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Self-gravitating system made of axions
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We show that the inclusion of an axion-like effective potential in the construction of a self-
gravitating system made of scalar fields leads to a decrease on its compactness when the value of the
self-interaction coupling constant is increased. By including the current values for the axion mass m
and decay constant fa, we have computed the mass and the radius for self-gravitating systems made
of axion particles. It is found that such objects will have asteroid-size masses and radius of few
meters, then, the self-gravitating system made of axions could play the role of scalar mini-machos
that are mimicking a cold dark matter model for the galactic halo.
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The necessity of introducing the dark matter (DM) as
the main component of the galactic matter has become a
solid fact due to its observational support [1]. Neverthe-
less, the DM nature is one of the most intriguing mys-
teries in physics. A large variety of particles have been
considered as the main component of DM in the uni-
verse and only a few of them are still considered as good
prospects since they must fulfill several requirements [2].
Among the survivors, the neutralino and the axion are
leading candidates [3]. The question we want to address
in the present work is the following: If the DM is mainly
composed by axions, what type of astrophysical objects
will the axions form?
In order to answer this question, we have solved the

Einstein-Klein-Gordon (EKG) equations in the semiclas-
sical limit, where the source is the mean value of the
energy-momentum tensor operator 〈T̂ µν〉 of a real, quan-
tized scalar field constructed with the potential energy
density which is given by [4]

V (φ) = m2f2
a

[

1− cos

(

φ

fa

)]

. (1)

It is found that the resulting self-gravitating system, the
axion star, will have asteroid-size mass (M ∼ 10−16M⊙)
and radius of few meters. These result differs from pre-
vious estimates where the effect of the potential energy
density was either neglected [5] or it was taken into ac-
count but with a wrong sign in the self-interacting term
of the potential [6, 8]. In the first case, it is known
that there is a maximum mass for such self-gravitating
system given by Mmax = 0.633 m2

p/m, where m is
the mass associated with the scalar field and mp is the
Planck’s mass. For the allowed values of the axion mass,
10−5 eV < m < 10−3 eV, [4, 7] the maximum mass for
a self-gravitating system made of axion where the po-
tential energy density (1) is neglected lies in the range

10−8 M⊙ < Maxion star
max < 10−5 M⊙. When the axion

is considered to have a repulsive self-interacting term, the
maximum could be as big as M ∼ 104 M⊙.
Here we solve the EKG system including a Taylor ex-

pansion of the potential energy density (1) and we ob-
serve that its inclusion tends to decrease the mass, and

consequently the compactness of the self-gravitating sys-
tem made of axions. Due to the smallness of the axion
star’s masses they could play the role of scalar field mini-
machos [9] and they will be the final state of the axion
miniclusters [10] originated in the early universe at the
QCD epoch [11]. Assuming that the axion is the main
component of the DM, the galactic halo will be a colli-
sionless ensemble of axion stars and will be indistinguish-
able to the standard CDM scenario since N -body simula-
tions of CDM with ultra-high resolution are insensitive to
particle mass granularity smaller than 105M⊙ − 103M⊙

[12, 13].
The paper is organized as follows: in section I, the

EKG equations for a real, quantized scalar field with a
Taylor expansion of the potential energy density (1) are
obtained and they are solved for arbitrary values of the
axion mass, m, and the decay constant, fa. In Sec. II we
include the current values of m and fa and we obtain the
mass and radius of the axion-stars. We finish the section
II by commenting some consequences derived in the case
that the axion-star has the properties calculated here.

