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Abstract

We revisit the simplest (fourth-order or quadratically generated) modified gravity
model in four space-time dimensions. It is equivalent to the certain quintessence
model via a Legendre-Weyl transform. By using the quintessence scalar poten-
tial, we compute the (CMB) observables of inflation associated with curvature
perturbations (namely, the scalar and tensor spectral indices, and the tensor-to-
scalar ratio) by using the most recent WMAP5 experimental bound. Our results
include the next-to-leading terms with respect to the inverse number of e-foldings.
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1 Introduction

Inflation is a proposal (cosmological paradigm) about the existence of a short but
fast (exponential, or de-Sitter-type) accelerated grow of the FLRW scale factor
a(t) in the early Universe, after the Big-Bang but before the radiation-dominated
epoch [1]. It implies

••

a (t) > 0 (1.1)

Though the whole idea of inflation remains to be a speculation, there is the
significant (indirect) evidence for it. In the first place, it is the correct prediction
of CMB fluctuations and large scale structure in remarkable agreement with
the WMAP observations of CMB — see eg., ref. [2]. Inflation can generate
irregularities in the Universe that may lead to the formation of structure. The
main discriminators among various inflationary models are the spectral indices
associated with the primordial power spectrum of curvature perturbations [3].
For instance, the on-going PLANCK satellite mission is going to provide tight
constraints on the observable spectral indices with the accuracy of under 0.5
percent [4]. It is therefore of importance to reconsider primary candidates among
the inflationary models, as to whether they can survive those precision tests in a
near future.

One of the well known inflationary models is given by the fourth-order grav-
ity [5, 6]. It is the simplest version of modified f(R) gravity, whose extra terms
beyond the standard Einstein-Hilbert term are merely quadratic in the scalar cur-
vature, so that the equations of motion are of the fourth-order in the derivatives
of a metric. We briefly review that model in Sec. 2. An f(R) gravity model is
known to be equivalent to the certain quintessence model via a Legendre-Weyl
transform. We review that procedure in Sec. 3. Also in Sec. 3 we derive the
quintessence scalar potential in the case of our specific modified gravity model.
Both Secs. 2 and 3 serve as the technical introduction and setup. The main part
is given by Sec. 4 where we compute the spectral indices of the slow-roll inflation
in the model under consideration, including the next-to-leading-order terms with
respect to the inverse number of e-foldings, and solve the equations of motion in
the slow-roll approximation, in the dual (scalar-tensor or quintessence) picture.

2 Definition of the model

There is a priori no reason of restricting the gravitational Lagrangian to the
standard Einstein-Hilbert term that is linear in the scalar curvature, as long as it
does not contradict an experiment. The first attempt of this kind was made by
Weyl as early as 1921. Nowadays, there is no doubt that the extra terms of the
higher-order in the curvature should appear in the gravitational effective action of
any Quantum Theory of Gravity. For instance, they do appear in String Theory
— see eg., ref. [7] for a review. Since the scale of inflation is just a few orders
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less than the Planck scale [3], it is conceivable that the higher-order gravitational
terms may be instrumental for inflation. It is already the case in the simplest
modified gravity model having only the terms quadratic in the curvature [6].

As is well known, there exist only three independent quadratic curvature in-
variants, RµνλρRµνλρ, R

µνRµν and R2. In addition, in four space-time dimensions,

∫

d4x
√−g

(

RµνλρRµνλρ − 4RµνRµν +R2
)

(2.2)

is topological for any metric, whereas
∫

d4x
√
−g
(

3RµνRµν −R2
)

(2.3)

is topological for any FLRW metric. Those combinations do not contribute to the
(Friedmann) equation of motion for the scale factor, indicating that the scalar
curvature models play the most important role in cosmological dynamics. Hence,
the most general gravitational action of the highest order 2 in the curvature,
which may be relevant for inflation, is given by

S =
1

2κ2

∫

d4x
√−g

(

2Λ− R + αR2
)

(2.4)

where we have introduced the cosmological constant Λ and the dimensional pa-
rameter α ≡ M−2 of mass dimension (−2). We use the spacetime signature
(+,−,−,−) and the units ~ = c = 1. The Einstein-Hilbert term in eq. (2.4) has
the standard normalization with κ = M−1

Pl
in terms of the reduced Planck mass

M−2

Pl
= 8πGN . The rest of our notation for space-time (Riemann) geometry is

the same as in ref. [8].
The simple model (2.4) is the particular case of the Starobinsky models [5].

