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Abstract. We review the manifestation of the Brout-Englert-Higgs effect in general relativity
interacting with point-like and extended objects (p–branes including string for p=1 and
membrane for p = 2), which manifests itself in the appearance of the brane source in the
Einstein equation while the graviton remains massless [4]–[8], and discuss briefly its relation
and differences with the model for massive spin 2 field proposed recently by G. t’Hooft [3].

1. Introduction
Brout-Englert-Higgs effect [1], which was also known as Higgs effect, consists in that the
gauge fields of an internal symmetry group acquires the mass when the gauge symmetry is
spontaneously broken. The increasing of the number of polarizations is explained by that the
gauge fields ”eat” Goldstone fields of the spontaneously broken gauge symmetry and incorporates
their degrees of freedom as additional polarizations.

To be more specific, let us consider, following [3], the following Lagrangian

L = −tr
(

1
4FµνF

µν + 1
2Dµϕ

sDµϕs + V (ϕ2)
)

(1)

for the gauge fieldAµ = As
µTs and the scalars φ = ψsTs in the adjoint representation of the gauge

group. If the potential V (φ) forces the scalar field to have a non-vanishing vacuum expectation
value < φ >, one can fix the ‘preference gauge’ [3] φ =< φ >. In this gauge the kinetic term
for the scalar field- Goldstone fields for the spontaneously broken gauge symmetry- gives rise
to the mass term of the gauge field, 1

2Dµϕ
sDµϕs 7−→∝ m2AµAµ with m2 ∝< φ2 >, and the

scalar field equations are reduced to ∂νAν = 0. These equations are dependent: they can be
also obtained as a selfconsistency conditions for the gauge field equations

DµFµν = mAν , m2 ∝< ϕ2 > . (2)

This fact reflects the pure gauge nature of the scalar field in (1).
General Relativity is invariant under the spacetime diffeomorphisms (general coordinate

transformations) Diff4 and the graviton can be identified with the gauge field for the Diff4
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gauge symmetry. Then it was natural to expect that the spontaneous breaking of diffeomorphism
symmetry should result in that the graviton becomes massive, see [2, 3] and refs. in [3, 4].

On the other hand, the spontaneous breaking of diffeomorphism symmetry occurs in the
presence of material objects: particles (0-branes), strings (1-branes), membranes (2-branes)
and p-branes with p > 2 for higher dimensional cases D ≥ 4. The corresponding spacetime
Higgs effect, its supersymmetric generalization and consequences were the subjects of study in
[4, 5, 6, 7] and in [8] (where some statements of previous papers on brane degrees of freedom
were refined/improved). This spacetime Higgs effect manifests itself in the modification of the
‘free’ Einstein equations by the p-brane sources, i.e. by the energy-momentum tensor localized
on the p-brane worldvolume W p+1,

Gµν(g) :=
√

|g|(Rµν − 1
2gµνR) = Tp

4

√

|g[p+1]| g[p+1]mn(ξ,~0)δµmδ
ν
nδ

(D−p−1)(xI) (3)

(see below for the notation). However, although such an energy-momentum tensor is a
counterpart of the mass term in (2), it cannot be considered as a mass term for graviton but
rather as a counterpart of the cosmological constant contribution to the graviton equation [4]-[7].

The above statements of [4]–[7] might seem to be in contradiction with [2] and particularly
with [3], where a model looking similar to brane interacting with gravity is discussed. The aims
of the present contribution is to review the pure bosonic results of the study in [4]–[7] and to
point out the differences between gravity interacting with branes and the model considered in
[3] which result in different properties of spin 2 fields in these dynamical systems.

2. Spacetime Higgs effect in the presence of p-brane matter
In the case of (D-dimensional) general Relativity, the gauge symmetry is diffeomorphism
symmetry SDiffD and the gauge field can be identified with metric gµν = eµ

a(x)ηabeν
b(x),

δxµ := xµ′ − xµ = −aµ(x) , δgµν := g′µν(x)− gµν(x) = ∂µa
ρ gρν + ∂νa

ρ gµρ + aρ∂ρgµν . (4)

Material objects, p-branes (particles for p=0, strings for p=1) can be described by the coordinate
functions x̂µ(ξm) defining parametrically their worldvolumeW p+1 as a surface in spacetimeMD,

W(p+1) ⊂MD : xµ = x̂µ(ξm) = x̂µ(τ, ~σ) , { µ=0,1,...,(D−1) ,
m=0,1,...,p . (5)

Their transformations under SDiffD

δx̂µ(ξ) := x̂µ′(ξ)− x̂µ(ξ) = aµ(x̂(ξ))− δξm∂mx̂
µ(ξ) (6)

indicate their Goldstone nature. This is not surprising as far as in flat spacetime (superspace)
the p-branes break spontaneously the rigid translation symmetry of the bulk spacetime [9].

