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Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this
vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR
limit of the extension of Horava gravity proposed by Blas, Pujolàs and Sibiryakov. Hypersurface
orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence
numerous results already obtained for Einstein-aether theory carry over.
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Much interest has recently been focused on Hořava-
Lifshitz gravity [1], which proposes the possibility of a
renormalizable, non-Lorentz-invariant UV completion of
general relativity. There are so-called projectable and
non-projectable versions of this proposal, and both have
been shown to suffer from various problems (instabilities,
overconstrained evolution, or strong coupling at low en-
ergies) related to a badly behaved scalar mode of gravity
brought on by the presence of a non-dynamical spatial
foliation in the action [2]. A proposal for evading all of
these problems, put forth by Blas, Pujolàs and Sibiryakov
(BPS) [3], is an “extension” of Hořava gravity. I will call
it here BPSH gravity, and below T -theory for reasons to
become clear. One can view this extension as promoting
the fixed foliation to a dynamical one. This extension
could still possess strong coupling at low energy [4], but
it is also possible that higher derivative terms in the ac-
tion become important below the strong coupling energy
scale and prevent this [5].

It was remarked in Ref. [5] that this extended Horava
theory is related to a restricted version of Einstein-aether
theory, which is general relativity coupled to a dynami-
cal unit timelike vector field (for recent review see [6]).
The restriction amounts to assuming the vector field is
hypersurface orthogonal. The purpose of this article is to
clarify the relation between these two theories, both at
the level of the defining action principles and at the level
of solutions to the equations of motion. In particular,
the lowest dimension terms (the IR limit) of the BPSH
gravity action are equivalent to those of Einstein-aether
theory, when the aether vector is assumed to be hypersur-
face orthogonal. It will be shown that any hypersurface
orthogonal solution to Einstein-aether theory is a solu-
tion to the IR limit of BPSH gravity, although the con-
verse does not appear to be true. In particular, since all
spherically symmetric aether fields are hypersurface or-
thogonal, the spherically symmetric vacuum, star, black
hole, and collapsing star solutions, and FRW cosmolog-
ical solutions to Einstein-aether theory are all solutions
to BPSH gravity. Moreover, some results about the cou-
pling constants and PPN parameters of Einstein-aether
theory carry over.

BPSH gravity has been formulated as a theory with a

preferred spacetime foliation, defined by a time coordi-
nate t and space coordinates xi. The spacetime metric is
given by

ds2 = N2dt2 − hij(dx
i −N idt)(dxj −N jdt), (1)

where N and N i are the lapse function and shift vector.
The action for the IR sector of BPSH theory is

S =
1

16πGH

∫

dtd3xN
√
h(KijK

ij−λK2+ξ(3)R+αaia
i).

(2)
Here spatial indices are raised and lowered using hij ,

Kij = (ḣij + DiNj + DjNi)/2N is the extrinsic curva-
ture of the spatial surface, dot denotes derivative with
respect to t, Di is the spatial covariant derivative, K =
hijKij ,

(3)R is the spatial Ricci curvature scalar, and
ai = −∂i lnN . The coefficients λ, ξ, and α are dimen-
sionless constants, and GH is what BPS denote byM2

P /2.
It is helpful to understand this BPSH gravity theory

using a covariant formalism. I shall start from scratch
defining a theory motivated by symmetry principles, and
then show that the resulting theory is equivalent to BPSH
gravity. I focus here purely on the IR limit.
Suppose we wish to write down a generally covariant

theory that depends on a spacetime metric, but also on
a foliation of spacetime by spacelike surfaces. These sur-
faces define a notion of “cosmic simultaneity,” quite alien
to the spirit of general relativity. However, given various
difficulties constructing a viable theory of quantum grav-
ity (including non-renormalizability and UV completion,
and the problem of time), it is interesting to ask what
such a theory would look like and whether it could solve
some or all of these problems and be phenomenologically
viable.
A spacelike foliation of spacetime can be defined by

the level sets of a suitably behaved scalar function T . If
this function is a dynamical variable in the theory, then
general covariance is preserved. A monotonically related
function defines the same foliation. If the theory is to
not depend on the time labeling, but rather only on the
choice of surfaces, the action should depend on T only
via the unit (co)vector