As was shown in refs. [5, 6], the equations of motion for the action (2.4) have an
inflationary solution with α 6= 0 (even when Λ = 0), and it is stable provided
that α > 0. The stability is confirmed by our method in Sec. 3.

3 f(R) gravity and quintessence

The model (2.4) is the simplest particular case of the modified f(R) gravity
models characterized by an action

Sf = − 1

2κ2

∫

d4x f(R) (3.5)

with some function f(R) of the scalar curvature. Those models are quite popular
in the current literature — see eg., the recent reviews [9] and the references therein
— mainly due to their theoretical applications to inflation and dark energy.
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The gravitational equations of motion derived from the action (3.5) read

f ′(R)Rµν −
1

2
f(R)gµν + gµν�f ′(R)−∇µ∇νf

′(R) = 0 (3.6)

where the primes denote differentiation. Those equations of motion are the 4th-
order differential equations with respect to the metric gµν (ie. with the higher
derivatives). Taking the trace of eq. (3.6) yields

�f ′(R) + 1
3f

′(R)R− 2
3f(R) = 0 (3.7)

Hence, in contrast to General Relativity having f ′(R) = const., in f(R) gravity
the field A = f ′(R) is dynamical, ie. it represents the independent propagating
(scalar) degree of freedom. In terms of the fields (gµν , A) the equations of motion
are of the 2nd order in the derivatives of the fields.

In fact, any f(R) gravity is classically (mathematically) equivalent to a scalar-
tensor gravity [6]. The equivalence is established by applying a Legendre-Weyl
transform. The action (3.5) is equivalent to

SA =
−1

2κ2

∫

d4x
√
−g {AR − Z(A)} (3.8)

where the real scalar A(x) is related to the scalar curvature R by the Legendre
transformation

R = Z ′(A) and f(R) = RA(R)− Z(A(R)) (3.9)

A Weyl transformation of the metric

gµν(x) → exp

[

2κφ(x)√
6

]

gµν(x) (3.10)

with the arbitrary field parameter φ(x) yields

√−g R → √−g exp

[

2κφ(x)√
6

]{

R−
√

6

−g
∂µ
(√−ggµν∂νφ

)

κ− κ2gµν∂µφ∂νφ

}

(3.11)
Hence, when choosing

A(κφ) = exp

[−2κφ(x)√
6

]

(3.12)

and ignoring the total derivative, we can rewrite the action (3.8) to the form

Sφ =

∫

d4x
√−g

{−R

2κ2
+

1

2
gµν∂µφ∂νφ+

1

2κ2
exp

[

4κφ(x)√
6

]

Z(A(κφ))

}

(3.13)

in terms of the physical (and canonically normalized) scalar field φ(x).
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Equation (3.13) is the standard action of the real dynamical scalar field φ(x)
minimally coupled to Einstein gravity and having the scalar potential

V (φ) = −M2

Pl

2
exp

{

4φ

MPl

√
6

}

Z

(

exp

[ −2φ

MPl

√
6

])

(3.14)

We are now going to employ it as the quintessence model of inflation. In order
to explicitly derive the quintessence scalar potential (3.14), one has to solve for
R in terms of φ by inverting the relation

f ′(R) = A(φ) (3.15)

that follows from eq. (3.9) by differentiation. In the special case of

f(R) = R− 2Λ− 1

M2
R2 (3.16)

we find

V (φ) =

(

M2

Pl
M2

8
+ Λ̃

)

exp

{

2
√
2φ

MPl

√
3

}

− M2

Pl
M2

4
exp

{ √
2φ

MPl

√
3

}

+
M2

Pl
M2

8

(3.17)
where the notation Λ̃ = M2

Pl
Λ has been introduced. In terms of the new variable

and the parameter

y =

√

2

3

φ

MPl

and V0 =
1

8
M2

PlM
2 (3.18)

respectively, the potential (3.17) reads

v(y) =
V (y)

V0

=

(

1 +
Λ̃

V0

)

e2y − 2ey + 1 (3.19)

