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ABSTRACT

The properties of an extension of the New Massive 3D Gravity by scalar matter with Higgs-like
self-interaction are investigated. Its peturbative unitarity consistency is verified for a family of
cosmological Bounce solutions found by the superpotential method. They correspond to the lower
bound λ = −1 of the BHT unitarity window and describe eternally accelerated 3D Universe between
two initial/final stable dS3 vacua states.
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The perturbative quantization of the Einstein gravity is known to introduce at one-loop order in

the gravitational coupling κ2 = 16πG “quadratic” counterterms Lct =
√−g

(

αR2+βRµνRµν+ . . .
)

which cure its UV divergencies but violate unitarity (for d ≥ 4) [1], [2]. In three dimensions the
problem of perturbative consistency of quantum gravity model including specific “high derivatives”
terms:

S
eff
NMG(gµν , λ0,Λ) =

1

κ2

∫

dx3
√−g

[

ǫR+ 64λ0K − 2Λ
]

, K = RµνR
µν − 3

8
R2 (1)

called New Massive Gravity (NMG) was recently reexamined by Bergshoeff, Hohm and Townsend
(BHT) [3], [4]. It turns out that it is super-renormalizable and unitary (ghost free) under certain
restrictions on the values of the cosmological constant Λ and of the new scale (mass) parameter λ0

for the both choices ǫ = ±1 of the “right” or “wrong” sign of the R-term [4], [5], [6]. The BHT
- model (1) has two propagating degrees of freedom and unlike 3D Einstein gravity (i.e. λ0 = 0
case) it admits interesting (vacuum) solutions - black holes, gravitational waves, etc. [7], [8]. Its
Newtonian limit for ǫ = −1 reproduces an attractive gravitational force [9].

The New Massive Gravity (1) can be realized perturbatively as a massive spin two quantum field
ĥµν (ĝµν = ḡµν + κĥµν) - theory with unusual kinetic term and specific self-interactions in external
constant curvature background ḡµν . Such a procedure provides well defined rules for studying the

quantum graviton (ĥµν) properties and eventually it might shed some light on the nature of the
“quantum 3D geometry” behind it. Thus we have an example of consistent (3D) quantum gravity
model that shares many of the (desired) properties of 4D gravity. It is therefore natural to address
the question about the perturbative quantum consistency of the New Massive Gravity coupled to
matter fields. Since we are interested to study the Cosmological consequences of such BHT-matter
model, the simplest and most representative candidate of matter QFT is the one of scalar field
σ(xµ) with Higgs - like self-interaction:

Lmatt(σ, gµν |γ,mσ) =
√−g

(

− 1

2
∂µσ∂

µσ − V (σ)
)

, V (σ) =
γ

4

(

σ2 − m2
σ

2γ

)2
− 2Λ (2)

The parameters γ, mσ and Λ above denote the renormalized coupling constant γ, “Higgs mass” mσ

and the vacuum energy Λ and they are assumed to depend on the “graviton mass” scale λ0 =
1

64m2 .
Since in four dimensions (in curved space) this model is known to be renormalizable [10], [11] one
expects that it is power - counting super-renormalizable in three dimensions. Note that the relevant
(lowest order in γ) counter-terms to Lmatt are again in the form α̃R2 + β̃RµνR

µν [10], i.e. they do
coincide with the gravitational ones (in the case of minimal coupling ξ = 0). We further assume
that the corresponding (vacuum) “semiclassical” equations [10], [12]:

R̄µν −
1

2
ḡµνR̄+ Λḡµν =

1

2
κ2 < vac|T̂µν(hµν , σ)|vac > (3)

for this BHT - matter model (to lowest order in the both couplings κ2 and γ) with the UV counter-
terms added and when adiabatic vacuum states |vac >= |gvacµν , σ± >, (V ′(σ±) = 0) exist, are
represented by the classical equations obtained from the following “effective” Matter-Gravity ac-
tion:

S
eff
NMGM =

1

κ2

∫

dx3
√−g

[

ǫR+ 64λ0K − 1

2
|∇σ|2 − V (σ)

]

(4)

The BHT - cosmological constant Λ is now included in the potential (2), i.e. V (σ2
± = m2

σ

2γ ) = −2Λ
for the case ǫλ0 < 0. In order to describe in a compact form the corrections (i.e. backreaction)
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to the classical background ḡµν (R̄µν = Rµν(ḡµν) etc.) due to the quantum fluctuations of both

ĥµν and σ̂, as usually (see ref. [12]) all the higher derivatives contributions are included in the
semiclassical “source” in the r.h.s. of eqs.(3).

