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Abstract

We investigate dynamical behavior of the equation of state of dark energy wde by employing the

linear-spline method in the region of low redshifts from observational data (SnIa, BAO, CMB and

12 H(z) data). The redshift is binned and wde is approximated by a linear expansion of redshift

in each bin. We leave the divided points of redshift bins as free parameters of the model, if wde

changes its evolution direction in the considered region of redshift, the best-fitted values of divided

points will represent the turning positions of wde. These turning points are natural divided points

of redshift bins, and wde between two nearby divided points can be well approximated by a linear

expansion of redshift. We only find two turning points of wde in z ∈ (0, 1.8) and one turning point

in z ∈ (0, 0.9), and wde(z) could be oscillating around w = −1. Moreover, we find that there is a

2σ deviation of wde from −1 around z = 0.9 in both correlated and uncorrelated estimates.
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I. INTRODUCTION

It has been more than ten years since our universe was found to be in accelerating expan-

sion [1]. A dominated and uniformly distributed energy component of the universe, called

dark energy (DE), should be responsible for the acceleration. Plenty of DE models have

been proposed [2–6]. The simplest cosmological model is ΛCDM model, which contains a

cosmological constant as dark energy. While ΛCDM model is still consistent well with all

observational data, a lot of efforts have been made to find out whether DE is time-evolving

or is just the cosmological constant. To do that, several parameterizations of equation of

state (EoS) of DE have been proposed to fit with observational data, such as the ansatz

wde = w0 + w′z [7], the EoS expanded by redshift, and the CPL parametrization [8, 9]

wde = w0 + waz/(1 + z), expanded by scale factor. Both of them contain two free param-

eters: w0, the present value of EoS, and w′ or wa, represents the time evolution of EoS.

Clearly, constraints of EoS obtained by using these parameterizations are model-dependent.

Given an unreal assumption of EoS of DE, one may lead to wrong conclusions. Some

model-independent methods have also proposed [10–13], such as the widely-used uncorre-

lated bandpower estimates (UBE) [11, 14], in which the redshift is binned and wde is assumed

as a constant in each redshift bin. Note that the UBE method just approximates the actual

wde by an averaged constant in each bin if DE is dynamical. If there are sufficient data,

wde(z) can be accurately reconstructed. However, current data could only support a few

bins, thus UBE is always used to test the deviation of wde from the cosmological constant

and used as a supplementary for the parameterizations of wde. Note that the cubic-spline

interpolation has been also proposed to study the binned wde(z) [15, 16]. However, no con-

vincing evidence of dynamic DE has been found [15–17]. In addition, let us note that the

ansatz, wde = w0+w′z, of redshift expansion and CPL parametrization exclude the possibil-

ity of an oscillation EoS, if they are used to fit the whole expansion history of the universe.

While the UBE method needs enough bins to reveal the real dynamical behavior of DE, the

errors will get larger as the number of bins increases.

In this paper, we would like to probe the dynamical behavior of wde by using the linear-

spline method. We will approximate wde in each redshift bin by a linear function w =

w0+w′z, and require that wde(z) is continuous in the region under consideration. Since the

most of data we used (e.g., SnIa data) are with low redshift, we will focus on the region of
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low redshift, such as z ∈ (0, 0.9) and z ∈ (0, 1.8). In such regions, the width of redshift bins

is small enough that the linear expansion could be a better approximation of wde(z) than a

constant in each bin. When fitting with the observational data, we leave the divided positions

of bins zi as free parameters. Since the linear function is monotonic, the best-fitted zi can

represent the turning points of wde(z) if wde(z) is non-monotonic or is not linear enough in

that region. Actually we do find some turning points of wde from observational data, and the

constructed wde(z) just turns its evolution direction at the best-fitted positions of zi. In this

way, we only need to divide redshift into a few bins, the turning points are natural divided

points of redshift and wde between two nearby points can be accurately reconstructed by

linear expansion. Compared to the cubic-spline method, the linear-spline (LS) method can

find the more accurate turning positions of wde and reduce the errors due to less the number

of bins. The LS method is also nearly model-independent, like the piecewise constant and

cubic-spline method. Replacing the linear expansion by CPL parametrization in each bin,

we have reached the almost same results.

