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Abstract

We construct a general family of supersymmetric solutions in time- and space-dependent
wave backgrounds in general supergravity theories describing single and intersecting p-branes
embedded into time-dependent dilaton-gravity plane waves of an arbitrary (isotropic) profile,
with the brane world-volume aligned parallel to the propagation direction of the wave. We
discuss how many degrees of freedom we have in the solutions. We also propose that these so-
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1 Introduction

The understanding of the fundamental nature and quantum properties of spacetime is one of
the most important questions in theoretical physics. An example of such problems is the space-
time singularities that general relativity predicts especially in time-dependent setting. How-
ever, time-dependent solutions are rather difficult subject in the effective string theories [1]-[6].
Dilaton-gravity plane waves provide a rare example of tractable strongly curved (possibly singu-
lar) time-dependent space-time backgrounds. They also allow a formulation of (time-dependent)
matrix theories of quantum gravity [7]-[36]. Other time-dependent brane solutions, though non-
supersymmetric, are discussed in [37, 38].

Brane supergravity solutions also plays important role [39]-[43], since they lead to the formu-
lation of the AdS/CFT correspondence. Hence, it is important to derive supergravity p-branes
embedded into dilaton-gravity plane waves.

In a recent paper [44], the simplest of these solutions which are supersymmetric configurations
corresponding to time-dependent extremal p-branes aligned along the propagation direction of
the plane wave were obtained generalizing earlier work [6, 29]. These solutions are restricted to
single brane solutions. It has been known that this class of solutions can be extended to much
more general intersecting brane configurations, and it would be interesting to see if the solutions
can be generalized to such general configurations.

In our previous paper [36], we have given closely related solutions for intersecting branes with
wave, but we gave supersymmetric solutions without wave as examples of our solutions. This
actually restrict possible solutions considerably. In this paper we revisit this class of solutions,
and show that our previous solutions actually give a very general family of solutions which are
wider than those for single brane in Ref. [44]. Our solutions involve many arbitrary functions and
we examine how many degrees of freedom we have. We also discuss some physical applications of
these solutions to black hole physics. In particular, we consider intersecting D1-D5 brane system,
and show that we can effectively compactify it to five dimensions though close to the possible
horizon six-dimensional nature of the solution reappears.

This paper is organized as follows. In the next section, we briefly summarize our solutions
derived in our previous paper [36], where we set wave profile to zero. This gave a strong restriction
on the solutions. However, here we show that relaxing this condition we can obtain much more
general solutions including those in Ref. [44]. In sect. 3, we discuss examples of single brane and
two intersecting brane solutions, and use coordinate reparametrization to count the number of
arbitrary functions involved in the solutions. This shows that our solutions are quite general
one. In sect. 4, we discuss D1-D5 system as an example. We show that this can be effectively
compactified to five dimensions by using periodic functions in one of the light-like coordinates.
Still we show that we can avoid closed time-like curve by choosing suitable parameters in the
compactification. This produces a black hole system which looks like a fluctuating black hole.
Close to the horizon, the solution exhibits six-dimensional nature as is usual for any compactified
theory. We calculate Ricci scalar curvature and Kretschmann invariant of this black hole and
find that there is no curvature singularity at the “horizon” in six dimensions. There remain
several interesting questions in this kind of solutions, but we only mention some of these, leaving
detailed study for future. The final section is devoted to concluding remarks.
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2 Time-dependent brane system in supergravity

The low-energy effective action for the supergravity system coupled to dilaton and nA- form field
strength is given by

I =
1

16πGD

∫

dDx
√

− g

[

R− 1

2
(∂Φ)2 −

m
∑

A=1

1

2nA!
eaAΦF 2

nA

]

, (2.1)

where GD is the Newton constant in D dimensions and g is the determinant of the metric. The
last term includes both RR and NS-NS field strengths, and aA = 1

2(5−nA) for RR field strength
and aA = −1 for NS-NS 3-form. In the eleven-dimensional supergravity, there is a four-form and
no dilaton. We put fermions and other background fields to be zero.