The present paper is devoted to the investigation of the properties of homogeneous and isotropic
spatially flat k = 0 (−,+,+) 3D Universe :

ds23 = −dt2 + a2eff (t)(dx
2 + dy2) (5)

described by the matter extension (4) of BHT-model (1). Our problem is therefore to find analytic
solutions of the corresponding 3D “Massive Cosmological” equations3 :

σ̈ + σ̇ϕ̇+ V ′(σ) = 0

ϕ̈(1 + 8ǫλ0ϕ̇
2) +

1

2
ϕ̇2(1 + 4ǫλ0ϕ̇

2) + ǫ
(1

2
σ̇2 − V (σ)

)

= 0

ǫ(σ̇2 + 2V (σ))− ϕ̇2(1 + 4ǫλ0ϕ̇
2) = 0 (6)

derived from the action (4) above. We are further interested in studying specific features of these
solutions as for example: the effects of the matter on the BHT - unitarity conditions (u.c.’s), the
conditions of absence of initial/final singularities, how many different periods of acceleration and/or
deceleration they describe etc.

Observe that eqs. (6) for the scale factor a(t) = e
ϕ(t)
2 and for the scalar field σ(t) are of second

order although the action (4) and the eqs. (3) include (up to) fourth order time derivitives of gµν .
The special BHT unitarity motivated choice of the relative coefficients β = −3

8α = 64λ0 (that
fix the form of the K-term for D = 3) together with the FRW anzatz (5) are responsable for the
cancellation of all the terms involving ϕ(III) and ϕ(IV ) derivatives and they cure another disease of
all “higher derivatives” gravities. The family of solutions we are considering does have well defined
initial values Cauchy problem (i.e. “causality”) for all the values of the parameters ǫ, λ0, γ, m

2
σ, i.e.

independently of whether or not the BHT u.c.’s [4] are satisfied. The construction of all the solutions
of this second order system of nonlinear eqs. (6) is however rather difficult problem, although
numerical methods are indeed available and largely used for this type of dynamical systems. One
has to be able to further analyze how their properties depend on the initial conditions (σ0, σ̇0, ϕ0,
ϕ̇0) and on the values of the parameters ǫ, λ0, γ, mσ as well.

At this place we take a different route known as “superpotential” method, which provides
very special analytic (non-perturbative in γ and λ0) solutions of eqs. (6). It is widely used in
the construction of domain walls (DW) solutions of different (super) gravity models in arbitrary
dimensions (see for example refs. [13], [14] for λ0 = 0 case). It consists in the introduction of an
auxiliary function W (σ) (called superpotential) such that:

V (σ) = 2ǫW 2(1 + 16ǫλ0W
2)− 2(W ′)2(1 + 32ǫλ0W

2)2

ϕ̇ = −2ǫW (σ)

σ̇ = 2W ′(σ)(1 + 32ǫλ0W
2) (7)

For λ0 6= 0 it represents an adapted version of the Low-Zee superpotential [15] introduced in the
context of DW’s solutions of d = 5 Gauss-Bonnet improved gravity. The statement is that for each
function W (σ) that reproduces our matter potential (2) the solutions of the first order system (7)
are solutions of the eqs. (6) as well.

3in what follows we use the convention c = κ = h̄ = 1
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We next consider a particular linear superpotential W (σ) = Bσ , which leads to a family of σ4

- like (Z2 symmetric σ → −σ) potentials (2) with

γ = 128λ0B
4(1− 64λ0B

2) , m2
σ = −8ǫB2(1− 64λ0B

2)

σ2
± = − 1

32ǫλ0B2
, Λ =

1

64λ0
= m2 , m̄2

σ = V ′′(0) = −1

2
V ′′(σ±) = −m2

σ

2
(8)

Hence depending on the ǫλ0 sign (and whether B2 < m2 or B2 > m2 ) we have normal or inverted
double-well potentials for ǫλ0 < 0 or the standard σ4 - potentials for ǫλ0 > 0. The fact that the
form of the matter potentials (encoded here in γ = γ(λ0) and m2

σ = m2
σ(λ0)) does depend on the

gravitational mass scale m2 = 1
64λ0

is an intrinsic property of the superpotential method (see eqs.
(7)) when applied for models which actions contain K - type terms (1).

Note that for the particular choice of W (σ) we consider, the parameters {γ,m2
σ ,m

2} are not
independent. As one can see from eqs.(8), they describe a special surface

m6
σ = 32γm2(m2

σ + 4ǫγ) , 1 + ǫ
m2

σ

2m2
> 0 (9)

in the parameter space of the BHT - matter model (4) . Taking the effective masses m2
σ and m2 as

independent variables we realize that the coupling constant γ (or equivalently the “superpotential”
parameter B2) are given by:

γ± = −ǫ
m2

σ

8

(

1±
√

1 + ǫ
m2

σ

2m2

)

≡ −ǫ
m2

σB
2
±

4m2
(10)

i.e. they take two different values γ± (and B2
±) when

m2
σ

ǫm2 < 0 and only one γ− (or B2
−) in the case

m2
σ

ǫm2 > 0. Together with the signs of m2
σ and m2 they characterize the particular shapes of the

potential V (σ|γ±,m2
σ) for which we are able to solve analytically eqs. (6) by the superpotential

method. We will consider mainly the case m̄2
σγ < 0 (i.e. ǫλ0 < 0) which describes:

(a) ǫ = −1, λ0 > 0 BHT - model with double-well (Higgs) potential V−(σ).
(b) ǫ = 1, λ0 < 0 BHT - model with inverted double well potential V+(σ).