In the curved space of General Relativity, when the metric is dynamical variable, the global
translational invariance is substituted by local spacetime diffeomorphism invariance SDiffD
and x̂µ(ξ) becomes, roughly speaking, the Goldstone fields for SDiffD. As for any Goldstone
fields of the gauge symmetry, the degrees of freedom in coordinate functions can be gauged away
(but not to zero) by imposing the ‘static gauge’ conditions (cf. the ‘preferable gauge’ φ =< φ >
above)

x̂µ(ξ) = (ξm, 0, . . . , 0) ( ⇔ φ =< φ > ) , { µ=0,1,...,(D−1) ,
m=0,1,...,p , (7)

this is to say choose a local frame whereW (p+1) looks locally as a flat hyperplane. In this gauge
the p–brane degrees of freedom are carried (are ’eaten’) by the metric (or vielbein) gauge field.



The action describing the interaction of the gauge and Goldstone fields (cf. (1)) reads

S = 1
2κ

∫

dDx
√

|g|R+ Sp
(

⇐⇒ L = −1
4FµνF

µν − 1
2Dµϕ

sDµϕs − V (ϕ2)
)

, (8)

where
∫

dDx
√

|g|R is the standard (D-dimensional) Einstein-Hilbert action and Sp is the p-
brane action. In the simplest case of absence of the spacetime and worldvolume gauge fields
(bulk and worldvolume fluxes) this reads

Sp = Tp

∫

dp+1ξ
√

|det(∂mx̂µ∂nx̂νgµν(x̂))|
(

⇐⇒ −1
2Dµϕ

sDµϕs − V (ϕ2)
)

(9)

( S0 = m
∫

dτ
√

|det( ˙̂xµ ˙̂xνgµν(x̂(τ)))| for the case of massive particle, p = 0, T0 = m). Varying
the action with respect to the spacetime metric we arrive at the Einstein equation

Gµν(g) :=
√

|g|(Rµν −
1

2
gµνR) = κTµν (10)

with R = gµνRµν , Rµν = Rµρ ν
ρ and the energy momentum tensor

T µν = Tp

4

∫

dp+1ξ
√
γγmn∂mx̂

µ∂nx̂
νδD(x− x̂(ξ)) (11)

having support on the p–brane worldvolume W p+1 (5). Varying (8) with respect to δx̂µ(ξm) one
obtains the so-called minimal surface equation (γmn:=∂mx̂

µ∂nx̂
νgµν(x̂) is the induced metric)

∂m(
√

|γ|γmngµν(x̂)∂nx̂
ν(ξ))− 1

2

√

|γ|γmn∂mx̂
ν∂nx̂

ρ(∂µgνρ)(x̂) = 0 . (12)

For p=0 case this can be written as the standard geodesic equation d2x̂µ

ds2
+ Γµ

νρ
dx̂ν

ds
dx̂ρ

ds
= 0.

In the complete analogy with the internal gauge symmetry case, Eq. (12) are dependent.
Indeed, as it is well known, the Bianchi identities R[µν ρ]

σ = 0 for the Riemann curvature
tensor Rµν ρ

σ result in the covariant conservation of the energy–momentum tensor, T µ
ν;µ :=

∂µ(T
µρgρν) − 1

2T
µρ∂νgρµ = 0. In our case this results in an equation with support on W p+1;

integrating it with a probe function one can show (see [10] for the bosonic string and [4] for
super–p–brane cases) that this gives (12).

This implies that one can fix the gauge (7) and obtain the gauge fixed version of (12) from
the gauge fixed version of Einstein equation, Eq. (3) which is Eq. (10) with

T µν =
Tp

4

√

|g[p+1]| g[p+1]mn(ξ,~0)δµmδ
ν
nδ

(D−p−1)(xI) ,

{

m = 0, 1, . . . , p ,

I = p+ 1, . . . , (D − 1) .
(13)

Thus the p-brane source term given by energy momentum tensor (13) in the r.h.s. of the Einstein
equation (3) is the counterpart of the gauge field mass term in (2). However [4]–[7], this p-brane
source term cannot be considered as a mass term for graviton, but rather as a counterpart of
the cosmological constant term which cannot be identified with the graviton mass [7].

