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Abstract

We discuss the large scale polarization of the cosmic microwave background induced by the

anisotropy of the spatial geometry of our universe. Assuming an eccentricity at decoupling of

about 0.64 10−2, we find an average large scale polarization ∆Tpol/T0 = (0.5 − 1.0) 10−6. We

suggest that the fortcoming polarization data at large scales from Planck will be able to discriminate

between our proposal and the generally accepted reionization scenario.
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The latest results from the Wilkinson Microwave Anisotropy Probe (WMAP) [1] showed

that the cosmic microwave background (CMB) anisotropy data are in remarkable agreement

with the simplest inflation model. At large scale, however, some anomalous features have

been reported. The most important discrepancy resides in the low quadrupole moment,

which signals an important suppression of power at large scales, although the probability of

quadrupole being low is not statistically significant.

Recently [2, 3] it has been suggested that, allowing the large-scale spatial geometry of our

universe to be plane-symmetric with eccentricity at decoupling of order 10−2, the quadrupole

amplitude can be drastically reduced without affecting higher multipoles of the angular

power spectrum of the temperature anisotropy. Indeed, in Ref. [4] it has been shown that

the quadrupole anomaly can be resolved if the last scattering surface of CMB is an ellipsoid.

In particular, if the eccentricity at decoupling is:

edec ≃ 0.64× 10−2, (1)

then the quadrupole amplitude can be drastically reduced without affecting higher multi-

poles of the angular power spectrum of the temperature anisotropy. As discussed in Ref. [4],

the anisotropic expansion described by a plane-symmetric metric can be generated by cosmo-

logical magnetic fields or topological defects, such as cosmic domain walls or cosmic strings.

In fact, topological cosmic defects are relic structures that are predicted to be produced in

the course of symmetry breaking in the hot, early universe. Nevertheless, we believe that

the most interesting and intriguing possibility is plane-symmetric geometry induced by cos-

mological magnetic fields for magnetic fields have been already observed in the universe up

to cosmological scales. Remarkably, the estimate of edec, Eq. (1), gives for the strength of

the cosmic magnetic field:

B0 ≃ 4.6× 10−9 Gauss , (2)

which agrees with the limits arising from primordial nucleosynthesis and large scale structure

formation.

In addition, in Ref. [4] the direction (b, l) of the axis of symmetry were constrained to:

b ≃ 50◦ − 54◦, 40◦ <∼ l <∼ 140◦ or 240◦ <∼ l <∼ 310◦ , (3)

where b and l are the galactic latitude and the galactic longitude, respectively. It turns out

that these constraints are in fair agreement with recent statistical analyses of the cleaned
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CMB temperature fluctuation maps of the three-year WMAP data obtained by using an im-

proved internal linear combination method as Galactic foreground subtraction technique [5–

7]. Finally, we find amusing that there are already independent indications of a symmetry

axis in the large-scale geometry of the universe, coming from the analysis of polarization of

electromagnetic radiation propagating over cosmological distances [8, 9].

It is known since long time [10–12] that anisotropic cosmological models could result

in large scale polarization of the cosmic microwave background radiation. Thus, polariza-

tion measurements could provide a unique signature of cosmological anisotropy. Indeed,

remarkably, the first year results from Wilkinson Microwave Anisotropy Probe [13] reported

statistically significant correlations between the cosmic microwave background temperature

and polarization. The power on small angular scales agrees with the signal expected in

models based solely on the temperature spectrum (for a recent review, see Refs. [14, 15]).

On the other hand, on large angular scales the detected signal was well in excess of the

expected level. This signal on large angular scales has been interpreted as the signature of

early reionization. The measured correlation between polarization and temperature yields

an electron optical depth to the cosmic microwave background surface of last scattering of

τ ≃ 0.17, corresponding to an instantaneous reionization epoch zre ≃ 17. However, obser-

vations of quasars discovered by the Sloan Digital Sky Survey in 2001 at redshifts slightly

higher than z ≃ 6 do show a Gunn-Peterson trough, indicating that the universe was mostly

neutral at redshifts z >∼ 10.

Since the first Wilkinson Microwave Anisotropy Probe detection of τ , the physics of reion-

ization has been subject to extensive studies [16]-[26]. However, new results from five-year

WMAP data [1] indicate that the first year result was an overestimate, and that reionization

occurred later, zre = 10.0± 1.4 and τ = 0.084± 0.016 . This result is more consistent with

the quasar data, although some tension still remains.

In this paper we suggest that the polarization at large scales detected by the five year

Wilkinson Microwave Anisotropy Probe could be accounted for as polarization of the cosmic

microwave background induced by the anisotropy of the spatial geometry of our universe

with an eccentricity at decoupling given by Eq. (1).

The WMAP five-year full-sky maps of the polarization detected at large scales in the
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foreground corrected maps an average E-mode polarization power [27] :

l(l + 1)

2π
CEE

l=2 = 0.150 +0.427
−0.125 (µ

◦K)2 , (4)

where the error includes the cosmic variance. From Eq. (4) we find:

(∆T )pol
T0

= 0.145 +0.207
−0,059 10

−6 , (5)

where T0 ≃ 2.73 ◦K.

