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Consistency relation for the Lorentz invariant single-field inflation
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In this paper we compute the sizes of equilateral and orthogonal shape bispectrum for the general
Lorentz invariant single-field inflation. The stability of field theory implies a non-negative square of
sound speed which leads to a consistency relation between the sizes of orthogonal and equilateral
shape bispectrum, namely forth.

NL
<
∼

−0.054fequil.

NL . In particular, for the single-field Dirac-Born-

Infeld (DBI) inflation, the consistency relation becomes forth.
NL ≃ 0.070fequil.

NL
<
∼

0. These consistency
relations are also valid in the mixed scenario where the quantum fluctuations of some other light
scalar fields contribute to a part of total curvature perturbation on the super-horizon scale and
may generate a local form bispectrum. A distinguishing prediction of the mixed scenario is τ loc.

NL >

( 6
5
f loc.
NL )2. Comparing these consistency relations to WMAP 7yr data, there is still a big room for

the Lorentz invariant inflation, but DBI inflation has been disfavored at more than 68% CL.

PACS numbers: 98.80.Cq, 98.80.Es

The quantum fluctuation during inflation seeds the
temperature anisotropies in the cosmic microwave back-
ground radiation (CMBR) and formation of large-scale
structure of galaxies in our universe. The primordial cos-
mological perturbations are so tiny that the generation
and evolution of fluctuations has been investigated within
linear perturbation theory. Within this approach, the
primordial perturbation is Gaussian; or equivalently, its
Fourier components are uncorrelated and have random
phases. The simplest version of inflation predicts such a
nearly Gaussian distribution [1]. A non-vanishing three-
point correlation function of the curvature perturbation,
or its Fourier transform, the bispectrum, is an impor-
tant indicator of a non-Gaussian feature in the cosmolog-
ical perturbations because it represents the lowest order
statistics able to distinguish non-Gaussian from Gaussian
perturbations. Recently the non-Gaussianity emerges as
a more and more important observable.

In general the bispectrum depends on configuration in
momentum space [2, 3]. A large non-local shape, such as
equilateral and orthogonal shape, bispectrum is obtained
in the single-field inflation model where the higher deriva-
tive terms are involved [4–8]. In the multi-field inflation
the perturbations along the entropy directions which are
transverse to the motion direction (adiabatic direction)
can be converted into the adiabatic perturbation on the
super-horizon scale and generate a local form bispectrum,
for example the curvature perturbation generated at the
end of multi-field inflation due to the curved geometry
of the hyper-surface for inflation to end [9–11] and the
curvaton model [12–16].

In this paper we mainly focus on equilateral, orthogo-
nal, and local form bispectrum whose sizes are measured
by fequil.

NL , forth.
NL and f loc.

NL respectively. WMAP 7yr data

[17] indicates f loc.
NL = 32 ± 21, fequil.

NL = 26 ± 140 and

forth.
NL = −202 ± 104 at 68% CL; and −10 < f loc.

NL < 74,

−214 < fequil.
NL < 266, −410 < forth.

NL < 6 at 95% CL. Up
to now the data implies that the distribution of the pri-
mordial curvature perturbation deviates from an exact
Gaussian distribution at 1σ level, but a Gaussian distri-
bution is still consistent with the data at 2σ level.
In last decades a lot of efforts have been put for con-

structing a realistic inflation model from string theory.
Many of these models fall into a class called brane in-
flation [18]. The dynamics of brane is governed by the
DBI action. In this paper we will figure out the consis-
tency relation between the sizes of equilateral and orthog-
onal shape bispectrum for the general Lorentz invariant
single-field inflation model, in particular for the DBI in-
flation [5, 6]. On the other hand, in order to achieve
a bispectrum which is large not only for the non-local
shape but also for the local shape, we suggest a mixed
scenario where the entropy fluctuations are assumed to
be converted into a part of total curvature perturbation
and produce a local form bispectrum at/after the end of
inflation [9–16]. We find that the consistency relations
derived in the single-field model are also valid in this
mixed scenario. Comparing to the WMAP 7yr data, the
DBI inflation has been disfavored at more than 1σ level.
The CMB temperature anisotropy in the Sachs-Wolfe

limit is given by ∆T/T = − 1
3Φ, where Φ is the Bardeen’s

curvature perturbation. The power spectrum of the cur-
vature perturbation is defined by