I. EINSTEIN-KLEIN-GORDON WITH AN

AXION-LIKE POTENTIAL

Since axions are real scalar particles, it is very use-
ful to remember how self-gravitating systems made of
spin zero particles are constructed. We will follow the
method developed by Ruffini and Bonazzola [14]. The
self-gravitating system arise as a solution of the EKG
equations:

Gµν = 8πG < T̂µν > , (2)

(

�− dV (Φ)

dΦ2

)

Φ = 0 , (3)

where� = (1/
√−g)∂µ[

√−ggµν∂ν ] and V (φ) is the scalar
field potential. Here < · · · > denotes average over the
ground state of the system of many particles. Its presence
refers to the fact that we are working in the semi-classical
limit of the Einstein’s equations. We will work with units
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FIG. 1: Gravitational mass as a function of the central value
of the scalar field σ(0) for different values of Λ. Dotted lines
include only an expansion of the axion potential up to the
term Φ4.

where c = ~ = 1. In the case of a spherically symmetric,
static space-time described by

ds2 = B(r)dt2 −A(r)dr2 − r2(sin2 θdφ2 + dθ) , (4)

it has been shown that such self-gravitating systems are
fully characterized by the scalar field properties, i.e. the
massm of the scalar field and its energy density potential
V (Φ) [8, 15]. The total mass of the resulting object and
the typical radii depends mainly on these two properties
of the scalar field. The axion will not be the exception.
To deal with the quantum nature of the axion field, we
have to compute the average 〈T̂ µν〉 in eq. 2. What it

is usually done is to quantize the scalar field Φ → Φ̂ =
Φ̂+ + Φ̂− where

Φ̂+ =
∑

nlm

µ+
nlmRnl(r)Y

l
m(θ, ψ)e−iEnt

Φ̂− =
∑

nlm

µ−

nlmRnl(r)Y
l∗
m (θ, ψ)e+iEnt (5)

and µ
+(−)
nlm are the usual creation (annihilation) opera-

tors for a particle with angular momentum l, azimuthal
momentum m and energy En. These operators sat-
isfy the usual commutation relations [µ+

nlm, µ
+
n′l′m′ ] =

[µ−

nlm, µ
−

n′l′m′ ] = 0 and [µ+
nlm, µ

−

n′l′m′ ] = δnn′δll′δmm′ .

With the operator Φ̂, it is now possible to construct the
energy-momentum tensor operator T̂µν just by inserting

the operator φ̂ into the classical expression for the energy-
momentum tensor

T µ
ν = gµσ∂σφ∂νφ− 1

2
δµν g

λσ∂λφ∂σφ− δµν V (φ) . (6)

The average 〈Q|T̂µν |Q〉 is done by considering an state
|Q〉 for which all the N particles are in the ground state

(l = m = 0, n = 1). The ground state satisfies µ−

100|Q〉 =
0. This procedure, as was already pointed out in [14],
cancels all time dependence on the vacuum expectation
value 〈Q|T̂µν |Q〉 and, for the case of a free scalar field

(V (Φ) = m2

2 Φ2), the real quantized scalar field yields
to the same field equations as those obtained by using
a classical complex scalar field. At these level, the self-
gravitating system for a real quantized scalar field doesn’t
differ from a complex classical, hence, a real quantized
scalar field doesn’t produce the so call “oscillatons” [16],
which are time-dependent. In our case we are interested
the axion potential (1). In order to compute 〈T̂ µν〉, we
will do a Taylor’s expansion of (1), i.e.

V (Φ) ∼ m2

2
Φ2 − 1

4!

m2

f2
a

Φ4 +
1

6!

m2

f4
a

Φ6 − ... (7)

We will show that the final result doesn’t depend strongly
on the number of terms considered in the Taylor expan-
sion of (1). The relevant term that should be consid-
ered is the self-interacting term Φ4 and the sign it carries
with itself, which differs from the one considered in boson
stars (BS) [6]. With the potential (7), now it is possible

to compute 〈T̂ µ
ν 〉 by doing the quantization and average

procedure previously discussed. The computed average
of the stress energy tensor is