For the current status of observational data, LS method may be more suitable to study

wde than the piecewise constant and the cubic spline method. If DE is dynamical or even

oscillating, by using the LS method it should be more possible to find deviations from the

cosmological constant, at the turning points the deviation from −1 should be more explicit.

If DE is just the cosmological constant, it seems more confident if the best-fitted linear

expansions construct an w = −1 line, while the oscillation of wde around w = −1 could

disappear by averaging with the piecewise constant method. Compared to the piecewise

constant case, the only price we pay is that there is one more parameter in the LS method if

the number of bins is the same in two cases. Compared to the cubic spline method, the form

of wde(z) in each bin only depends on values of wde at two boundaries, thus the parameters

in wde(z) will not be heavily correlated. Furthermore, the cubic-spline method seems not

suitable for finding the turning points of wde. In all, the LS method could reconstruct wde

explicitly by using the least number of bins, and errors of the parameters from observational

data will be small, compared to the case with more bins.

The paper is organized as follows. In section II we introduce in detail the method we

will use and construct corresponding cosmological models. In section III, we show how to fit

our model with 397 Constitution SnIa sample [18], BAO data from SDSS DR7 [19], CMB

datapoints (R, la, z∗) from WMAP5 [20] and 12 Hubble evolution data [21, 22]. The fitting
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results are presented in section IV. We give our conclusions and discussions in section V.

II. METHODOLOGY

To fit models with observational data, we need to know the form of Hubble function H(z)

(or E(z) = H(z)/H0). In a flat FRW universe

E2(z) =
H2(z)

H2
0

= Ω(0)
r (1 + z)4 + Ω

(0)
b (1 + z)3 + Ω

(0)
dm(1 + z)3 + Ω

(0)
de F (z), (1)

where Ω
(0)
r , Ω

(0)
b , Ω

(0)
dm and Ω

(0)
de are present values of the dimensionless energy density for

radiations, baryons, dark matter and dark energy, respectively, and Ω
(0)
r + Ω

(0)
b + Ω

(0)
dm +

Ω
(0)
de = 1. The energy densities of baryons and dark matter are always written together as

Ω
(0)
b (1 + z)3 +Ω

(0)
dm(1 + z)3 = Ω

(0)
m (1 + z)3. The radiation density is the sum of photons and

relativistic neutrinos[20]:

Ω(0)
r = Ω(0)

γ (1 + 0.2271Nn),

where Nn is the number of neutrino species and Ω
(0)
γ = 2.469× 10−5h−2 for Tcmb = 2.725K

(h = H0/100 km · s−1). The evolving function F (z) for DE depends on wde(z):

F (z) = e3
∫
z

0

1+wde

1+x
dx. (2)

For example,

F (z) = (1 + z)3(1+w0+wa)e−
3waz

1+z ,

for the CPL parametrization and F (z) = 1 for wde = −1, respectively. Here we divide

z ∈ (0,∞) into m+ 1 bins and assume wde(z) in the first m bins as

wde(zn−1 < z ≤ zn) = wn−1 + w′
n × (z − zn−1) , (1 ≤ n ≤ m) (3)

and require wde(z) to be continuous at divided points:

wn = wn−1 + w′
n × (zn − zn−1) , (1 ≤ n ≤ m− 1) (4)

Note that here “ ′ ” does not represent a derivative, instead w′
n is just the slope of the linear

expansion in the nth bin. Thus the independent parameters are

w0, w
′
1, w

′
2, ..., w

′
n, ..., w

′
m (5)
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where the total number of parameters is 1 +m with m ≥ 1. Alternatively, we can express

the wde as

wde(zn−1 < z ≤ zn) = w(zn−1) +
w(zn)− w(zn−1)

zn − zn−1
(z − zn−1) , (1 ≤ n ≤ m) (6)