In both cases we have σ2
± > 0 and therefore σ± = ±

√

m2
σ

2γ are the minima (ǫ = −1) or the

maxima (ǫ = 1) of the potentials V±. For these “vacuum” values σ± of the field σ(t), the BHT -
matter model (4) reduces to the pure BHT - gravity (1) for a particular value of the cosmological
constant4 Λ = m2 = 1

64λ0
, i.e. we have Λ < 0 for λ0 < 0 (ǫ = 1) and Λ > 0 for λ0 > 0 (ǫ = −1).

The effective cosmological constant Λeff is defined by the values of 3D curvature R(3) on the
corresponding vacuum solutions (gvac,±µν , σ±):

R(3)(gvacµν , σ±) = 2ϕ̈+
3

2
ϕ̇2 ≡ −8ǫ(W ′)2(1 + 32λ0ǫW

2) + 6W 2 (11)

which gives R(3)(gvacµν , σ±) = − 3
16ǫλ0

≡ 6Λ±
eff . Therefore in both cases when ǫλ0 < 0, the Λ±

eff =

2|m2| > 0 is positive, and the scale factor a2vac(t) = e2
√

Λeff t ≡ a2dS3
represents dS3 geometry in

agreement with the generic relation between Λeff and Λ [4]:

Λ±
eff = −2m2

(

ǫ±
√

1 + λBHT

)

(12)

We have two options for the initial conditions of a(t) and σ(t):

4In the BHT notations [4] we have λBHT = − Λ
m2 and therefore both ǫλ0 < 0 cases correspond to the limiting

value λBHT = −1.
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• type (1): σ2(t) ≤ σ2
±, i.e.

σ(t → ±∞) = σ±, σ− ≤ σ(t) ≤ σ+

a±vac = adS3(t) = e
√

Λeff t

• type (2): σ2(t) ≥ σ2
±

– (2a)

σ− < σ(t) ≤ σ(t = t0) = ∞
a−vac = adS3 but a(t0) = 0 and R(3)(t = t0) = ∞

– (2b)

σ+ ≤ σ(t) < σ(t = t0) = ∞

Let us consider first the non − singular solutions corresponding to the initial conditions of the type
(1) above, i.e. the ones interpolating between the two vacuum states: |vac >= |σ±, dS3(Λeff ) >.
We find by direct integration of eqs. (7) two exact solutions:

σ±(t|ǫ) =
√

m2
σ

2γ±
tanh(b±(t− t0)) , a2±(t|ǫ) = eϕ±(t|ǫ) =

(

cosh b±(t− t0)
)δ±

(13)

where δ± and b± are given by:

b± =
m2

√

2|m2|
(

1±
√

1 + ǫ
m2

σ

2m2

)

, δ± = −ǫ
m2

σ

2γ±
= −2ǫ

|m2|
B2

±
(14)

Observe that σ±(t) formally coincide with the flat space QM ”instanton” solution5 for the double
well potential V±(σ), but now γ and m2

σ are related by eq. (9). The scale factor a2±(t) resembles
the well known bounce solution for closed k = 1 dS3 Universe (λ0 = 0, σ = const) as one can see
by comparing the behavior of the corresponding Hubble parameters:

Hk=0
± (t, ǫ, λ0) =

ȧ±
a±

= −ǫB±σ±(t) , Hk=1(t) ∼ tanh 2
√
Λ(t− t0)

The explicit form of the curvature scalar (11), i.e.

R±(t) =
8B2

±
cosh2 b±(t− t0)

(

− ǫ+
3

4
σ2
± sinh2 b±(t− t0)

)

(15)

confirms that the bounce solution (13) represents non-singular asymptotically dS3 ((a)dS3) geom-
etry for all t ∈ (−∞,∞), in particular

R(3)(t → ±∞) = 12|m2| = 6Λ±
eff =

6

L2
gr

, Lgr ≫ lpl (16)

Another important feature of this (a)dS3 Bounce solution (13) is encoded in the behavior of decel-
eration parameter:

q±(t) ≡ −1− 2
ϕ̈

ϕ̇2
= −1− s±(ǫ)

sinh2(b±(t− t0))
(17)

5note that in our curved space example the time is not euclidean (see eq. (5)) so that it just looks like an instanton
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where s± are real numbers

s±(ǫ = −1) =
1

2

(

1±
√

1− m2
σ

2m2

)

=
B2

±
m2

, s−(ǫ = 1) =
1

2

(

1−
√

1 +
m2

σ

2m2

)