3. Spacetime filling brane (p–brane with p = D − 1) as cosmological constant

In the p=D-1 case the Sp=D−1 =∝ TD−1
∫

dDξ
√

|det(∂mx̂µ∂nx̂νgµν(x̂))| term in the interacting

action (8), can be reduced (by gauge fixing ξm = δmµ x
µ)) to cosmological constant term

Sp=(D−1) =
Λ
κ

∫

dDx
√

|gµν(x))| , (14)



We have to stress that the notion of spacetime filling brane becomes nontrivial in the
String/M-theory context (the references can be found in [4]–[7]) in particular, because such
branes (e.g. D9–branes of type IIB string theory), are carriers of the gauge fields and fermionic
Goldstone fields corresponding to spontaneous breaking of bulk supersymmetry.

With this in mind, it is tempting to speculate on that this simple observation can be useful
as a basis to resolve the cosmological constant problem. Namely, the small value of cosmological
constant with respect to a straightforward QFT estimation for vacuum energy, as well as the
fact that its value is nonzero and positive while supersymmetry and supergravity prefer zero
or negative cosmological constant, might be explained just by that the cosmological constant is
determined by the tension of a spacetime filling brane, Λ ∝ TD−1. However, developing such a
conjecture goes beyond the score of this contribution.

A simple proof of that the cosmological constant cannot be considered as graviton mass has
been presented in [7]. Schematically, the arguments are as follows. In the case of small but
non-vanishing cosmological constant, Λ → 0 but Λ 6= 0, one may consider decomposition over
the flat spacetime gµν = ηµν + hµν of the Einstein equation with cosmological constant,

Gµν(η + h) = Gη
µν(h) +O(hh) = Ληµν + Λhµν . (15)

Here Gη
µν(h) contains the contributions of the first order in weak field h and the terms of higher

order in h are denoted by O(hh) (the Einstein tensor calculated with the flat metric vanishes
Gµν(η) = 0). The first impression might be that Ληµν provides the mass term for graviton hµν .
This, however, is not the case. Indeed, if the first order approximation to Eq. (15) is given by
Gµν(h) = Λhµν then zero order approximation should be Ληµν = 0 which implies the vanishing
of the cosmological constant Λ = 0 (in contradiction with the original assumption). Thus the
selfconsistent weak field approximation to (15) with Λ 6= 0 can be formulated only assuming that
the cosmological constant is of the same order as h, h ∝ Λ, so that the first order approximation
is given by Gη

µν(h) − Ληµν = 0; this equation does not contain mass term for h.

4. Discussion and conclusion
The deep reason beyod the fact that cosmological constant contribution to field equations cannot
be considered as a mass term is that the equation possesses the gauge symmetry with the same
number of parameters as in the case of vanishing cosmological constant, and, hence, the graviton
maintains the same number of polarizations D(D − 3)/2 (which is 2 for D = 4) as in the case
of massless spin 2 field. So the AdS graviton is also massless (like the Minkowski one).

Indeed, despite fixing the gauge (7), the functional (14) and the corresponding p = D
interacting action (8) is invariant under the spacetime diffeomorphism symmetry DiffD. The
reason for this is that the complete group of the gauge invariance of the interacting action
(8) is the direct product DiffD ⊗Diffp+1 of the spacetime and worldvolume diffeomorphism
transformations. These correspond to the parametric functions aµ(x) and δξm (ξ) in Eq. (6)
which can be used to fix (on the worldvolume W p+1) the gauge (7). This remains invariant
under combined (spacetime and worldvolume) Diffp+1 diffeomorphisms.

In the case of spacetime filling brane p = D − 1 this residual Diffp+1 invariance is the
spacetime diffeomorphism invariance DiffD of the Einstein action with cosmological constant.
Then the number of polarization of graviton remains the same as in the case of absence of
cosmological constants. In the case of not-spacetime–filling brane, p < D − 1, the gauge
symmetry is reduced to Diffp+1, but only on the worldvolume W p+1, while outside W p+1

the DiffD still acts on graviton. Thus after gauge fixing graviton acquires some additional
degrees of freedom (counterparts of additional polarizations), but only on W p+1 ∈ MD, the
points of which for p < (D − 1) form the set of measure zero with respect to the set of all
spacetime points. This is why one cannot identify the p–brane energy momentum tensor (13)
with a mass term for graviton.