Now the parameters become w(zn)’s, which are values of wde at the divided points and

boundaries zn (0 ≤ n ≤ m) . In this case we have

F (zn−1 < z ≤ zn) = e
3{[w(zn−1)−w(0)]+

w(zn)−w(zn−1)

zn−zn−1
(z−zn−1)}

(
1 + z

1 + zn−1

)3
w(zn−1)(1+zn)−w(zn)(1+zn−1)

zn−zn−1

×(1 + z)3
n−1∏

i=1

(
1 + zi
1 + zi−1

)3
w(zi−1)(1+zi)−w(zi)(1+zi−1)

zi−zi−1

, (1 ≤ n ≤ m) (7)

where we have used z0 = 0. For wde in the last bin z ∈ (zm,∞), we set it to be a constant

wL, and

F (z > zm) = F (zm)(1 + z)3(1+wL) (8)

Now the formula for H(z) is ready.

There is one more thing to be mentioned: once we have fitted our model with the data

introduced in the next section, the errors of w(zi) are correlated. Though there are different

interpretations for errors of correlated and uncorrelated parameters [23], we will also show

results of the uncorrelated parameters. The uncorrelated technique we adopt from [11] is as

follows.

1. Get the covariance matrix

C = 〈WW T 〉 − 〈W 〉〈W T 〉 (9)

where W is the vector of w(zi). The Fisher matrix F is defined by F = C−1.

2. Diagonalize the Fisher matrix by an orthogonal matrix O

F = OTΛO, (10)

where Λ is diagonal.

3. Define a new matrix U as

U = OTΛ1/2O, (11)

and normalize U so that the sum of its each row is equal to 1.

4. Define new parameters qi by q = UW , where qi are components of the vector q.
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Clearly for the case of w(z) = −1 (i.e., the cosmological constant case), we will have

qi = −1. The covariance of new parameters is

〈(qi − 〈qi〉)(qj − 〈qj〉)〉 =
δij∑

a(F
1/2)ia

∑
b(F

1/2)jb
. (12)

In this way the errors of the new parameters qi are uncorrelated.

The uncorrelated parameters qi are linear combinations of w(zi), and the coefficients are

just row elements of U . The transformation matrix U constructed in this method ensures

that most of the coefficients are positive. So most of coefficients are in (0, 1). In this way,

the original correlated parameters are weighted averaged, which leads to the uncorrelated

parameters qi. As a result, if wde is of the quintom form, the uncorrelated wde always looks

more consistent with the cosmological constant than the correlated one.

III. SETS OF OBSERVATIONAL DATA

We will fit our model by employing some observational data including SnIa, BAO,

CMB and Hubble evolution data. The data for SnIa are the 397 Constitution sam-

ple [18]. χ2
sn for SnIa is obtained by comparing theoretical distance modulus µth(z) =

5 log10[(1 + z)
∫ z

0
dx/E(x)] + µ0 ( µ0 = 42.384− 5 log10 h ) with observed µob of supernovae:

χ2
sn =

397∑

i

[µth(zi)− µob(zi)]
2

σ2(zi)
(13)

To reduce the effect of µo, we expand χ2
sn with respect to µ0 [24]:

χ2
sn = A + 2Bµ0 + Cµ2

0 (14)

where

A =
∑

i

[µth(zi;µ0 = 0)− µob(zi)]
2

σ2(zi)
,

B =
∑

i

µth(zi;µ0 = 0)− µob(zi)

σ2(zi)
, C =

∑

i

1

σ2(zi)
(15)

Eq. (14) has a minimum as

χ̃2
sn = χ2

sn,min = A−B2/C

which is independent of µ0. We will adopt χ̃2
sn as the chi-square between theoretical model

and SnIa data.
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The second is the Baryon Acoustic Oscillations (BAO) data from SDSS DR7 [19], the

datapoints we use are
rs(zd)

DV (0.275)
= 0.1390± 0.0037 (16)

and
DV (0.35)

DV (0.2)
= 1.736± 0.065 (17)

where rs(zd) is the comoving sound horizon at the baryon drag epoch [25], and

DV (z) =

[(∫ z

0

dx

H(x)

)2
z

H(z)

]1/3

(18)

encodes the visual distortion of a spherical object due to the non Euclidianity of a FRW

space-time.