= − B2
−

|m2|

They are determined by the ratio of the two scales

L2
gr =

1

|Λeff |
=

1

2|m2| , L2
σ =

1

|m2
σ|

lpl ≪ Lgr < Lσ (18)

introduced by the graviton mass M2
gr = 2|m2| and by the scalar field mass6 |m2

σ|.
Note that our Bouncing 3D Universe is almost invariant under time reflections T : t → 2t0 − t

(t → −t for t0 = 0). The exact invariance is achieved by combining T with the Z2 - charge
conjugation of σ(t):

C : Cσ(k)(t) = −σ(k)(t) = σ(ak)(t)

which interchanges “kink” σ(k)(t) with the “anti-kink” σ(ak)(t) = −σ(k)(t) = σ(k)(−t) (i.e. σ+ → σ−
in the vacuum sector). Hence the past of the “kink” coincides with the future of the ”anti-kink”.
This fact indeed reflects the CPT - invariance (Pxi = −xi, i = 1, 2) of the BHT - matter model
(4).

Although the forms of the Bounce solutions (13) in the two cases {ǫ = −1, λ0 > 0} and
{ǫ = 1, λ0 < 0} considered above are almost identical7, the features of the Universe evolutions they
describe are completely different. The origin of the qualitatively different physics behind is in the
form of the matter interaction V±: stable vacuum double well potential for ǫ = −1 versus unstable
“maxima” of the inverse double well potential for ǫ = 1 case 8. Consider first the {ǫ = −1, λ0 > 0}
case. Since s±(ǫ = −1) > 0 is always positive, the deceleration (17) q±(t|ǫ = −1) < 0 is negative

for all t ∈ (−∞,∞) and therefore we have an eternally accelerated Universe. It starts its evolution
from well defined (stable) dS3 vacuum state (σ−, dS3(Λeff )) at the left minima of the matter
potential living a period of (accelerated) expansion (ϕ̇ > 0 for B < 0) for all t < t0. At the moment
t = t0 (say t0 = 0) the Universe enters in the contraction (ϕ̇ < 0) period towards the new (“final”)

vacuum state (σ+, dS3(Λ
+
eff )) with ∆σ = σ+ − σ− = mσ

√

2
γ
and Λ+

eff = Λ−
eff = 2m2.

In the second case {ǫ = 1, λ0 < 0}, that corresponds to the inverted double well potential V−(σ),

due to the negative values of s−(ǫ = 1) = − B2
−

|m2| , the deceleration q−(t|ǫ = 1, λ0 < 0) changes twice

its sign. Therefore we have in this case two acceleration epochs (initial and final ones) and one
period of deceleration. By studying the properties of scale factor a2(t) and its derivatives ȧ and ä

we can reconstruct the history of this non-singular Bounce - like 3D Universe. At the infinite past
t → −∞ when: σ(t) → σ−, a2−(t) → e2|m|

√
2t it starts from the unstable maximum (σ−, dS3(Λ

−
eff ))

of V−(σ) its first (semi-infinite) period of acceleration and contraction with R(3)(t|ǫ = 1, λ0 < 0)
decreasing from 6Λ−

eff = 2|m2| to R(3)(t1) = 0. At the moment t1 < 0

t1 = − 1

b−
ln

(

√

2|s−|
3

+

√

2|s−|
3

+ 1

)

,

6or by m̄
2
σ = −

m2

σ

2
for the case ǫ = 1, since in this case m

2
σ < 0, i.e. it describes tachyons.

7the only difference is in the scale factors a
2(ǫ = −1) = a

−2(ǫ = 1).
8intrinsically related to the wrong/right signs ǫ = ±1 of the Einstein-Hilbert term ǫR in the action (4)

5



the curvature R(3)(t1 < t < −t1) < 0 changes its sign entering in the epoch of negative curvature
of finite duration T− = 2|t1| up to the moment t̄1 = −t1 > 0 when it changes its sign once more
towards the finite unstable {σ+, dS3} - state. Concerning the accelaration we observe that at the
moment |ta| > |t1|:

|ta| =
1

b−
ln
(
√

|s−|+
√

|s−|+ 1
)

the Universe enters in deceleration period which takes place over a finite period of time Tdec = 2|ta|.
The second (final) epoch of acceleration and expansion starts at t = |ta| towards its “future eternity”
{σ+, dS3} at t → ∞.