The above discussion allows us to understand the difference of the gravity plus brane system
with the model for massive spin 2 fields proposed not so long ago by G. ’t Hooft [3],

S′t Hooft =
1
2κ

∫

dDx
√

|g|R+
∫

d4x
√

|g|gµν(x)∂µXa(x)∂νX
a(x) , a = 1, . . . ,D (16)

Although seemingly similar to the spacetime filling brane action ((9) of (8)), the second term
of (16) differs from that by that it involves not one but two spacetime metrics: gµν(x) and
the constant δab used to contract the indices of the Goldstone fields Xa(x). As a result, the
(spontaneous) breaking of the diffeomorphism symmetry by the dynamical system described by
the action (16) is complete, the gauge fixed action (Xa = δaµx

µ · m
2κ)

S′t Hooft|gauge = 1
2κ

∫

dDx
√

|g|R+ m2

2κ

∫

d4x
√

|g(x)|gµµ(x) (17)

does not possess gauge symmetry and, hence, the model describes a massive spin 2 field [3].
As far as the p-brane plus gravity interacting system described by Eqs. (8) and (9)) is

concerned, although the p-brane source terms play in it the same role as the mass terms of
the gauge fields in the standard Higgs effect, they cannot be identified with the mass term,
but rather with the counterpart of the cosmological constant term localized on the p-brane
worldvolume [4]–[7]. The cosmological term itself can be associated with a spacetime feeling
brane (p = (D − 1)) and, as we have discussed above, cannot be considered as a mass term.

References
[1] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,” Phys. Rev. Lett. 13

(1964) 321;
P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12 (1964) 132.

[2] M.J. Duff, “Dynamical breaking of general covariance and massive spin-2 mesons,” Phys. Rev. D12, 3969-3971
(1975); C. Omero and R. Percacci, “Generalized Nonlinear Sigma Models In Curved Space And Spontaneous
Compactification,” Nucl. Phys. B165 351 (1980); R. Percacci, “The Higgs Phenomenon in Quantum
Gravity,” Nucl. Phys. B 353, 271 (1991) [arXiv:0712.3545 [hep-th]]; M. Porrati, “Higgs phenomenon for
4-D gravity in anti de Sitter space,” JHEP 0204, 058 (2002) [arXiv:hep-th/0112166]. A. H. Chamseddine,
“Spontaneous symmetry breaking for massive spin-2 interacting with gravity,” Phys. Lett. B 557, 247
(2003) [arXiv:hep-th/0301014].

[3] G. ’t Hooft, “Unitarity in the Brout-Englert-Higgs Mechanism for Gravity,” arXiv:0708.3184 [hep-th].
[4] I. A. Bandos, J. A. De Azcarraga and J. M. Izquierdo, “Supergravity interacting with bosonic p-branes and

local supersymmetry,” Phys. Rev. D 65, 105010 (2002) [arXiv:hep-th/0112207].
[5] I. A. Bandos, J. A. de Azcarraga, J. M. Izquierdo and J. Lukierski, “D = 4 supergravity dynamically

coupled to a massless superparticle in a superfield Lagrangian approach,” Phys. Rev. D67, 065003
(2003) [arXiv:hep-th/0207139]; “On dynamical supergravity interacting with super-p-brane sources,” in
3rd International Sakharov Conference, Moscow, June 24-29, 2002. Proceedings, Scientific World Publ. Co,
Edts. A. Semikhatov et. al., 2003 Vol. 2, pp. 312-324 [arXiv:hep-th/0211065];
I. A. Bandos and J. M. Isidro, “D = 4 supergravity dynamically coupled to superstring in a superfield
Lagrangian approach,” Phys. Rev. D69, 085009 (2004) [arXiv:hep-th/0308102].

[6] I. A. Bandos, J. A. de Azcarraga, J. M. Izquierdo and J. Lukierski, “Gravity, p-branes and a spacetime
counterpart of the Higgs effect,” Phys. Rev. D68, 046004 (2003) [arXiv:hep-th/0301255].

[7] I. A. Bandos, “Supergravity interacting with superbranes and spacetime Higgs effect in general relativity,”,
in: Symmetries in gravity and field theory. Conference dedicated to 60th birthday of José Adolfo de
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