The CMB datapoints we will use are (R, la, z∗) from WMAP5 [20]. z∗ is the redshift of

recombination [26], R is the scaled distance to recombination

R =

√
Ω

(0)
m

∫ z∗

0

dz

E(z)
, (19)

and la is the angular scale of the sound horizon at recombination

la = π
r(a∗)

rs(a∗)
, (20)

where r(z) =
∫ z

0
dx/H(x) is the comoving distance and rs(a∗) is the comoving sound horizon

at recombination

rs(a∗) =

∫ a∗

0

cs(a)

a2H(a)
da, a∗ =

1

1 + z∗
(21)

where the sound speed cs(a) = 1/
√
3(1 +Rba) and Rb = 3Ω

(0)
b /4Ω

(0)
γ is the photon-baryon

energy density ratio.

The χ2 of the CMB data is constructed as:

χ2
cmb = XTC−1

M X (22)

where

X =




la − 302.1

R− 1.71

z∗ − 1090.04


 (23)
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and the inverse covariance matrix

C−1
M =




1.8 27.968 −1.103

27.968 5667.577 −92.263

−1.103 −92.263 2.923


 (24)

The fourth set of observational data is 12 Hubble evolution data from [21] and [22], its

χ2
H is defined as

χ2
H =

12∑

i=1

[H(zi)−Hob(zi)]
2

σ2
i

. (25)

Note that redshifts of these data fall in the region z ∈ (0, 1.75).

IV. FITTING RESULTS

A. Model I

At first, we divide the whole region of redshift into 4 bins (i.e., m = 3), the divided points

and boundaries are (0, z1, z2, 1.8,∞), where z1 and z2 are left as free parameters of the model,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-2

-1

0

1

2

z

w
de

FIG. 1: The best-fitted wde for Model I (blue, solid), Model II (red, dashed) and the CPL model

(green, dotted), the black line is for w = −1.
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and 0 < z1 < z2 < 1.8. In the fourth bin we set wL = −1. It means that we divide the region

with z ∈ (0, 1.8) into 3 bins and seek for two possible turning points of wde(z) in this region.

The reconstructed wde of the best-fitted model is shown in Fig. 1, which indicates that there

exist (at least) two turning points of wde in z ∈ (0, 1.8) and the best-fitted values z1 = 0.44

and z2 = 1.07. Here χ2
min = 467.410 for the best-fitted parameters, roughly speaking it is

a good improvement, compared with the corresponding χ2
min = 478.407 for the best-fitted

CPL model and χ2
min = 479.092 for the ΛCDM model. It implies that the data favor wde to

turn its evolution direction around z = 0.44 and z = 1.07, respectively. Of course this result

also implies that there exists the possibility with an oscillating EoS. Note that the error bar

of wde in the third bin is larger than those in the first two bins because the data points in

that bin are much less.

We have also divided the region of z ∈ (0, 1.8) into 4 bins, but found no more turning

points of wde in this region and there is almost no improvement of χ2
min compared to the

case of 3 bins.

TABLE I: The best-fitted parameters for Model I.

parameters h Ω
(0)
b Ω

(0)
m z1 z2 w(0) w(z1) w(z2) w(1.8) wL

best-fitted values 0.688 0.049 0.279 0.44 1.07 -0.63 -1.57 2.28 -16.84 {-1}

B. Model II

As data points with z > 1 are rather less than those with z < 1, to see clearly the

evolution behavior of EoS in the region of low redshift, we now focus on the region with

z ∈ (0, 0.9), avoiding the possible turning point around z = 1, and set the divided points as:

(0, z1, 0.9,∞), i.e.,

wde(z) =






w(0) + w(z1)−w(0)
z1

z , 0 < z ≤ z1

w(z1) +
w(0.9)−w(z1)

0.9−z1
(z − z1) , z1 < z ≤ 0.9

−1 , 0.9 < z < ∞

(26)