We take the following metric:

ds2D = e2Ξ(u,r)
[

−2dudv +K(u, r)du2
]

+

d−2
∑

α=1

e2Zα(u,r)(dyα)2 + e2B(u,r)
(

dr2 + r2dΩ2
d̃+1

)

, (2.2)

whereD = d+d̃+2, the coordinates u, v and yα, (α = 1, . . . , d−2) parameterize the d-dimensional
worldvolume where the branes belong, and the remaining d̃ + 2 coordinates r and angles are
transverse to the brane worldvolume, dΩ2

d̃+1
is the line element of the (d̃+1)-dimensional sphere.

Note that u and v are null coordinates. The metric components Ξ, Zα, B and the dilaton Φ and
K are assumed to be functions of u and r. In our previous paper [36], we took K depending on
yα as well, but this dependence is dropped for simplicity. For the field strength backgrounds, we
take

FnA
= E′

A(u, r) du ∧ dv ∧ dyα1 ∧ · · · ∧ dyαqA−1 ∧ dr, (2.3)

where nA = qA + 2. Throughout this paper, the dot and prime denote derivatives with respect
to u and r, respectively. The ansatz (2.3) means that we have an electric background. We could,
however, also include magnetic background in the same form as the electric one.

In our previous paper [36], we have shown that the solutions to the field equations are given
by

ds2D =
∏

B

H
2(qB+1)

∆B

B

[

e2ξ(u)
∏

A

H
−

2(D−2)
∆A

A

(

−2dudv +K(u, r)du2
)

+
d−2
∑

α=1

∏

A

H
−

2γ
(α)
A

∆A

A e2ζα(u)(dyα)2 + e2β(u)
(

dr2 + r2dΩ2
d̃+1

)

]

,

EA =

√

2(D − 2)

∆A
H−1

A , Φ =
∑

A

ǫAaA(D − 2)

∆A
lnHA + φ(u), (2.4)

where HA is a harmonic function

HA = hA(u) +
QA

rd̃
, (2.5)

with hA being an arbitrary function of u and QA a constant, ǫA = +1(−1) is for electric (mag-
netic) backgrounds and

γ
(α)
A =

{

D − 2
0

for

{

yα belonging to qA-brane
otherwise

. (2.6)
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We have two constraints still to be satisfied:

ǫAaAφ+ 2
∑

α∈/qA

ζα + 2d̃β = 0, (2.7)

(

rd̃+1K ′

)

′

= −2e−2(ξ−β)rd̃+1
∏

A

H
2(D−2)/∆A

A [W (u, r) + V (u)] , (2.8)

where

W (u, r) ≡
∑

A,B

(D − 2)2

∆A∆B

( ∆A

D − 2
δAB + 2

)

(lnHA)
·(lnHB)

· + 2
∑

A

D − 2

∆A
(lnHA)

··

+ 4(D − 2)(β̇ − ξ̇)
∑

A

(lnHA)
·

∆A
, (2.9)

V (u) ≡
d−2
∑

α=1

(

ζ̈α + ζ̇2α

)

+ (d̃+ 2)
(

β̈ + β̇2
)

− 2ξ̇

[

d−2
∑

α=1

ζ̇α + (d̃+ 2)β̇

]

+
1

2
(φ̇)2 , (2.10)

In our previous paper [36], we first chose K and then solved Eq. (2.8). This gave rather strong
constraints on possible solutions. However we can obtain more general solutions if Eq. (2.8) is
regarded as the equation for K when other metric functions are given, which is an elliptic type
differential equation with respect to r. Here we generalize our previous solutions [36] in this
viewpoint. This approach has recently been taken in Ref. [44] for a single brane. Our solutions
here include single and intersecting brane solutions as well as wider solutions including more
arbitrary functions than those in [44].

3 Solutions with time-dependent harmonic functions

In this section, we present nontrivial solutions with both r- and u-dependent harmonic functions
HA in (2.5).

Before presenting our solutions, we discuss gauge freedom of null-coordinate transformation.
Under the coordinate transformation

u = X(ũ) , v = ṽ + Y (ũ) , (3.1)

where X and Y are arbitrary functions of u, we recover the same solution (2.4), (2.5), (2.7), and
(2.8), by replacing K and ξ with

K̃(ũ, r) = K(X(ũ), r)
dX

dũ
− 2

dY (ũ)

dũ
. (3.2)

ξ̃(ũ) = ξ(X(ũ)) +
1

2
ln

(

dX

dũ

)

, (3.3)

respectively. Using X and Y , we can gauge away ξ and a function of u in K in our solutions.
We will discuss more details of this procedure in the concrete examples shortly.