An equivalent (but more compact) description of the Universe evolution is based on the so
called equations of state: peff = peff (ρeff ), where the effective pressure peff and energy density
ρeff are defined by the diagonal r.h.s. of eqs. (3):

< vac|T µ
ν (σ, hαβ)|vac >= (−ρeff , peff , peff )

and it appears to be a simple consequence of the eqs. (6), (7):

peff (t) = 8ǫm2s± + (s± − 1)ρeff (t), ρeff > 0 (19)

In the {ǫ = −1, λ0 > 0} case we have

peff (t) = −8B2
± − ρeff (t)

(

1− B2
±

m2

)

, B2
± ≤ m2 (20)

i.e. peff < 0 is always negative and that is why the 3D Universe is eternally accelerated. In the
second case {ǫ = 1, λ0 < 0} the pressure changes twice its sign (at the moments ±ta), due to the
existence of critical value of the energy density

ρcreff (ǫ = 1, λ0 < 0) =
8B2

−|m2|
|m2|+B2

−

where peff vanishes. This fact leads to the observation that there exist two periods of negative
pressure and another one of positive pressure between them.

An important problem in the classical (and quantum) Cosmology concerns the initial and/or
final conditions (i/f. c.’s). Namely, whether and how the particular features of the Universe
evolution depend on the corresponding i/f. c.’s. The BHT - matter model (4) provides an example
of two distinct families of such conditions (type (1) and (2) above) that lead to qualitatively different
Universe histories: non-singular Big-Bounce for the type (1) (σ2 ≤ σ2

±) and the singular Big - Bang
for the type (2) (σ2 ≥ σ2

±) for the same values of all the parameters {κ2, λ0,m
2
σ} of the model. The

corresponding type (2) solutions:

σ̃(t|ǫ) =
√

m2
σ

2γ±
coth (b±(t− t0)) , ã2±(t|ǫ) = | sinh b±(t− t0)|δ± (21)

are “singular” at t = t0, i.e.

σ̃(t → t0) → ∞, ˙̃ϕ(t → t0) → ∞, R̃(3)(t → t0) → ∞ (22)

and they exist in two disconnected periods of time. For t ∈ (−∞, t0) we have the same vacuum
{σ−, dS3(Λeff )} (stable for ǫ = −1; unstable for ǫ = 1) as starting point. In the case ǫ = −1, λ0 > 0

6



these solutions describe accelerating and contracting to Big-Crunch 3D Universe, while for the
unstable inverse double-well potential V−, i.e. in {ǫ = 1, λ0 < 0} case, the initial acceleration
period ends at the moment ta (ta < t0), when q̃(t) changes sign and the new deceleration epoch
begins. Similarly the eqs. (21) when considered in the interval t0 < t < ∞ represent accelerating
and expanding Universe created in the moment t0 from the Big-Bang singularity (R(3)(t0) → ∞)
towards the infinite future (t → ∞) dS3 - vacuum {σ+, dS3(Λeff )} in the “stable” {ǫ = −1, λ0 < 0}
case. Again the {ǫ = 1, λ0 < 0} - Universe exhibits periods of acceleration and deceleration.

The purpose of this short discussion about the effects of the choice of the i/f c.’s {(σi,f , σ̇i,f )}
and {(ϕi,f , ϕ̇i,f )} on the properties of the solutions of eqs. (3) for the BHT - Matter model (4)
is to demonstrate the incompatibility of the type (2) i/f c.’s, involving scales L2 ≤ lpl (due to
< R̃(3) >→ ∞, < ˙̃ϕ >→ ∞), with the range of validity L2 ≫ lpl of eqs. (3). On the other hand,
the type (1) i/f. c.’s (i.e. σ2 ≤ σ2

±, ϕ̇
2 <≤ 4B2σ2

±, etc.) provides an example of “semiclassical
consistency”, when the parameters of the model {ǫ = ±1,Λeff = M2

gr =
1

L2
gr
,m2

σ = 1
L2
σ
} are chosen

such that9

lpl ≪ Lgr < Lσ

(remember Lgr ≡ L(1) is the smallest scale in this approximation).
The non-perturbative cosmological solutions of BHT - massive gravity coupled to scalar QFT’s

with σ4 self-interaction (4) we have constructed within the restrictions (9), (10) imposed by the
super-potential method, do not allow a complete discussion of the “unitarity consistency” of these
models. However one can easily verify whether (and for which values of the parameters ǫ = ±1, λ0

and m2
σ) the above mentioned restrictions are compatible with the pure BHT - gravity unitarity

conditions [4]:

m2(Λeff − 2ǫm2) > 0

Mgr = −ǫm2 +
1

2
Λeff ≥ Λeff (23)

together with the well known conditions for unitarity and tachyon-free “light” massive scalar σ4 -
QFT (2) in dS3 classical background :

0 < m2
σ ≤ Λeff (24)

We have already realized that the Bounce solutions (13) in both cases ǫλ0 < 0, i.e. of normal and
inverted double well potentials V±(σ), correspond to the limiting value λBHT = − Λ

m2 = −1 of the
BHT “cosmological” parameter λBHT . As a consequence the effective cosmological constant

Λ+
eff = Λ−

eff = 2|m2|

is equal to the “graviton (mass)2”, i.e. M2
gr = Λeff = 2|m2|. In the case: ǫ = −1, λ0 > 0 the BHT

- u.c.’s (23) are automatically satisfied and the restriction (9) now reads

4γ < m2
σ ≤ 2m2 (25)