In this case, we obtain the best-fitted tuning point z1 = 0.45, and the best-fitted wde(z) is

shown in Fig. 1 (the red, dashed line) which almost coincides with the best-fitted wde(z)

of Model I in z ∈ (0, 0.9). This indicates that the data favor wde(z) to turn its evolution
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z
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wL = -1

wL = -1

wL unfixed

wL unfixed

uncorrelated
uncorrelated

FIG. 2: 1σ and 2σ errors of wde in Model II. Left panels are for the model with wL = −1 and right

panels are with wL unfixed, top panels are for correlated parameters in wde(z) and the bottom

panels are for uncorrelated ones.

direction around z = 0.45, and favor an EoS with crossing the cosmological constant (w =

−1) [27]. Then we obtain 1σ and 2σ errors of parameters (shown in Fig. 2) by using the

MCMC method. Here we have fixed z1 = 0.45 in the process to obtain the errors of the

parameters.

We see from the upleft panel of Fig. 2 that there are deviations of wde from −1 around

z = 0 and z = 0.45 beyond 1σ, and around z = 0.9 the deviation is beyond 2σ. We

uncorrelate the parameters in wde(z) by using the technique introduced in section II. The

uncorrelated errors are shown in the bottom left panel of Fig. 2. In that case, there are no

more explicit deviations from −1 around z = 0 and z = 0.45, however, there is still a 2σ

deviation from −1 around z = 0.9.

One may suspect that the explicit derivations are caused due to the fact that we have

fixed the value of wde as wL = −1 in the third bin. To check this, we consider the case

with an unfixed wL. Two right panels of Fig. 2 show the correlated and uncorrelated results

for the case with an unfixed wL. We see that in this case, there is even larger deviation
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FIG. 3: Likelihoods and weight functions of uncorrelated parameters qi and corresponding weight

functions. The left panels are for the model with wL = −1 and the right panels are for that with

wL unfixed.

from −1 around z = 0.9. We have also used the CPL parametrization to replace the linear

expansion in each bin, and found that the errors are almost the same as those in the case of

the linear expansion and there is still a deviation of wde from −1 around z = 0.9. We have

more discussions on this in the last section. In Fig. 3 we plot the likelihoods and weight

functions of the uncorrelated parameters qi. It is shown that the parameters of wde are not

heavily correlated.

TABLE II: The best-fitted parameters and 2σ errors for Model II with wL fixed to −1 or unfixed.

ML is for “Maximum Likelihood”, and the value in {} means this parameter has been fixed.

parameters h Ω
(0)
b Ω

(0)
m z1 w(0) w(z1) w(0.9) wL

best-fitted values 0.684 0.050 0.282 0.45 -0.63 -1.59 1.24 {-1}

ML and 2σ errors 0.684+0.025
−0.026 0.050+0.004

−0.003 0.286+0.03
−0.03 {0.45} −0.64+0.44

−0.38 −1.64+0.72
−0.72 1.23+1.97

−2.09 {-1}

best-fitted values 0.687 0.049 0.280 {0.45} -0.59 -1.69 2.54 -1.72

ML and 2σ errors 0.687+0.027
−0.026 0.049+0.004

−0.004 0.285+0.033
−0.030 {0.45} −0.57+0.41

−0.42 −1.70+0.69
−0.79 3.03+2.58

−3.66 −1.77+1.78
−2.87
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We have also divided z ∈ (0, 0.9) into three bins, to see whether there exist two turning

points of wde in this region. We found that with the additional 2 parameters (z2 and w(z2)),

there is almost no improvement of χ2
min, compared to the 2 bins case (Model II). This

indicates that there is no more turning points and wde(z) can be well approximated by just

two linear expansions in the region z ∈ (0, 0.9). Of course, there is another possibility that

the current data are not enough to find out more turning points.