〈T 0
0 〉 = −E

2R2

2B
− R′2

2A
− m2R2

2
+
m2R4

12f2
a

− m2R6

144f4
a

+ . . . ,

〈T 1
1 〉 =

E2R2

2B
+
R′2

2A
− m2R2

2
+
m2R4

12f2
a

− m2R6

144f4
a

+ . . . ,

〈T 2
2 〉 =

E2R2

2B
− R′2

2A
− m2R2

2
+
m2R4

12f2
a

− m2R6

144f4
a

+ . . . .(8)

We have dropped all sub-indexes since, as we have al-
ready pointed out, we will assume that the axion is on
its ground state. We can observe that there is not time
dependence in (8). Furthermore, there are new numeri-
cal factors that appear due to the average performed in
T̂µν [17]. For instance 〈Φ4〉 = 2R4 and 〈Φ6〉 = 5R6, in
such a way that we can not recover the original cos(Φ/fa)
from which we departed. Following a similar procedure
but now applied to the scalar wave equation (3), with a
potential (7) and the spherically symmetric metric (4), it
is obtained the Einstein-Klein-Gordon system:

A′

A2r
+

1

r2

(

1− 1

A

)

= −8πG〈T 0
0 〉 ,

B′

ABr
− 1

r2

(

1− 1

A

)

= 8πG〈T 1
1 〉 ,

R′′ +

(

2

r
+
B′

2B
− A′

2A

)

R′ + A
[

(

E2

B
− m2

2

)

R+

+
m2R3

6f2
a

− m2R5

48f4
a

]

= 0 . (9)

Following standard definitions [6], we rewrite the system

(9) in dimensionless variables: x = rm, R = σ/
√
4πG
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FIG. 2: R99 and compactness for different configurations. The
dependence of R99 on Λ is negligible. For a given value of σ(0),
the compactness decreases as Λ increases.

and B̃ = m2B/E2, and we found convenient to define
the dimensionless self-interaction term

Λ =
1

24π

(

mp

fa

)2

. (10)

The system (9) is solved by standard numerical methods
by demanding regular function at the origin and flatness
at infinity using a shooting method. Even though the set
of equations (9) is very similar as the case for typical BS,
[6], the behavior we found for the family of solutions with
zero-nodes is completely different. A full set of equilib-
rium configurations is shown in Fig. 1, where it is plotted
the gravitational mass for different values of σ(0) and Λ.
The equilibrium configurations have a maximum mass
Mmax at some σ(0) = σc for each value of Λ. But the
switch in the potential sign of the term Φ4 produces a sig-
nificant change in the behavior of Mmax in comparison
with standard BS [6]. The relation Mmax ∼ Λ1/2 is not
satisfied anymore. Instead of increasing Mmax as we in-
crease the value of Λ, we found a decreasingMmax. These
effect is expected since instead of adding a repulsive in-
teraction between the particles of the system, the change
in the sign due to the cosine-like potential (1) implies an
attractive potential and then, the total number of par-
ticles needed to form an equilibrium configuration that
balance the gravitational collapse against the quantum
pressure is lower than the case of a repulsive potential.
One can think that these effect is apparent and as soon
as the complete potential (1) will be implemented in the
EKG system, a different behavior will be seen. But the
decrease in the mass of the equilibrium configurations is
a robust behavior. This is shown in Fig. 1 too, where it
is plotted, in dotted lines, the masses of the equilibrium
configurations when only is taken into account a Taylor
expansion of (1) up to the fourth power on Φ. The bigger
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FIG. 3: Scalar field and potential for a typical axion star
with different values of σ(0) and an axion mass of ma = 1.0×
10−5eV.

the value of Λ, the lower the differences on the masses.
This is because when Λ is increased, σc decreases (and
equivalently Φ(r) where we are interested). Then, the
true expansion parameter of (1) is ΛΦ, an it is always an
small parameter . Another interesting issue is that the
radius R99, defined as the radius where 99% of the total
gravitational mass is reached, has not a strong depen-
dence on the value of Λ as it is shown in upper panel of
Fig. 2. Combining the invariance of the radius as Λ in-
creases, with the decrease in the mass, it results that the
self-gravitating system made of scalar field that has an
axion-like potential has a lower compactness (2M/R99)
as the self-interaction term increases. This “newtoniza-
tion” of the system is shown on the lower panel of Fig.
2.

