/abs/0806.2933
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Ai

y

ni(y)

C−

C+

B(y, 2δ)

B(x, δ)

Figure 1. Illustration of the half-space approximation. The set Ai is
shown in light grey, and the cones C− and C+ in dark grey.

B(y, 2δ) ∩ C+ ⊂ B(y, 2δ) \ Ai.
Namely, let u ∈ B(y, 2δ)∩C− and write u = y +z. Suppose that u /∈ Ai and define

t0 := inf{t ∈ [0, 1] : y+tz /∈ Ai}. Let u0 := y+t0z and notice that u0 ∈ B(y, 2δ)∩∂Ai.
Moreover, the line segment y + tz with t ∈ [0, 1] passes through ∂Ai at u0, and
therefore ni(u0) · z ≥ 0. On the other hand,

ni(u0) ·
z

‖z‖
= (ni(u0) − ni(y)) ·

z

‖z‖
+ ni(y) ·

z

‖z‖
< ‖ni(u0) − ni(y)‖ − ǫ′ < 0,

which is a contradiction, implying That is, C− ∩ B(y, 2δ) ⊂ Ai ∩ B(y, 2δ). The case
with C+ is similar.

Let T := {y−2ǫ′rni(y)+z : z ·ni(y) < 0}. It holds that B(y, 2r)∩T ⊂ B(y, 2r)∩C−

since taking y + w ∈ B(y, 2r)∩ T one has ni(y) ·w < −2ǫ′r ≤ −ǫ′‖w‖. On the other
hand, B(y, 2r)∩C− ⊂ B(y, 2r)∩Ai and B(x, r) ⊂ B(y, 2r), so B(x, r)∩T ⊂ B(x, r)∩
Ai. Clearly, d(y, T ) = 2ǫ′r, and since x /∈ C+ one has ni(y) · (x−y) ≤ ǫ′‖x−y‖ ≤ ǫ′r.
To conclude, d(x, T ) ≤ 3ǫ′r, and taking ǫ′ = ǫ/3 yields the claim. �

Appendix B. Simultaneous Properties for Metropolis Kernels

Let us define the following generalisation of Assumption 17.

Assumption 25. Let Cd ⊂ R
d×d stand for the symmetric and positive definite matri-

ces. Suppose P ⊂ Cd and {qs}s∈P is a family of probability densities defined through

(19) qs(z) := | det(s)|−1q̂(‖s−1z‖),

where q̂ : [0,∞) → (0,∞) is a bounded, decreasing, and differentiable function.
Moreover, suppose that there is a κ > 0 such that the eigenvalues of each s ∈ P are
bounded from below by κ.

Proposition 26. Suppose π satisfies Assumption 3 and the family {qs}s∈P satisfies
Assumption 25 with some κ > 0. Moreover, suppose that q̂ in (19) satisfies Assump-
tion 17 (i). Let Ps be the Metropolis transition probability defined in (6) and using the
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proposal density qs. Then, there exists a compact set C ⊂ R
d, a probability measure

ν on C, and a constant b ∈ [0,∞) such that for any s ∈ P

PsV (x) ≤ λsV (x) + b1C(x), ∀x ∈ X(20)

Ps(x, B) ≥ δsν(B) ∀x ∈ C, ∀B ⊂ X(21)

where V (x) := cV π−1/2(x) ≥ 1 with cV := (supx π(x))1/2 and the constants λs, δs ∈
(0, 1) satisfy the bound

(1 − λs)
−1 ∨ δ−1

s ≤ c| det(s)|−1

for some constant c ≥ 1.

Proof. Proposition 26 is a generalisation of [20, Proposition 18] considering Gaussian
densities qs. We shall describe the changes that are needed in the proof of [20,
Proposition 18].

Let s ∈ P. For a non-negative function f , one can write by Fubini’s theorem
∫

Rd

f(z + x)qs(z)dz = | det(s)|−1

∫ q̂(0)

0

∫

{q̂(‖[s−1z‖)≥t}

f(z + x)dzdt

= −| det(s)|−1

∫ ∞

0

∫

Eu

f(y)dyq̂′(u)du

where the substitution t = q̂(u) was used, and Eu := {x + z : ‖s−1z‖ ≤ u}. One
has ‖s−1z‖ ≤ κ−1‖z‖, and thus Eu ⊃ B(x, uκ). Assumption 17 (i) for the derivative
q̂′ corresponds to the estimate obtained in [20, Lemma 17] for a Gaussian family,

i.e. q̂ = e−x2/2.
These facts are enough to complete the proof of [20, Proposition 18] to yield the

claim. �

Proposition 27. Suppose the family {qs}s∈P satisfies Assumption 25 with some κ >
0. Suppose, in addition, that q̂ fulfils Assumption 17 (ii), and either

(i) V ≡ 1, or
(ii) π satisfies Assumption 3 and V (x) := cV π−1/2(x) ≥ 1 with cV := (supx π(x))1/2.