To evaluate the polarization of the cosmic background radiation induced by eccentricity

of the universe we shall follow Ref. [3]. We assume that the photon distribution function

f(~x, t) is an isotropically radiating blackbody at a sufficiently early epoch. The subsequent

evolution of f(~x, t) is determined by the Boltzmann equation [15]:

df

dt
= C[f ] , (6)

where C[f ] takes care of Thomson scatterings between matter and radiation. We are in-

terested in the effects of the ellipticity on the Boltzmann equation. For small ellipticity we

have 1 :

ds2 = −dt2 + a2(t)(δij + hij) dx
idxj , (7)

where hij is a metric perturbation which takes on the form:

hij = −e2δi3δj3 , e =
√

1− (b/a)2 . (8)

Using Eq. (7) we find:

df

dt
=

∂f

∂t
+

p̂k

a(t)

[

1−
1

2
hij p̂

ip̂j
]

∂f

∂xk
− p

∂f

∂p

[

H(t) +
1

2
ḣij p̂

ip̂j
]

, (9)

where H = ȧ/a is the Hubble rate and p is the photon momentum. To go further we expand

the photon distribution about its zero-order Bose-Einstein value:

f0(p, t) =
1

e
p

T (t) − 1
. (10)

Writing:

f(x, p, p̂i, t) = f0(p, t)
[

1 + f1(x, p, p̂
i, t)
]

, (11)

1 Note that we are using natural units where ~ = c = kB = 1.
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we find for the perturbed Boltzmann equation:

∂f1
∂t

+
p̂i

a(t)

∂f1
∂xi

−
[

H(t) −
1

2
ḣij

]

p̂ip̂j =
1

f0
C[f ] , (12)

where we used ∂f0
∂ ln p

≃ −1 valid in the Rayleigh-Jeans region.

To determine the polarization of the cosmic microwave background we need the polarized

distribution function which, in general, is represented by a column vector whose components

are the four Stokes parameters [28]. In fact, due to the axial symmetry only two Stokes

parameters need to be considered, namely the two intensities of radiation with electric

vectors in the plane containing ~p and x̂3 ≡ ~n and perpendicular to this plane respectively.

As a consequence, we may write:

f(x, p, p̂i, t) = f0(p, t)

[(

1

1

)

+ f1

]

, f1 =

(

ξ1(x, p, p̂
i, t)

ξ2(x, p, p̂
i, t)

)

. (13)

Using Eq. (8) and defining µ = cos θ~p~n, we get from Eq. (12):

∂f1(x, µ, t)

∂t
+

p̂i

a(t)

∂f1(x, µ, t)

∂xi
=

1

2

[

d

d t
e2(t)

]

µ2

(

1

1

)

−σTne

[

f1(x, µ, t)−
3

8

∫ 1

−1

(

2(1− µ2)(1− µ′2) + µ2µ′2 µ2

µ′2 1

)

f1(x, µ
′, t)dµ′

]

(14)

where σT is the Thomson cross section and ne(t) the electron number density. Introducing

the conformal time:

η(t) =

∫ t

0

dt′

a(t′)
, (15)

we rewrite Eq. (14) as:

∂f1(µ, η)

∂η
+ p̂i

∂f1(µ, η)

∂xi
=

1

2

d

dη
e2(η) (µ2 −

1

3
)

(

1

1

)

−σTnea(η)

[

f1(µ, t)−
3

8

∫ 1

−1

(

2(1− µ2)(1− µ′2) + µ2µ′2 µ2

µ′2 1

)

f1(µ
′, η)dµ′

]

(16)

with a suitable overall normalization of the blackbody intensity. Since we are interested in

the long wavelenght limit, we may neglect the spatial derivative term in Eq. (16). In this

case, the general solutions of Eq. (16) can be written as [12]:

f1(x, µ, η) = θa(η)(µ
2 −

1

3
)

(

1

1

)

+ θp(η)(1− µ2)

(

1

−1

)

. (17)
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From Eq. (17) it is evident that θa(η) measures the degree of anisotropy, while θp(η) gives

the polarization of the primordial radiation. Following Ref. [12] we find:

θa(η) =
1

7

∫ η

0

∆H(η′)
[

6e−τ(η,η′) + e−
3
10

τ(η,η′)
]

dη′ , (18)

θp(η) =
1

7

∫ η

0

∆H(η′)
[

e−τ(η,η′) − e−
3
10

τ(η,η′)
]

dη′ , (19)

where we introduce the optical depth:

τ(η, η′) =

∫ η

η′
σT ne a(η

′′) dη′′ , (20)

and the cosmic shear [11]:

∆H(η) =
1

2

d

dη
e2(η) . (21)

Equation (19) shows that the polarization of the cosmic microwave background (without

reionization) at the present time is essentially that produced around the time of recombi-

nation, since much later the free electron density is negligible ( τ ≃ 0), while much earlier

the optical depth is very large. Then, the present polarization is the result of Thomson

scattering around the time of decoupling of matter and radiation, which occurs after the

free electron density starts to drop significantly [29]. On the other hand, it is evident from

Eq. (18) that the main contribution to the temperature anisotropy θa comes from conformal

time η >∼ ηd, where ηd the conformal time around which decoupling occurs. Since soon

after decoupling the optical depth vanishes, we get:

θa(η) ≃
∫ η

ηd

∆H(η′)dη′ . (22)

Using Eq. (21) we easily evaluate the anisotropy at the present time η0:

θa(η0) ≃
∫ η0

ηd

∆H(η′)dη′ =
1

2

∫ t0

td

d

dt′
e2(t′) dt′ = −

1

2
e2dec , (23)

where we used e(t0) = 0. Obviously, our result Eq. (23) agrees with the temperature

anisotropy evaluated with the Sachs-Wolfe effect [2–4].