V. CONCLUSIONS AND DISCUSSIONS

In this paper we have investigated the dynamical behavior of the EoS of DE in the region

of low redshift in a nearly model-independent way. The redshift in that region is binned and

wde in each bin is approximated by a linear expansion of redshift z, and in the large redshift

region we set wde to be a constant wL. While fitting the model with some observational data

which include SnIa, BAO, CMB and Hubble evolution data, we leave the divided points of

bins as free parameters. If the evolution of wde is not monotonous, or is not linear enough

in the region under consideration, the best-fitted divided points will represent the turning

points, where wde changes its evolution direction significantly. In this way we can explicitly

reconstruct wde by using a few bins, and the errors of parameters from observational data

will be small due to the small number of bins. First we have tried to find the turning points

within the region of redshift z ∈ (0, 1.8), and set wL = −1 in the region z ∈ (1.8,∞) (Model

I). Our results show that the data favor two turning points of wde in z ∈ (0, 1.8), and wde

may have an oscillation form [28]. Our results are consistent with those by the UBE method

in [29].

Since the main data points are in z ∈ (0, 1) and our result in Model I shows there may be

a turning point around z ∼ 1, to see clearly the dynamical behavior of EoS in that region,

we have focused on the region z ∈ (0, 0.9) in Model II. We have found one turning point

only in z ∈ (0, 0.9), the reconstructed wde in the best-fitted model is almost the same as

that reconstructed in Model I in z ∈ (0, 0.9). We have also obtained the errors of wde at 1σ

and 2σ in z ∈ (0, 0.9). In both correlated and uncorrelated estimates with a fixed wL = −1

or an unfixed constant wL, we found that there is a 2σ deviation of wde from −1 around

z = 0.9.

It is interesting to see whether the deviation of EoS from −1 around z = 0.9 is physical,
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or is caused by some unknown technical causes in fitting. If it is physical, it then clearly

shows that DE is dynamical. But in UBE of wde there seems no such distinct deviation

around z = 0.9, it may be due to the difference between the discontinuity of wde in the

piecewise constant case and the continuity in LS case [30]. In [16], where the cubic-spline

method is used, there is also no such an explicit deviation around z = 0.9, but it is likely due

to its set of EoS in the last bin wL = w(1): to fit well with the data of z > 1, w(1) should

be much minus, which would suppress the reconstructed wde around z = 1. Of course, it

is also possible that such a big deviation around z = 0.9 is due to the non-smoothness of

wde at the divided points in our LS method. In the LS method, wde is continuous, but not

smooth at the divided points, i.e., its derivative is not continuous in these points. In fact,

the wde in LS method can be smoothed at the divided points, such as:

wde(z) = w0 +
m∑

i=1

w′
i − w′

i−1

2
(z +∆ ln

cosh( z−zi−1

∆
)

cosh(zi−1/∆)
), (27)

where w′
i is the slope of linear expansion in the ith bin (i ≥ 1 and w′

0 = 0), and ∆ is related

to the smoothed extent at the divided points. With this parameterization, one can still find

out the turning positions of wde that are favored by observational data, and perturbations

of DE can be calculated.

Furthermore our results are also dependent on the data set we have used [31]. For

example, though there is still a 2σ deviation at z = 0.9 by using the widely-used data

set SnIa + CMB-shift R + BAO parameter A[32], now the best-fitted turning point in

z ∈ (0, 0.9) changes to z = 0.39. Whatever, from the observational data we have used, a big

deviation of wde from −1 around z = 0.9 is found. Unlike the deviations around z = 0 and

z = 0.45, this deviation around z = 0.9 does not to be reduced in the uncorrelated estimate.

At least, our result shows that if DE is dynamic it is more possible to find the deviation of

wde from −1 around this position of redshift.

If the EoS of DE is indeed of an oscillating behavior around −1, it is then not surprised

that the cosmological constant always fits well with observational data because the oscillating

behavior could be smeared in the luminosity distance. However, if the oscillation region of

wde is wide enough (like the case of our best-fitted wde in Model I), DE may be distinguished

confidently from the cosmological constant by more precise astronomical observations in the

next generation. In addition, let us mention that an oscillating behavior of wde is also

possibly due to some systematic errors in observational data, or due to some interactions
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between DE and dark matter [33].
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