For all branes in M-theory and superstring theories, we have the following relation

2(D − 2)

∆A
= 1 . (3.4)

In what follows, we assume this relation. In the following subsections, we present concrete
examples of a single-brane and two intersecting-brane systems.

3



3.1 Single brane

We first consider a single A-brane. In this case, (2.8) gives

(

rd̃+1K ′

)

′

= −2e−2(ξ−β)
[

rd̃+1
(

ḧA + 2(β̇ − ξ̇)ḣA + V (u)hA

)

+QAV (u)r
]

, (3.5)

upon substituting (2.5) and sorting out the terms in the orders of r. We can integrate (3.5) to
obtain

K(u, r) =
A1(u)

2(d̃ + 2)
r2 − B1(u)

2(d̃ − 2)
r−(d̃−2) − C1(u)

d̃
r−d̃ +D1(u) , (3.6)

where

A1(u) = −2e−2(ξ−β)
(

ḧA + 2(β̇ − ξ̇)ḣA + V (u)hA

)

(3.7)

B1(u) = −2e−2(ξ−β)QAV (u) (3.8)

and C1(u) and D1(u) are arbitrary functions of u.
In the present general solutions, we have (d + 4) arbitrary functions: the metric functions

ξ(u), ζα(u), β(u), the dilaton field φ(u), hA(u), C1(u) and D1(u). We also have one constraint
(2.7) for those functions. For a single brane, there is no ζα(α ∈/qA), so (2.7) gives

β(u) = −ǫAaA

2d̃
φ(u). (3.9)

Using the function Y in the above coordinate transformation, D1 can be gauged away. This was
also noted in Ref. [44]. On the other hand, X(ũ) can be used to gauge away ξ, or choose any
function of u as ξ. Hence there are (d+1) degrees of freedom in the present single brane system.
We note that the term C1 was not considered in Ref. [44]. For a single brane, it is natural to
take ξ and all ζα equal. Still we have four arbitrary functions.

If we set A1(u) = B1(u) = 0, we recover our previous solutions [36], while, if we set C1(u) = 0,
we find the solutions by Craps et al. [44]. Indeed, one can check that their solution corresponds
to the specific choice

hA(u) = e−f(u), ξ(u) = ζα = −11− p

8
f(u), β(u) =

p− 3

8
f(u), φ(u) =

7− p

4
f(u) (3.10)

with the correspondence (left is our notation)

qA ↔ p, d− 1 ↔ p, d̃ ↔ 7− p, (3.11)

with only one arbitrary function f(u), whereas ours have four.
As an example, let us consider D3-brane (d = 4). In this case, aA = 0 and we have five

arbitrary functions of u; ζ1, ζ2, φ, h3 and C1. If we set ξ = ζ1 = ζ2 = f(u)/2, we find the similar
solution in [20, 30], although h3 depends on u.

3.2 Intersecting two branes

Let us consider two intersecting branes A and B. In this case, (2.8) gives

(

rd̃+1K ′

)

′

= −2e−2(ξ−β)rd̃+1HAHB

[

ḣAḣB
HAHB

+
ḧA
HA

+
ḧB
HB

+ 2(β̇ − ξ̇)

(

ḣA
HA

+
ḣB
HB

)

+ V (u)

]

.

(3.12)
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Substituting (2.5) and sorting out the terms in the orders of r, we find

(

rd̃+1K ′

)

′

= A2(u)r
d̃+1 +B2(u)r +

C2(u)

rd̃−1
, (3.13)

where

A2(u) = −2e−2(ξ−β)
[

ḣAḣB + ḧAhB + ḧBhA + 2(β̇ − ξ̇)(ḣAhB + ḣBhA) + V hAhB

]

B2(u) = −2e−2(ξ−β)
[

ḧAQB + ḧBQA + 2(β̇ − ξ̇)(ḣAQB + ḣBQA) + V (hAQB + hBQA)
]

C2(u) = −2e−2(ξ−β)V QAQB (3.14)