To evaluate θp we need to determine the cosmic shear Eq. (21) at decoupling since, as

we said before, the polarization of the cosmic microwave background (without reionization)

at the present time is essentially that produced around the time of recombination. To this

end we shall restrict to the most interesting case of plane-symmetric geometry induced by

cosmological magnetic fields. In this case, from the results in Ref. [4] we get:

e2(t) = 8Ω
(0)
B (1− 3a−1 + 2a−3/2) , (24)
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where Ω
(0)
B = ρB(t0)/ρ

(0)
cr , and ρ

(0)
cr = 3H2

0/8πG is the actual critical energy density. Note

that we are adopting the normalization such that a(t0) = 1 and e(t0) = 0. Since in the

matter-dominated era a(t) ∝ t2/3, so that H = 2
3t
, we may write near decouplig:

1

2

d

dt
e2(t) ≃ −

3

4
e2(t) H(t) . (25)

Inserting Eqs. (21) and (25) into Eq. (19) we obtain:

θp(η) ≃ −
3

28

∫ η

0

e2(η′)H(η′)
[

e−τ(η,η′) − e−
3
10

τ(η,η′)
]

dη′ . (26)

We, now, define τ(η) = τ(η0, η), so that τ(η′, η) = τ(η′) − τ(η). After that, changing the

integration variable and using [30]:

d

dη
τ(η) ≃ −

τ(η)

∆ηd
, (27)

where ∆ηd is the conformal time duration of the decoupling process, we get:

θp(η) ≃ −
3

28
e2(ηd)H(ηd)∆ηd e

τ(η)

∫

∞

0

dz

τ(η) + z
e−z
[

1− e
7
10

z
]

. (28)

So that we have:

θp(η0) ≃
3

28
ln

10

3
e2(ηd)H(ηd)∆ηd , (29)

which can be rewritten as:

θp(η0) ≃
3

28
ln

10

3
e2(td)

∆zd
1 + zd

. (30)

To evaluate θp(η0) we may assume that ∆zd ∼ 102, zd ∼ 103 which together with Eq. (1)

leads to our final result:

θp =
(∆T )pol

T0

≃ 0.53 10−6 . (31)

If we consider the mass density parameter Ωm, then we should multiply Eq. (31) by a factor

1/
√
Ωm ≃ 2.0. Thus, we find for the average large scale polarization:

(∆T )pol
T0

= (0.5 − 1.0) 10−6 . (32)

Note that Eq. (30) gives the average large scale polarization of the cosmic microwave back-

ground induced by the anisotropy of the spatial geometry of the universe. On the other

hand, it is evident from our discussion that for wavelenghts comparable or smaller than the

width of the last scattering surface, the polarization should fall off very rapidly. Indeed, the
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polarization signal should be confined up to multipoles lmax such that 1
lmax

∼ ∆zd
zd

∼ 10−1.

More precise statements can be obtained by solving numerically the radiative transfer equa-

tion for the cosmic microwave background including polarization in anisotropic universes.

Indeed, recently Pontzen and Challinor [31] have derived the radiative transfer equation in

the nearly-Friedmann-Robertson-Walker limit of homogeneous, but anisotropic, universes

classified via their Bianchi type. These authors argued that the polarization signal is mostly

confined to multipoles l <∼ 10.

In conclusion, we see that the proposal of a small anisotropy in the large-scale spa-

tial geometry of our universe [2–4] could result in a drastic reduction in the quadrupole

anisotropy without affecting higher multipoles of the angular power spectrum of the temper-

ature anisotropy, and gives rise to a sizeable large-scale polarization of the cosmic microwave

background. Indeed, the WMAP five-year full-sky maps of the polarization detected at large

scales an average E-mode polarization power [27]. However, Eq. (32) shows that the large

scale polarization of the cosmic microwave background induced by the anisotropy of the uni-

verse geometry seems to exceed the average level of polarization detected by the Wilkinson

Microwave Anisotropy Probe, Eq. (5), by at least a factor of 2. We feel, however, that the

instrumental limitations of the Wilkinson Microwave Anisotropy Probe could have result in

an overestimation of the foreground polarization signal. In fact, a careful characterization

of foreground polarization is certainly crucial for polarization measurements. Given that

Planck has broader frequency coverage to subtract foregrounds, we expect that the fortcom-

ing polarization data at large scales from Planck will be able to definitely corroborate or

reject the proposal for anisotropic universe.
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