〈Φk1
Φk2

〉 = (2π)3δ(3)(k1 + k2)
∆Φ

ks1
, (1)

where

s = 4− ns. (2)

A general description of non-Gaussianity at the leading
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order is the bispectrum of curvature perturbation

〈Φk1
Φk2

Φk3
〉 = (2π)3δ(3)(

3
∑

i=1

ki)F (k1, k2, k3), (3)

where Φk is the Fourier mode of curvature perturbation
in momentum space and F (k1, k2, k3) depends on the
configuration in momentum space. For the local, equi-
lateral, and orthogonal form bispectrum, F (k1, k2, k3) are
respectively given by

F loc.(k1, k2, k3) = ∆2
Φf

loc.
NL F̃

loc.(k1, k2, k3), (4)

F equil.(k1, k2, k3) = ∆2
Φf

equil.
NL F̃ loc.(k1, k2, k3), (5)

F orth.(k1, k2, k3) = ∆2
Φf

orth.
NL F̃ loc.(k1, k2, k3), (6)

where

F̃ loc.(k1, k2, k3) = 2

[

1

ks1k
s
2

+ (2 perm.)

]

, (7)

F̃ equil.(k1, k2, k3) = 6

[

− 1

ks1k
s
2

− 1

ks2k
s
3

− 1

ks3k
s
1

− 2

(k1k2k3)2s/3
+

(

1

k
s/3
1 k

2s/3
2 ks3

+ (5 perm.)

)]

,(8)

F̃ orth.(k1, k2, k3) = 6

[

− 3

ks1k
s
2

− 3

ks2k
s
3

− 3

ks3k
s
1

− 8

(k1k2k3)2s/3
+

(

3

k
s/3
1 k

2s/3
2 ks3

+ (5 perm.)

)]

.(9)

These three forms are nearly orthogonal to one another.
They probe different aspects of the physics of inflation.
First of all, let’s focus on the general single-field infla-

tion. In [7] the bispectrum was calculated in the single-
field inflation model with action

S =

∫

d4x
√
−g

[

M2
p

2
R+ P (X,φ)

]

, (10)

where X = − 1
2g

µν∂µφ∂νφ. This action is the most gen-
eral Lorentz invariant action for inflaton φminimally cou-
pled to Einstein gravity. For the case with large bispec-
trum (cs ≪ 1 and/or λ/Σ ≫ 1),

F (k1, k2, k3) = ∆2
ΦB(k1, k2, k3), (11)

where

B(k1, k2, k3) ≃ 10

(

1

c2s
− 1− 2λ

Σ

)

1

k1k2k3K3

+
20

3

(

1

c2s
− 1

)

1

k31k
3
2k

3
3



− 1

K

∑

i>j

k2i k
2
j

+
1

2K2

∑

i6=j

k2i k
3
j +

1

8

∑

i

k3i



 , (12)

and

K = k1 + k2 + k3, (13)

c2s =
P,X

P,X + 2XP,XX
, (14)

λ = X2P,XX +
2

3
X3P,XXX , (15)

Σ = XP,X + 2X2P,XX . (16)

Projecting the bispectrum in general Lorentz invariant
single-field inflation to the local, equilateral, and orthog-
onal templates, we find f loc.

NL ≃ 0 and

fequil.
NL ≃ −0.2728

(

1

c2s
− 1

)

− 0.1494
λ

Σ
, (17)

forth.
NL ≃ −0.02831

(

1

c2s
− 1

)

+ 0.008114
λ

Σ
. (18)

The parameters c2s and λ/Σ can be fixed once fequil.
NL and

forth.
NL are detected,

1

c2s
− 1 = −1.260fequil.

NL − 23.19forth.
NL , (19)

λ

Σ
= −4.394fequil.