Therefore the BHT - matter model (4) with “wrong” sign ǫ = −1 of the curvature term, λ0 > 0 and
V+(σ) representing double well potential (2) with m̄2

σγ < 0 and γ > 0 is unitary and tachyons-free.
It corresponds to the lower bound λBHT = −1 of the dS3 unitary window [4]:

−1 ≤ λBHT < 0 (26)

9in both cases the treatement of (sub) Planckian scales L ≤ lpl requires an introduction of other degrees of freedom
(than ĥµν) and other methods of quantization
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This special point of the pure BHT - gravity model (1) is known to describe “partially massless”
graviton of one propagating mode, instead of the two helicities ± 2 graviton massive modes for the
generic M2

gr > Λeff case. The observed reduction of the physical degrees of freedom of ĥµν (for
λBHT = −1) turns out to be a result of the enhancement of the gauge symmetries of the linearized
(effectively Pauli-Fierz) form of the corresponding equations of motion [16],[4].

We have indeed similar non-singular solutions (13) for the case ǫ = 1, λ0 < 0 (i.e. m2 < 0)
representing the inverted double well potential V−(σ) (γ < 0, m̄2

σ > 0). However the BHT - matter
model for this range of the parameters is neither unitary nor tachyons-free. For ǫ = 1, m2 < 0 and
Λeff = 2|m2| the first of the BHT - u.c.’s (23) does not hold and now σ± - dS3 “vacuum” represent
the maxima of V−(σ). Hence they are unstable and the corresponding asymptotic (t → ±∞) σ -
particle states are tachyonic (m2

σ±
< 0). Due to the “right” sign ǫ = 1 of the R - term one can

try to interprete this model as an effective action for the scalar QFT with V−(σ) self-interaction in
classical gravitational background, thus relaxing the BHT - quantum gravity unitarity conditions
(23). In order to avoid tachyonic instabilities one should consider “semiclassical” states build on
the metastable minima of V−(σ) (i.e. σ0 = 0) and to further study their decay. Note that such
state is qualitatively different from the “constant curvature” |σ±, dS3(Λeff ) > - states. As one can
easily see from eqs. (6), now we have

σ̇(0) = 2B, ϕ̈(0) = −4B2, ϕ̇(0) = 0

As a result this relative minima state describes linearly growing matter and (non-constant curva-
ture) Gaussian scalar factor

a20(t) = e−2ǫB2t2 , σ0(t) = 2Bt (27)

which makes the analytic study of the spectrum of the fluctuations around it rather complicated.
Let us briefly discuss the remaining two models when ǫλ0 > 0 (or equivalently m̄2

σγ > 0), i.e.

V
cyc
± (σ) = ±|γ|

4

(

σ2 +
2|m2|
B2

)2
− 2Λ (28)

The solutions of eqs. (7) are now periodic of period T = π|m|
B2

√
2
:

σcyc(t) =
|m|

√
2

B
tan

(B2
√
2

|m| t
)

, a2cyc(t) =
∣

∣

∣ cos
(B2

√
2

|m| t
)∣

∣

∣

2ǫ|m2|

B2
(29)

and are defined on the finite interval t ∈ (− T
2 ,

T
2 ) only, where they represent initial (Big-Bang) and

final (Big-Crunch) curvature singularities with σcyc(±T
2 ) → ±∞ at both “ends”. The main problem

with these models (and of their solutions (29)) is that they do not admit “vacuum” solutions of
constant curvature. The absolute minima/maxima (for ǫ = ±1) of V cyc

± (σ), σ0 = 0 corresponds to
singular non-constant curvature solution (27). Note that the BHT - analysis of the perturbative
consistency of 3D gravity is based on the linearization ĝµν = gvacµν +κĥµν around constant curvature
stable vacuum states |σ±, gvacµν > (i.e. the ones corresponding to M3, AdS3, or dS3). They are
indeed present in the pure BHT - gravity (1) for all values of the parameters ǫ, λ0 and Λ. When
matter is added, the presence or absence of such type of vacuum solutions depend on the form of the
potential V (σ) and on the values of the parameters ǫ, λ0, m

2
σ. As we have seen on the examples of

the double-well potentials (ǫλ0 < 0) the analysis of perturbative “semiclassical consistency” of the
BHT - matter models follows the lines of the BHT - arguments [4], [5] with special attention to the
unitarity and renormalizability of the matter sector. In the ǫλ0 > 0 type of models characterized

8



by the potential (28) such an analysis requires new methods and their consistency remains an open
problem.