Integrating Eq. (3.13), we find

K =
A2(u)

2(d̃ + 2)
r2 − B2(u)

2(d̃− 2)
r−(d̃−2) +

C2(u)

2(d̃− 2)(d̃− 1)
r−2(d̃−1) − D2(u)

d̃
r−d̃ + E2(u) , (3.15)

for the case that d̃ is not equal to 1 nor 2, where D2(u) and E2(u) are arbitrary functions. In
the cases of d̃ = 1 and 2, we find

K =
A2(u)

6
r2 +

B2(u)

2
r + C2(u) ln r −

D2(u)

r
+ E2(u) , (3.16)

and

K =
A2(u)

8
r2 +

1

2

(

B2(u)−
C2

r2

)

ln r − C2(u) + 2D2(u)

4r2
+ E2(u) , (3.17)

respectively. The latter case corresponds to an M2-M5 intersecting brane system. If we set
A2(u) = 0, B2(u) = 0 and C2(u) = 0, we again recover our previous solutions [36].

In the similar way to the single brane case, we shall gauge away E2 and ξ in what follows.
Compared with the single brane system, our intersecting brane system has additional functions
hB(u), but there is one additional constraint (2.7) for the additional brane. Hence we are again
left with (d+ 1) arbitrary functions in the present system.

Let us give some concrete examples. The D1-D5-brane is given by

ds2 = H
1
4
1 H

3
4
5

[

H−1
1 H−1

5 (−2dudv +K(u, r)du2) +H−1
5

4
∑

α=1

e2ζα(u)dy2α

+ e2β(u)(dr2 + r2dΩ2
3)
]

,

Φ = ln

(

H1

H5

)
1
2

+ φ(u) , (3.18)

where

HA = hA(u) +
QA

r2
(A = 1, 5) , (3.19)

and (3.17) without E2. It also follows from (2.7) that

β(u) =
1

4
φ(u) = −

4
∑

α=1

ζα(u). (3.20)
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This solution has seven arbitrary functions h1(u), h5(u), ζα(u), and D2(u) in K, while A2, B2,
and C2 in K are given by Eq. (3.14) with ξ = 0.

If we assume V (u) = 0, (2.7) together with (2.10) yields ζα = β = φ = 0. Then K(u, r) is
found to be

K(u, r) =
Ā2(u)

8
r2 +

B̄2(u)

2
ln r + D̄2(u)r

−2 , (3.21)

where

Ā2(u) ≡ −8

[

h
1
2
1

(

ḣ5h
1
2
1

)

·

+ h
1
2
5

(

ḣ1h
1
2
5

)

·
]

,

B̄2(u) ≡ −8
(

Q5ḣ1 +Q1ḣ5

)

·

, (3.22)

and D̄2(u) is an arbitrary function of u. In the case of B̄2 = 0, K is called asymptotically
Brinkmann form. There remain three arbitrary functions of u; h1(u), h5(u) and D̄2(u).

Next let us consider D2-D6-brane solution:

ds2 = H
3
8
2 H

7
8
6

[

H−1
2 H−1

6 (−2dudv +K(u, r)du2) +H−1
2 H−1

6 e2ζ1(u)(dy1)2

+ H−1
6

5
∑

α=2

e2ζα(u)dy2α + e2β(u)
(

dr2 + r2dΩ2
2

)

]

,

Φ =
1

4
lnH2 −

3

4
lnH6 + φ(u) . (3.23)

In this case, there are eight nontrivial u-dependent functions h2(u), h6(u),D2(u) and ζα(α =
1, . . . , 5) with

φ(u) =
4

3
β(u) = −

5
∑

α=2

ζα(u). (3.24)

4 A fluctuating “black hole”

In the static case, one can construct a black hole solution from the intersecting brane system via
compactification. Hence we may find a time-dependent black hole solution by compactifying the
present time-dependent intersecting brane systems[38, 45, 46]. We give a simple example of this
type.