Then, there are constants c1, c2 > 0 such that for the Metropolis transition probability
Ps given in (6), it holds that

(22) ‖Psf − Ps′f‖V r ≤ c1 max{‖s‖, ‖s′‖}c2‖f‖V r‖s − s′‖

for all s, s′ ∈ P and r ∈ [0, 1]. The matrix norm above is the Frobenius norm defined

as ‖a‖ :=
√

tr(aT a).

Proof. Consider first (i). From the definition of the Metropolis kernel (6), one obtains

sup
x

|Psf(x) − Ps′f(x)| ≤ 2 sup
x

|f(x)|

∫

X

|qs(x) − qs′(x)|dx.

For (ii), Proposition 12 of [1] shows that for any r ∈ [0, 1] it holds that

‖Psf − Ps′f‖V r ≤ 2 ‖f‖V r

∫

X

|qs(x) − qs′(x)|dx
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so it is sufficient to consider only the total variation of the proposal distributions.
As in [10] and [1], one can write

∫

X

|qs(x) − qs′(x)|dx =

∫

X

∣

∣

∣

∣

∫ 1

0

d

dt
qst(x)dt

∣

∣

∣

∣

dx.

where st := s′ + t(s − s′). Let us compute

d

dt
qst(x) = − tr

(

s−1
t (s − s′)

)

qst(x) + | det(st)|
−1q̂′(‖s−1

t x‖)
d

dt
‖s−1

t x‖

and

d

dt
‖s−1

t x‖ = −

(

s−1
t x

‖s−1
t x‖

)T

s−1
t (s − s′)s−1

t x.

Since s − s′ and st are symmetric and st positive definite, it holds that | tr
(

s−1
t (s −

s′)
)

| ≤ tr(s−1
t ) max1≤i≤d |λi| ≤ tr(s−1

t )‖s − s′‖ where λi are the eigenvalues of s − s′.
Since the Frobenius norm is sub-multiplicative,

∫

X

|qs(x) − qs′(x)|dx

≤ sup
t∈[0,1]

(

tr(s−1
t ) + | det(st)|

−1‖s−1
t ‖2

∫

X

‖x‖
∣

∣q̂′(‖s−1
t x‖)

∣

∣ dx

)

‖s − s′‖

≤

(

dκ−1 + κ−ddκ−2cd sup
‖u‖=1, t∈[0,1]

∫ ∞

0

rd|q̂′(r‖s−1
t u‖)|dr

)

‖s − s′‖

≤ c1λ
c2‖s − s′‖

by polar integration and Assumption 17 (ii), where λ is the maximum eigenvalue of
s and s′. Clearly, λ ≤ max{‖s‖, ‖s′‖} concluding the proof. �

Lemma 28. Suppose the template proposal density q is given as q(z) = cq̂(‖Σ−1z‖)
where c > 0 is a constant and Σ ⊂ R

d×d is a symmetric and positive definite matrix,
and

(i) q̂(x) = e−x2/2, or
(ii) q̂(x) = (1 + x2)−d/2−γ for some γ > 0.

That is, q is a (multivariate) Gaussian or Student distribution, respectively. Then, q
satisfies Assumption 17.

Proof. Consider first (i). Assumption 17 (i) is implied by [20, Lemma 17]. For
Assumption 17 (ii), let θ0 > 0.

∫ ∞

0

rd|q̂′(θ−1r)|dr = θ−1

∫ ∞

0

rd+1e−
r2

2θ2 dr = cdθ
d+1

∫ ∞

0

u
d
2 e−udu ≤ cθd+1

0

for all 0 < θ < θ0 with c = c(d) > 0.
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Assume then that q̂ has the form (ii) and fix an ǫ > 0. By the mean value theorem,
denoting c1 := d + 2γ and α := d/2 + γ + 1, one can write for some ǫ′ ∈ [0, ǫ]

q̂′(x) − 2q̂′(x + ǫ) ≥ c1x

(

2

(1 + (x + ǫ)2)α
−

1

(1 + x2)α

)

= c1x

(

1

(1 + (x + ǫ)2)α
−

2αǫ(x + ǫ′)

(1 + (x + ǫ′)2)α+1

)

≥
c1x

(1 + (x + ǫ)2)α

(

1 − 2αǫ

(

1 + (x + ǫ)2

1 + (x + ǫ′)2

)α)

> 0

for all x > 0, whenever ǫ > 0 is sufficiently small, showing Assumption 17 (i). Let us
compute

∫ ∞

0

rd|q̂′(θ−1r)|dr = c1

∫ ∞

0

rd+1θ−1dr

(1 + θ−2r2)α
= c1θ

d+1

∫ ∞

0

ud+1du

(1 + u2)α
≤ c3θ

d+1
0

for any 0 < θ < θ0, where the constant c3 = c3(d, γ) < ∞. �
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