ua =WT,a, with W = (gabT,aT,b)
−1/2, (3)
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where the subscript “, a” denotes the gradient. The con-
vention used here for metric signature is (+−−−). This
vector is hypersurface orthogonal, i.e. uav

a = 0 for any
vector va tangent to a surface of constant T . Conversely,
any hypersurface orthogonal vector can be written in the
form WT,a for some pair of scalar functions T and W .
To formulate a local, generally covariant dynamical

theory of the spacetime metric and the T function via the
ua vector, we specify a Lagrangian scalar density. The
classification of spacetime scalars that can be written us-
ing gab and ua, with up to two derivatives, was already
considered [6, 7] in the context of Einstein-aether the-
ory, or ae-theory for short. The only difference between
ae-theory and what I will call T-theory for short, is that
in ae-theory the aether, i.e. the unit vector field, is not
required to be hypersurface orthogonal. (Actually the
aether has usually been taken to be contravariant rather
than covariant, but this changes only appearances.) This
means that in ae-theory the aether has three degrees of
freedom at each spacetime point, whereas in the present
case it has just one, coming from the choice of the time
function T .
Up to total derivative terms, the most general action

for ae-theory (aside from matter couplings) is

S =
1

16πGæ

∫ √
−g (−R+ Læ) d

4x (4)

where R is the 4d Ricci scalar and

Lae = −Mabmn∇aum∇bun, (5)

with Mabmn is defined as

Mabmn = c1g
abgmn+ c2g

amgbn+ c3g
angbm+ c4u

aubgmn.
(6)

The ci are dimensionless coupling constants, and it is
assumed that um is constrained to be a unit vector,
gmnumun = 1. Note that since the covariant derivative
operator ∇a involves derivatives of the metric through
the connection components, and since the unit vector is
nowhere vanishing, the terms quadratic in ∇u also mod-
ify the kinetic terms for the metric.
To pass to T -theory we just substitute (3) for um in

the Lagrangian (5). The equations of motion are the
conditions that the action be stationary under variation
of the metric and the scalar function T . The result-
ing action looks dangerous because it has two explicit
derivatives, and ua = WT,a already has one implicit
derivative. Hence it appears that the equations of motion
for T will have fourth derivatives, which doesn’t sound
healthy. However, since the theory is generally covari-
ant, we may always express the field equations using T
itself as one of the spacetime coordinates. Then we have
ua = δaT (g

TT )−1/2, which contains no derivatives. Still
the variation of T in the action will produce an equation
of motion that is third order in derivatives. However, as
we shall see it remains second order in time derivatives.

Another issue is the timelike character of T,a. It is not
clear whether the dynamics of the theory somehow man-
ages to preserve this condition. If not, then where T,a
becomes null the unit vector ua will diverge, and most
likely the metric would become singular as well. It seems
an important question to determine whether such singu-
larities can arise “unprovoked”, and/or more visibly than
those hidden by black hole horizons in general relativity.
An important observation we can now make is that the

T field equation is implied by the Einstein equation. One
way to think about this is to consider ordinary Einstein
gravity coupled to a scalar field. Due to the Bianchi iden-
tity ∇aGab = 0, the Einstein equation implies conserva-
tion of the stress energy tensor. For a scalar field this
is enough to imply the matter field equation, unless the
scalar field is constant. Another way to see this is to ap-
peal directly to diffeomorphism invariance of the action.
Suppose we couple T -theory to generic matter fields de-
noted ψ, so the action is schematically S[g, ψ, T ]. Under
a diffeomorphism generated by a vector field ξ the action
is invariant, so we have

δξS =

∫

(δS/δg)Lξg + (δS/δψ)Lξψ + (δS/δT )LξT

= 0, (7)

where Lξ is the Lie derivative. Now suppose the Einstein
equation is satisfied, so that δS/δg = 0, and suppose
further that the matter field equations are satisfied, so
that δS/δψ = 0. Then at such solutions we have the
identity

∫

(δS/δT )LξT = 0 for all vector fields ξa. Unless
T is constant — which it cannot be if it is to define a
foliation — the Lie derivative LξT can be freely varied
at a point by varying the choice of ξa, hence it must be
that δS/δT = 0, i.e. the T field equation is satisfied.
Since the T field equation need not be imposed explic-

itly, we can adopt T as one of the spacetime coordinates,
and write the theory in this “T -gauge” before varying
the remaining fields, using the 3+1 decomposition of the
metric in (1). Then since u =WdT is a unit 1-form, the
function W is evidently the same as the lapse N .
Decomposing the volume element yields

√−g = N
√
h.