II. AXION-STAR

The previous results where obtained assuming arbi-
trary values of the mass m of the scalar field associated
with the axion as well as free values for the decay con-
stant fa. But the mass of the axion is constrained by as-
trophysical and cosmological considerations to lie in the
range 10−5 eV ≤ m ≤ 10−3 eV and the decay constant

is related to the axion mass by m = 6µeV
(

1012GeV
fa

)

[4, 18]. With these two restriction we have 1013 < Λ <
1017 and then, the previous selection of dimensionless
variables {x, σ,A.B̃}) is now inadequate in order to solve
numerically the system (9). After some frustrated at-
tempts, we found that a more suitable set of variables to
numerically solve the system (9) is the following:

R =
fa√
m
σ , r =

mp

fa

√

m

4π
x ,

1

B̃
=

E2

m2B
. (11)
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TABLE I: Masses and R99 for the configurations shown in
Fig. 3

σ(0) Mass (Kg) R99 (meters) density ρ (Kg/m3)

5× 10−4 3.90× 1013 1.83 6.3 × 1012

3× 10−4 6.48× 1013 2.86 2.7 × 1012

1× 10−4 1.94× 1014 8.54 3.1 × 1011

Since Λ >> 1, it is natural to think that the result-
ing axion star will have a small compactness and low
mass. So, besides the change in variables (11), it is con-
venient to solve for a(x) = 1−A(x). Solving the system

(9) for the new set of variables {x, σ(x), a(x), B̃(x)} we
obtained typical nodeless configurations for these axion
stars. Some of them are shown in Fig. 3. We have taken
for definiteness an axion mass m = 10−5 eV. The total
gravitational mass and the radius R99, both in physical
units, for those configurations are shown in Table I.
A possible scenario emerges with the hypothesis that

DM is mainly composed by axions. As was already
pointed out by Kolb and Tkachev [10], nonlinear effects
in the evolution of the axion field in the early universe
may lead to the formation of “axion miniclusters”. These
miniclusters may relax, due to the collisional 2a → 2a
process or by gravitational cooling [19], and they will
evolve to BS. In the present work we have constructed
those BS for axion particles by solving the EKG system
for a real quantized scalar field who is regulated by a
axion-potential (1). These self-gravitating system, the
axion stars, have very small masses and radius of meters
(Table I) and consequently very low compactness. The
resulting densities are not enough to produce stimulated

decays of the axion to photons since they occur when
Γπm

2
pVefπ/(Rm

4
πfa > 1 which implies densities ρ > 1015

Kg/ m3 for m = 10−5 eV [19, 20]. Typical densities for
axion stars are shown in table I. The galactic halo will be
a ensemble of axion stars and this picture is not in con-
tradiction with observations since the size of axions stars
fit into the limits coming from microlensing or gravother-
mal instability [9]. If DM is distributed as axion stars,
their detection will be very hard. The proposed femp-
tolensing to detect axion compact objects [21] is close to
its lower detectable limit. Another related issue is the
low number of axion star around the earth. Assuming
for instance a Navarro-Frenk-White profile for the galac-
tic halo, and a local halo density of 0.3 GeV/cm3 around
the Sun, there will be ∼ 1 axion star in the volume cover
between Jupiter and the Sun. Nevertheless, another ax-
ion properties can shed light on the axion, such as the
conversion of axions in photons in the presence of strong
magnetic fields [22]. Collision of axion stars with neutron
stars [23] will produce small flashes of light that could
be detected by Gamma ray Observatories [24]. A more
detailed analysis of those ideas together with a more de-
tailed study of the stability of the axion stars could help
us to determine if the DM is mainly composed by scalar
field particles as the axions.
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