NL + 42.34forth.
NL . (20)

Stability of the field theory implies c2s ≥ 0 which leads to

forth.
NL

<∼ −0.054fequil.
NL . (21)

It is the consistency condition for the general single-field
inflation without breaking Lorentz symmetry.
Nowadays string theory is supposed to be the only one

self-consistent theory of quantum gravity. A very popular
inflation model in string theory is brane inflation [18]. In
KKLT [19] set up, brane can move very fast (close to the
speed of light) in the Klebanov-Strassler (KS) throat, and
the full DBI action for the inflaton field should be taken
into account. For DBI inflation [5, 6], the action of φ
takes the form

P = −f−1(φ)
√

1− 2Xf(φ) + f−1(φ) − V (φ). (22)

Therefore

cs =
√

1− 2Xf(φ) ≪ 1, (23)

λ

Σ
=

1

2

(

1

c2s
− 1

)

. (24)

The sizes of equilateral and orthogonal form bispectrum
are given by

fequil.
NL ≃ −0.3475

(

1

c2s
− 1

)

, (25)

forth.
NL ≃ −0.02425

(

1

c2s
− 1

)

. (26)
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Because the radial velocity of brane in the KS throat is
limited by the speed of light, c2s ≥ 0 which is nothing but
the condition for stability of the field theory. Therefore
we obtain

forth.
NL ≃ 0.070fequil.

NL
<∼ 0. (27)

As we know, the single-field inflation can only gener-
ate non-local form non-Gaussianity. Comparing to the
WMAP 7yr data (constraints on fequil.

NL and forth.
NL ), the

allowed region for the general Lorentz invariant single-
field inflation shows up in Fig. 1.

DBI

0.00 0.02 0.04 0.06 0.08 0.10

-15 000

-10 000

-5000

0

cs

Λ
�S

FIG. 1: (Color on line). The allowed parameter space for the
general Lorentz invariant single-field inflation. The red and
blue patches are the allowed regions at 68% and 95% CL re-
spectively. The red dashed line corresponds to the prediction
of DBI inflation.

However, a convincing detection of a large local form
bispectrum will rule out all single-field inflation models
(not only the slow-roll model). If one wants to obtain
a bispectrum which is large not only for the non-local
shape but also for the local shape, one needs a mixed sce-
nario like that for the curvaton model suggested in [16].
Here we give a more general discussion about the bispec-
trum in the multi-field inflation where the trajectory of
inflaton fields is a straight line in the field space during
inflation. Denote the scalar field φs to be transverse to
the inflaton field φ along the adiabatic direction. In the
mixed scenario, both quantum fluctuations of φ and φs

are assumed to contribute to the total curvature pertur-
bation which seeds the temperature anisotropies in the
CMBR. For simplicity, we assume that φs is decoupled
to φ, namely 〈δφk1

, δφs,k2
〉 = 0. Considering

Φ = Φφ +Φφs , (28)

and 〈Φφ
k1
,Φφs

k2
〉 = 0, we obtain

∆tot.
Φ = ∆φ

Φ +∆φs

Φ . (29)

For convenience, we introduce a new parameter β which
is defined by

β = ∆φs

Φ /∆tot.
Φ . (30)

Here β ∈ [0, 1], and ∆φ
Φ = (1 − β)∆tot.

Φ . The index of
power spectrum becomes

ntot.
s = (1 − β)nφ

s + βnφs

s . (31)

Since φs is orthogonal to the adiabatic direction and
hence the fluctuation of φs only perturbs the value of
φs, not the energy density, it does not generate curva-
ture perturbation during inflation, but its fluctuation can
be converted into the adiabatic one at/after the end of
inflation on the super-horizon scale [9–16]. So the non-
Gaussianity caused by the fluctuation of φs must have a
local form. Denoting that the size of local form bispec-
trum generated by the quantum fluctuation of φs as f

φs

NL,
we obtain

F (k1, k2, k3) ≃ (∆φs

Φ )2fφs

NLF̃
loc.(k1, k2, k3)

+ (∆φ
Φ)

2B(k1, k2, k3). (32)

Considering ∆φs

Φ = β∆tot.
Φ and ∆φ

Φ = (1 − β)∆tot.
Φ , the

effective sizes of local, equilateral and orthogonal form
bispectrum are respectively given by

f loc.
NL ≃ β2fφs

NL, (33)

fequil.
NL ≃ (1− β)2fφ,equil.

NL , (34)

forth.
NL ≃ (1− β)2fφ,orth.