The covariant derivative of um decomposes as

∇aub = −Kab − uaab, (8)

where Kab is the extrinsic curvature of the surfaces nor-
mal to ua, and ab is the acceleration of the normal curves.
The extrinsic curvature is symmetric, and it and the ac-
celeration are both spatial (Kabu

b = 0 and abu
b = 0).

Using the spatial coordinates xi the acceleration can be
expressed as ai = −(lnN),i. The aether Lagrangian (5)
can therefore be expressed in the form

Lae = −c13KijK
ij − c2K

2 + c14aia
i, (9)

where, c13 = c1 + c3, c14 = c1 + c4, and, as in (2), the
spatial indices are raised with hij . The 3+1 decomposi-
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tion of the −R in the Einstein-Hilbert action adds to the
Lagrangian KijK

ij −K2 + (3)R.
We conclude that the T -theory action (4) and the

BPSH action (2) are identical, with the following rela-
tions between the various coefficients:

GH/Gæ = ξ = (1 − c13), α/ξ = c14, λ/ξ = 1 + c2.
(10)

In Ref. [3], ξ is fixed to unity by choosing the scale of
the t coordinate. Once matter is present, that rescaling
is no longer available if matter is to couple minimally to
the spacetime metric.
Note that athough we begin with four coefficients

c1,2,3,4 in the most general T -theory action, when ex-
pressed in 3+1 form in the T -gauge only three indepen-
dent combinations of these parameters enter (9). From
the covariant point of view this happens because, when
ua is hypersurface orthogonal, there is a relation between
three of the terms in the Lagrangian (5). This can be seen
by considering the twist 3-form, ω = u ∧ du, which van-
ishes identically when u = NdT . In terms of the dual
vector ωa = ǫabcdub∇cud we have the identity

ωaω
a = −2(∇aub)(∇[aub]) + (ub∇bua)(u

c∇cu
a), (11)

where the square brackets denote index antisymmetriza-
tion. When ua is hypersurface orthogonal ωa vanishes,
so the c1, the c3 or the c4 term in the Lagrangian can be
written in terms of the other two. Alternatively, one can
use this identity to remove the square of the antisym-
metric part (∇[aub])(∇[aub]), replacing both the c1 and

c3 terms by a single term of the form (∇(aub))(∇(aub))
(where the round brackets denote index symmetrization).
One more term may be eliminated from the action (4)

by making a field redefinition of the metric [8, 9]

g′ab = gab + (ζ − 1)uaub, (12)

which “stretches” the metric tensor in the aether direc-
tion by a positive factor ζ. (A negative factor would
return a Euclidean signature metric [19].) This does not
change the function T , but the unit vector does change,
to u′a =

√
ζua. If matter is coupled minimally to the met-

ric gab, then it is not coupled minimally to g′ab but rather
to g′ab − (1 − 1/ζ)u′au

′
b. However, for considerations not

involving matter, such a field redefinition can simplify
the theory. The action (4) for (g′ab, u

′
a =

√
ζua) takes

the same form as that for (gab, ua), with new coefficients
c′i. The relation between the c′i and ci was worked out
in Ref. [9], and is conveniently given in terms of certain
combinations with simple scaling behavior:

c′14 = c14

c′123 = ζc123

c′+ − 1 = ζ(c+ − 1)

c′− − 1 = ζ−1(c− − 1), (13)

where c123 = c1+ c2+ c3 and c± = c1± c3. For example,
one can arrange for c′+ = 0 by choosing ζ = 1/(1 − c+)
(provided c+ < 1). Thus by a metric redefinition one
can eliminate the symmetrized term (∇(aub))(∇(aub)) in
the Lagrangian. Then, using the twist identity (11), one
can either replace the remaining, antisymmetrized term
by an acceleration squared term, or vice versa. The first
way yields the Lagrangian