We have avoided up to now the discussion of the important question about the possible manners
to couple Matter QFT’s to the New Massive Gravity. To begin with the natural questions to ask
are: Should one also include higher derivatives terms like : R|∇σ|2 , |∇σ|4, Rµν∇µσ∇νσ, RV (σ)
etc.? How such terms might influence the unitarity properties of the corresponding Matter-Gravity
model?, etc. Our particular choice (4) was motivated by the renormalizability of the matter QFT
and we have included in the effective action the UV counter-terms (all of type K for the minimal
coupling ξ = 0) that appear in the lowest order in the couplings κ2 and γ. The analysis of the
structure of divergent diagrams of this graviton -scalar QFT (in constant curvature background) at
orders κ3 and κ4 suggests that new counter-terms like those mentioned above could be present. This
line of arguments however unavoidably leads to the introduction of large number of new parameters
in the corresponding effective action. On the other hand, the original unitarity proof of Bergshoeff,
Hohm and Townsend [3] that is based on the equivalence of the NMG action (1) to the specific
“second order” derivatives (including one more auxiliary spin two massive field fµν) action

S
eff
PF =

1

κ2

∫

dx3
√−g

[

−R+ fµνGµν −
m2

4
(fµνfµν − f2)

]

(30)

(with f = gµνfµν) appoints an economic alternative without any new parameters involved. Namely
to consider the following rather obvious generalization of the Pauli - Fierz inspired action (30)
including matter fields:

S
eff
PFM =

1

κ2

∫

dx3
√−g

{

ǫR− κ2(
1

2
|∇σ|2 + V (σ)) + fµνEµν −

m2

4
(fµνfµν − f2)

}

(31)

where we denote

Eµν = Gµν −
κ2

2
Tµν , Tµν(σ) = ∇µσ∇νσ − 1

2
gµν∇ρσ∇ρσ − gµνV (σ) (32)

The matter potential V (σ) has to be chosen by renormalizability arguments. Similarly to the pure
gravity case [3], [17] one can easily eliminate fµν in order to get the following suggestive form of
the New Massive Gravity - Matter action:

S
eff
NMGM =

1

κ2

∫

dx3
√−g

{

ǫR+
1

m2
K − κ2

(1

2
|∇σ|2 + V (σ)

)

− κ2

m2

(

RµνTµν −
1

4
RT µ

µ

)

+
κ4

4m2

(

T µνTµν −
1

2
(T µ

µ )
2
)}

(33)

Observe that the last two (new) terms:

U = RµνT
µν − 1

4
RT µ

µ = Rµν∇µσ∇νσ − 1

4
RV − 3

8
R|∇σ|2

Y = T µνTµν −
1

2
(T µ

µ )
2 =

5

8
|∇σ|4 − 3

2
V 2 − 1

2
V |∇σ|2 (34)

are of order κ3 and κ4 correspondingly since the κ -expansion of both Rµν and R starts by order κ
terms. Hence the above action (33) when terms up to order κ2 only are taken into account reduces
to the action (4) we have studied. Although the symmetry principles that single out such higher
derivatives Gravity-Matter actions among the many others (with much more free parameters) are
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not completely clear their unitarity and renormalizability indeed represent an interesting research
problem, which however is out of the scopes of the present paper. Let us just mention that the
unitarity of the matter sector in the complete action (33) is rather problematic due to the presence
of the both |∇σ|2 and |∇σ|4 terms. The propagator of such massive scalar field contains ghost
contributions unless certain fine tunning of the coefficients takes place.

The main objectives of the investigations presented in this paper are the properties and the
perturbative consistency of the BHT - matter models (4) with specific renormalizable scalar 3D
QFT added. We have considered as an example the σ4 interaction potential that admits degenerate
adiabatic vacuum states. Our goal was the construction of the explicit non-vacuum solutions of
the corresponding “effective” action’s equations that possess “maximal” 2D Poincare symmetry
O(2)⊗T2 and that interpolate between two such vacua. The particular Bounce solutions of the 3D
Massive BHT - Cosmology with scalar matter (2) we have found by superpotential method turns
out to saturate the lower bound λBHT = −1 (i.e. Λeff = 2|m2|) of the BHT unitarity window.
There exist strong indications that these solutions are stable as well, due to the fact that they
carry Z2 topological charges ±1 . The power of the superpotential method we have used in this
paper allows the construction of analytic solutions for a vast variety of potentials. The simplest
case of linear superpotential we have studied in detail represents just one example selected by the
renormalizability of σ4 interactions in three dimensions. The generalization of our results to the
case of simplest periodic superpotential W (σ) = A + B cos σ that corresponds to the modified
Double Sine-Gordon potential V (σ) is straightforward. Let us also mention the special case of
BHT- gravity coupled to free massless scalar field , i.e. V (σ) = const = −2Λ. In this simple model
a family of unitarity consistent Bounce solutions can be easily found for arbitrary values of the
cosmological constant 0 < |Λ| < m2 without the use of any superpotentials.