Let us consider the simple case of D1-D5 intersecting brane system with

HA = 1 +
QA

r2
, and K =

2Qw(u)

r2
, (4.1)

where Qw is a function of u. This can be obtained for the choice h1 = h5 = 1 and D̄2 = −2Qw(u).
One can check Ā2(u) = B2(u) = 0 by (3.22) easily. Introducing new function Hw = 1+K(u, r)/2,
we find the metric

ds210 = H
−3/4
1 H

−1/4
5

[

−H−1
w dt2 +Hw

(

dz +
(Hw − 1)

Hw
dt

)2
]

+H
1/4
1 H

3/4
5

[

H−1
5

4
∑

α=1

dy2α + dr2 + r2dΩ2
3

]

, (4.2)
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where u = (t− z)/
√
2 and v = (t+ z)/

√
2.

In order to perform a compactification, we write our metric (4.2) as

ds210 =

(

H
−

1
12

1 H
5
12
5 H

−
1
3

w

)

ds25 +H
−3/4
1 H

−1/4
5 Hw

(

dz +
(Hw − 1)

Hw
dt

)2

+H
1/4
1 H

−1/4
5

4
∑

α=1

dy2α,

(4.3)

where

ds25 = −Ξ2
5dt

2 + Ξ−1
5 (dr2 + r2dΩ2

3), (4.4)

and Ξ5 = (H1H5Hw)
−1/3 gives the five-dimensional metric in the Einstein frame.

All toroidal yα-coordinates can be compactified, but the compactification of the z-coordinate
is not trivial. We have to impose a periodic condition on the metric functions, which explicitly
depend on z through the u-coordinate. Here we assume that the function Hw(u, r) is periodic in
the u direction. As a concrete example, we choose a periodic function as

Qw(u) = Q0

[

1 + ǫ cos

(√
2u

R

)]

, (4.5)

where R is a radius of the z-space and ǫ is a positive constant. If fact, the metric is invariant
under the discrete transformation of z → z + 2πnR (n ∈ Z). The explicit form of the metric
function Ξ5 is given by

Ξ5 =

[(

1 +
Q1

r2

)(

1 +
Q5

r2

)(

1 +
Q0

r2

[

1 + ǫ cos

(

t− z

R

)])]

−1/3

. (4.6)

In order to avoid a closed timelike curve, the z-direction must be spacelike. This condition
requires that ǫ ≤ 1; otherwise Hw becomes negative at least in the limit of r → 0, where we
expect a horizon. ǫ = 1 must be excluded because the charge Qw vanishes at u = πR/

√
2, when

a singularity may appear at r = 0. Hence we assume that 0 < ǫ < 1.
The metric (4.4) with (4.6) gives effectively a five-dimensional time-dependent spacetime

although it also depends on the z-coordinate. It describes an explicit example of a spacetime
excited by a pyrgon which may appear in Kaluza-Klein compactification[47, 48]. Since it is
asymptotically flat, one may define the “mass” of this object as

M =
π[Q1 +Q5 +Qw(u)]

4G5
, (4.7)

which oscillates in time. The surface of r = 0 is a candidate for horizon because it is the case
when the spacetime is static (ǫ = 0). Hence one may naively think that this spacetime describes
a time-dependent oscillating “black hole”. However the “mass” depends not only on time t but
also on the inner space coordinate z.

If the compactification radius R is small enough, we may not see z-dependence in a global
scale. Taking an average over the internal z-space, we find that the mean mass 〈M〉 is given by

〈M〉 = π(Q1 +Q5 +Q0)

4G5
. (4.8)

We may also find that the “mass” M fluctuates around this average value with the amplitude
√

〈(∆M)2〉
〈M〉 =

Q0ǫ√
2(Q1 +Q5 +Q0)

. (4.9)
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and the typical frequency ω =
√
2/R.

The Bekenstein-Hawking black hole entropy, which is proportional to the horizon area, may
also fluctuate around the averaged value

〈S〉 = 〈A〉
4G5

=
π2

√
Q1Q5Q0

2G5
(4.10)

with the amplitude
√

〈(∆S)2〉
〈S〉 =

ǫ√
2
. (4.11)

This spacetime describes a five-dimensional compact object in a global scale, but it shows fluc-
tuations near the “horizon” (r = 0). Hence it is not a deterministic five-dimensional spacetime.
We can regard it as a fluctuating “black hole”, but r = 0 may not be a true horizon.