Lae = γ2(∇au
a)2 + γ4(u

b∇bua)(u
c∇cu

a), (14)

where γ2,4 depend on the original values c1,2,3,4. The
second way yields the equivalent Lagrangian

Lae = γ2(∇au
a)2 + γ−∇[aum]∇[aum]. (15)

The equations of motion of T -theory are closely related
to those of ae-theory. Let En denote the variation of the
action with respect to un,

En = 16πG
δS

δun
= ∇b(M

abmn∇aum). (16)

The variations of un induced by variations of T and of
the inverse metric gab are

δTun = N(δmn − unu
m)∇mδT (17)

δgun = − 1
2unuaubδg

ab. (18)

The T equation of motion is thus

∇m

(

N(δmn − umun)E
n
)

= 0. (19)

As mentioned earlier, if T is used as one of the coordi-
nates, then En has just two derivatives in it, and then
the T field equation (19) is of third order in derivatives.
However, due to the presence of the spatial projection
δmn − umun, the derivative in the outer ∇m operator is
purely spatial, so the equation is of only second order in
derivatives with respect to T .
The gab field equation, including matter fields, is

Gab = Tæ
ab + 8πGTmatter (20)

whereGab = Rab− 1
2Rgab is the usual Einstein tensor and

Tæ
ab denotes the aether stress tensor, which includes the

contributions from the variations in the aether action (4)
of the explicit metrics in

√−g and Mabmn, the metrics
in the covariant derivative operators, and those buried in
the definition of um. In particular, according to (18) the
latter contribute

− 1
2 (E

nun)uaub (21)

to Tæ
ab, which has the form of the stress tensor of a pres-

sureless dust.
Let us now compare the form of the field equations (19)

and (20) to those of ae-theory. In ae-theory, the funda-
mental field um is constrained to satisfy gmnumun = 1.
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This constraint has usually been implemented with a La-
grange multiplier term in the action, but it can also be
taken into account by restricting the variations to satisfy
δgmnumun + 2unδun = 0. Thus the part of the aether
variation orthogonal to un is unconstrained, while the
part parallel to un is given by δ‖un = − 1

2unuaubδg
ab, just

as in (18). Thus the metric variation, accompanied by
this parallel aether variation, yield the Einstein equation
(20) as before, with the contribution (21) in the aether
stress tensor. The orthogonal aether variation yields

(δmn − umun)E
n = 0. (22)

This implies the T -theory field equation (19), although
the converse is not true. We conclude that any hypersur-

face orthogonal solution to Einstein-aether theory is also

a solution to T -theory, i.e. to BPSH gravity.
In particular, since any spherically symmetric aether

field is hypersurface orthogonal, any such ae-theory solu-
tion is a T -theory solution. An example is the vacuum so-
lution to T -theory found recently by Kiritsis [11] which is
identical to the one found previously for ae-theory [12]. A
second, non asymptotically flat solution of T -theory was
found in Ref. [11]. This is also an ae-theory solution: it
corresponds to the interior part of the wormhole in the
global solution found in Ref. [12]. In fact, for an aether
parallel to the time translation Killing field in spherical
symmetry, the aether equation is automatically satisfied
[12], hence all such T -theory solutions are ae-theory so-
lutions. More generally, however, it appears that not
all spherically symmetric T -theory solutions need be ae-
theory solutions.
The conclusion that spherical ae-theory solutions are

T -theory solutions applies also to the black hole solutions
in Ref. [13], the neutron star solutions in Ref. [14], and
even the time-dependent collapse solutions of Ref. [15].
It also applies to the homogeneous isotropic cosmological
solutions discussed in Refs. [17, 18]. Moreover, we can
infer that the relation [18] between Newton’s constant
GN and the coefficient Gæ in the action (4) is the same
as in ae-theory, as is the relation [18] between the cos-
mological gravitational constant Gcosmo that appears in
the Friedmann equation, because these relations can be
obtained with hypersurface orthogonal solutions. This
agrees with the relations reported in Ref. [3]. Similarly,
the PPN parameters β and γ must have the same values
as in ae-theory, in particular they are the same (unity)
as in general relativity [16]. The preferred frame PPN
parameters α1,2 may well be different in the two theories
however, since they characterize solutions for sources in
motion with respect to the aether and therefore are sen-
sitive to solutions beyond spherical symmetry.
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