Another important line of investigations concerns the construction of domain wall solutions of
the Massive 3D Gravity -Matter models (2) and their further applications for the reconstruction
of the renormalization group flows in the perturbed 2D CFT dual to these BHT-matter models.
The well known relation between the FRW cosmological solutions and the static DW’s permits
an extention of our results to the case of Janus kink-like DW’s for the model (4) that interpolate
between two stable AdS3 vacua. It turns out that they correspond again to the special value
λBHT = −1, but now with Λeff = −2|m2| [18].

In conclusion: the unitarity consistency of the simplest Massive 3D Gravity - Matter model
(4) we have demonstrated on the particular class of cosmological Bounce solutions confirms the
expectations that the BHT - model indeed admits physically interesting renormalizable matter
extensions.

Acknowledgments . We are grateful to C.P.Constantinidis for discussions and for critical reading
of the manuscript. This work has been partially supported by PRONEX project No.35885149/2006
from FAPES-CNPq (Brazil).

References

[1] G.t’Hooft and M.Veltman, One loop divergencies in the theory of gravitation,
Ann.Inst.H.PoincareA20(1974),69

[2] K.S.Stelle, Renormalization of higher-derivative quantum gravity, Phys.Rev.D16953(1977)

[3] E.A.Bergshoeff, O.Hohm and P.K.Townsend, Massive Gravity in Three Dimensions,
Phys.Rev.Lett.102,201301(2009)

10



[4] E.A.Bergshoeff, O.Hohm and P.K.Townsend, More on Massive 3D Gravity, Phys.Rev.D
79,124042(2009)

[5] I.Oda, Renormalizability of Massive Gravity in Three Dimensions,JHEP 0905:064(2009);
M.Nakasone and I.Oda, On Unitarity of Massive Gravity in Three Dimensions,
Prog.Theor.Phys. 121:389 (2009)

[6] Y.Liu and Y.W.Sun, On the Generalized Massive Gravity in AdS(3), Phys.Rev. D

79,126001(2009); Y.Liu and Y.W.Sun, Consistent Boundary Conditions for New Massive Grav-
ity in AdS(3),JHEP 0905:039(2009); Y.Liu and Y.W.Sun, Note on New Massive Gravity in
AdS(3), JHEP 0904:106(2009)

[7] G.Clement, Warped AdS(3) black holes in new massive gravity, Class.Quant.Grav. 26 :
105015(2009)

[8] E.Ayon-Beato, G.Giribet and M.Hassaine, Bending AdS Waves with New Massive Gravity,
JHEP 0905:029 (2009); J.Oliva,D.Tempo and R.Troncoso, Three-dimensional black holes, grav-
itational solitons,kinks and wormholes for BHT gravity, JHEP 0907:011(2009)

[9] I.Gullu adn B.Tekin, Massive Higher Derivative Gravity in D-dimensional Anti-de Sitter Space-
times, Phys.Rev.D 80:064 033(2009)

[10] N.D.Birrell and P.C.W.Davis, Quantum Fields in Curved Space, Cambridge University Press,
1982

[11] T.S.Bunch, P.Panangaden and L.Parker ,On Renormalization of λφ4 Field Theory in Curved
Space-Time.I.,J.Phys.A :Gen.Phys.13,901(1980); T.S.Bunch and P.Panangaden ,On Renor-
malization of λφ4 Field Theory in Curved Space-Time.II.,J.Phys.A :Gen.Phys.13,919(1980)

[12] J.F.Donoghue, Introduction to Effective Field Theory Description of Gravity, arXiv:gr-
qc/9512024

[13] M.Cvetic, S.Griffies and S.J.Rey, Static Domain Walls in N = 1 Supergravity, Nucl. Phys.
B381 (1992) 301; K.Behrndt, G.Lopes Cardoso and D.Lust, Curved BPS Domain Wall solu-
tions in four-dimensional N = 2 supergravity, Nucl. Phys. B607 (2001) 391

[14] D.Z.Freedman, C.Nunez, M.Schnabl and K.Skenderis, Fake supergravity and domain walls sta-
bility, Phys.Rev.D 69,104 027(2004); J.Sonner and P.K.Townsend ,Dilaton domain walls and
dynamical systems, Class.Quant.Grav.23,441 (2006); K.Skenderis and P.K.Townsend, Hidden
supersymmetry of domain walls and cosmology, Phys.Rev.Lett. 96:191 301 (2006)

[15] I.Low and A.Zee, Naked Singularity and Gauss-Bonnet term in Brane world scenarios, Nucl.
Phys. B585 (2000) 395

[16] S.Deser and R.I.Nepomechie, Gauge Invariance versus Masslessness in De Sitter Space,
Ann.Phys.154,369 (1984); B.Tekin, Partially masseless spin 2 fields in string generated models,
arXiv:hep-th/0306 178

[17] S.Deser, Ghost-free, finite, fourth orderD = 3 (alas) gravity, Phys.Rev.Lett.103:101 302(2009)

[18] H.L.C.Louzada, U.Camara dS and G.M.Sotkov, Massive 3D Gravity-Matter Domain Walls (in
preparation)

11