NL . (35)

Since fequil.
NL and forth.

NL are rescaled by a same factor, the
consistency relations (21) and (27) are still valid in the
mixed scenario.
Because β is a free parameter, it is better to use the

consistency relations to constrain the inflation model.
Comparing to the bounds on fequil.

NL and forth.
NL from

WMAP 7yr data, we find that DBI inflation is disfavored
at more than 68% CL. See Fig. 2.
In [16] we first pointed out the enhancement of τ loc.NL

comparing to (65f
loc.
NL )

2 in the mixed curvaton model. Ac-
tually it is a generic result. The curvature perturbation
generated by φs on the super-horizon scale can be ex-
panded as follows

Φφs = Φφs

L + fφs

NL

(

Φφs

L

)2

+ gφs

NL

(

Φφs

L

)3

+ ... , (36)

where Φφs

L is the linear part of the curvature perturba-
tion. Comparing to the definition of τ loc.NL

〈Φk1
Φk2

Φk3
Φk4

〉 (37)

= (2π)3δ(3)(
4
∑

i=1

ki) ·
[

6gloc.NL∆
3
Φ ·
∑4

i=1 k
s
i

∏4
i=1 k

s
i

+
25

18
τ loc.NL∆

3
Φ ·
(

1

ks12k
s
2k

s
3

+ 23 perms.

)]

,
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with Lorentz symmetry

DBI
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FIG. 2: (Color on line). Constraint on the prediction of the
general single-field inflation without breaking Lorentz sym-
metry comparing to the WMAP 7yr data. The patch below
the black solid line corresponds to the allowed region for the
general single-field inflation with Lorentz symmetry, and the
red dashed line corresponds to prediction of DBI inflation.

we find

τ loc.NL ≃ β3(
6

5
fφs

NL)
2. (38)

Here we consider that the quantum fluctuation of φ does
not generated local shape bispectrum. Since f loc.

NL ≃
β2fφs

NL,

τ loc.NL ≃ 1

β
(
6

5
f loc.
NL )

2 (39)

which is enhanced by a factor 1/β. If both local and
non-local shape bispectrum are detected by the upcom-
ing cosmological observations, such as Planck satellite, β
should be smaller than one and hence τ loc.NL > (65f

loc.
NL ).

This is a distinguishing prediction of the mixed scenario.
As we know, a local form trispectrum with τ loc.NL > 560
can be detected by Planck at 2σ level [20]. It is very
exciting to check the consistency relation between τ loc.NL

and f loc.
NL in the near future.

In addition, one may worry that the isocurvature per-
turbations in the mixed scenario might be too big to fit
the WMAP data [17]. However, whether the isocurva-
ture perturbations are generated in the multi-field infla-
tion depends on the detail of reheating. For example,
if the cold dark matter is not the direct decay product
of the adiabatic and entropic fields and the cold dark
matter is generated after all of these fields decay com-
pletely, the perturbations from multi fields do not gen-

erate the detectable isocurvature perturbations, and the
mixed scenario is free from the constraint on the isocur-
vature perturbations.

To summarize, the stability of the field theory leads to
a consistency relation (21) between the equilateral and
orthogonal shape bispectrum in the general Lorentz in-
variant single-field inflation. Even though there is a big
room for the general Lorentz invariant single-field infla-
tion, some Lorentz invariant single-field inflation mod-
els, such as DBI inflation, have been tightly constrained
by the WMAP 7yr data. The consistency relations (21)
and (27) are also valid even in the mixed scenario where
the fluctuations along the entropy directions also make
contributions to the total curvature perturbation on the
super-horizon scale and generate a local form bispec-
trum. We conclude that the DBI inflation is disfavored
by WMAP 7yr data at more than 68% CL. So the infla-
tion driven by a D-brane in string theory seems unlikely.
Similarly, the consistency relation for the power-law K-
inflation [21] is forth.

NL ≃ 0.1fequil.
NL < 0 which is also dis-

favored.

As we know, the mixed scenario provides the only
mechanism to achieve an inflation model with not only
a large local form but also large non-local shape bis-
pectrum. A distinguishing prediction of this scenario is
τ loc.NL > (65f

loc
NL)

2.
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