Although this spacetime looks like a fluctuating “black hole” in five dimensions, it is a de-
terministic spacetime in six dimensions. In fact, when we approach the “horizon”, we will see
the internal compact z-space as well as the periodic time dependence. Hence the spacetime is
essentially six-dimensional, whose metric is given by

ds26 = Ξ6(r)
[

−2dudv +K(u, r)du2
]

+Ξ−1
6 (r)(dr2 + r2dΩ2

3), Ξ6(r) ≡ (H1H5)
−1/2 . (4.12)

It is obtained by compactification of all toroidal yα-coordinates in ten-dimensional spacetime as

ds210 = H
1/4
1 H

3/4
5

[

H−1
1 H−1

5 (−2dudv +K(u, r)du2) +H−1
5

4
∑

α=1

dy2α + (dr2 + r2dΩ2
3)

]

= H
−1/4
1 H

1/4
5 ds26 +H

1/4
1 H

−1/4
5

4
∑

α=1

dy2α . (4.13)

Although this spacetime is compact in the z-direction as well as in the toroidal yα-direction, the
z-direction is not homogeneous. As a result, the spacetime is time-dependent but it is no longer
spherically symmetric, i.e. it depends on z as well as t, r. The inhomogeneity in the z-direction
becomes prominent especially in the scale near (or smaller than) the compactification radius R.
This spacetime is regular at r = 0, which is shown by calculating the curvature invariants. The
Ricci scalar curvature and Kretschmann invariant are given by

R = − r4(Q1 −Q5)
2

((r2 +Q1)(r2 +Q5))5/2
→ 0 as r → 0 (4.14)

and

RµνρσRµνρσ =
24Q4

1Q
4
5 + 96Q3

1Q
3
5(Q1 +Q5)r

2 +O(r4)

(r2 +Q1)5(r2 +Q5)5

→ 24

Q1Q5
as r → 0 (4.15)

We thus see that these scalars do not diverge at the “horizon” (r = 0).
Hence we conclude that this solution describes a static and spherically symmetric five-

dimensional compact object with fluctuations in a large scale, but it becomes a periodically
oscillating and non-spherical six-dimensional object in a small scale.

There are several questions with this solution which deserve further consideration. Does this
metric really describes a time-dependent black hole or else? Is the horizon, if it exists, time-
dependent? How is the mass of the “black hole” defined? When we approach the “horizon”,
what kind of spacetime structure do we see? Those questions are interesting by themselves and
are left for future study.
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5 Concluding Remarks

We have constructed a fairly general family of supersymmetric solutions in time- and space-
dependent wave backgrounds in supergravity theories. These solutions describe intersecting
p-branes embedded into time-dependent dilaton-gravity plane waves of an arbitrary (isotropic)
profile, with the brane world-volume aligned parallel to the propagation direction of the wave.

In our previous paper [36], we have derived this class of solutions but restricted the wave
profile by setting K = 0 in Eq. (2.8) for simplicity, and then solved the resulting equation.
However we have shown in this paper that if we regard (2.8) as the equation for K, we can get
more general class of solutions and we have solved it explicitly. We have also discussed how many
degrees of freedom we are left with, and found that we have (d + 1) arbitrary functions. This
approach has recently been taken in [44] for a single brane. Our solutions here include not only
single but also intersecting brane solutions as well as wider solutions including more arbitrary
functions than those in [44]. To investigate intersecting branes system is very important, because
this class of solutions may describe standard model of particle physics, higher-dimensional black
holes and so on. Thus we hope that our solutions provide a useful basis to investigate various
physical phenomena.

As a simple physical application, we have also used one of the solutions to construct higher-
dimensional time-dependent black hole. The example we have considered is the D1-D5 intersect-
ing brane system, and we have proposed an effectively compactified solution in five dimensions.
The result is an “oscillating black hole solution” in five dimensions. This black hole looks like
five-dimensional “oscillating” black hole whose frequency is ω =

√
2/R (R is compact radius) if

seen from infinity. On the other hand it looks like six-dimensional black hole near “horizon”. This
is presented just as a simple example of possible compactification of our brane configurations. We
may consider more complicated brane configurations and also other variants of compactification.
It would be very interesting to contemplate further applying our solutions to more interesting
(higher-dimensional) black holes. It is also an interesting subject to study non-extreme extension
of our solutions.
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