The scalar potential appears to be bounded from below with the only minimum
at y = 0 (stability!). It is also sufficiently steep for a slow-roll inflation. It is the
last (third) cosmological term on the right-hand-side of eq. (3.17) that dominates
in the potential during the slow-roll inflation (when taken alone, it gives rise to a
de-Sitter inflationary solution), the second term represents the 1st-order (leading)
correction, and the first term is the 2nd-order (subleading) correction. 2 In what
follows we ignore Λ̃. Then the scalar potential for the slow-roll inflation gets
simplified to

V (y) = V0 (e
y − 1)2 (3.20)

2By the same token we find that the cosmological term is unimportant during the slow-roll
inflation. The ratio Λ̃/V0 is also negligible from physical (scale) arguments.
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Figure 1: Graph of the function v(y) = e2y − 2ey + 1

A graph of the function v(y) = e2y − 2ey + 1 near its minimum y = 0 is given in

Fig. 1. After a shift φ → φ+φ0 with 2 exp
[√

2

3

φ0

MPl

]

= 1, the potential (3.20) for

the sufficiently negative values of y can be approximated as

Veff(φ) ≈ V0

[

1− exp

(

√

2

3

φ

MPl

)]

(3.21)

where we have ignored the subleading contribution. This scalar potential is known
in the quintessence (inflationary) model building [3]. In our treatment of Sec. 4
we use the potential (3.20).

The R+R2 gravity model is known as the excellent model of chaotic inflation
in early Universe, and its spectral indices in the leading approximation are also
known [10]. In the next Sec. 4 we re-derive those indices in the dual (quintessence)
picture, and calculate the sub-leading terms.

4 Spectral indices

The slow-roll inflation parameters are defined by [3]

ε(φ) =
1

2
M2

Pl

(

V ′

V

)2

(4.22)

and

η(φ) = M2

Pl

V ′′

V
(4.23)

where the primes denote derivatives with respect to the quintessence (inflaton)
field φ. A necessary condition for the slow-roll approximation is the smallness of
the inflation parameters [3],

ε(φ) ≪ 1 and |η(φ)| ≪ 1 (4.24)

The first condition implies eq. (1.1), whereas the second condition guarantees
that inflation lasts long enough, via domination of the friction term in the inflaton
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equation of motion (in the slow-roll case):

3H
•

φ= −V ′ (4.25)

Here H stands for the Hubble ‘constant’ H(t) =
•

a /a. Equation (4.25) is to be
supplemeted by the Friedmann equation

H2 =
V

3M2

Pl

(4.26)

It follows from eqs. (4.25) and (4.26) that

•

φ= −MPl

V ′

√
3V

< 0 (4.27)

whose solution during the slow-roll inflation (t0 < tstart ≤ t ≤ tend) is

φ(t) = −
√

3

2
MPl ln

[

4
√
V0

3
√
3MPl

(t− t0)

]

(4.28)

Substituting it into eq. (4.26) and using the definition H =
•

a /a gives rise to a
differential equation on the scale factor a(t). Its solution is

a(t) = eH0t

[

t− t0
const.

]

−3/4

(4.29)

where we have introduced the notation H0 = M/
√
24. The presence of a singu-

larity at t = t0 in eq. (4.29) is harmless because our inflationary solution is only
valid during the slow-roll inflation when t ≥ tstart > t0, so that it does not apply
to the Big Bang. A resolution of the Big Bang singularity is supposed to require
the higher-order curvature terms in the gravitational effective action (2.4).

The amount of inflation is measured by the e-foldings number

Ne =

∫ tend

t

Hdt ≈ 1

M2

Pl

∫ φ

φend

V

V ′
dφ (4.30)

where the tend stands for the (time) end of inflation when one of the slow-roll
parameters becomes equal to 1. The number of e-foldings between 50 and 100 is
usually considered to be acceptable.

In the case of the slow-roll inflation with the scalar potential (3.20), we find

that ε(φ) first approaches 1 at φend =
√

3

2
MPl ln

(

2
√
3− 3

)

≈ −0.94 MPl, since

|η(φ)| approaches 1 later, at φend = −
√

3

2
MPl ln

5

3
≈ −0.62 MPl. Then eq. (4.30)

yields

Ne =
3

4

(

e−y + y
)

− 3

4

(

exp

[

√

2

3
· 0.94

]

−
√

2

3
· 0.94

)

≈ 3

4

(

e−y + y
)

− 1.04

(4.31)
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where we have used the notation (3.18). Similarly, we find

ε =
4e2y

3 (1− ey)2
and η =

−4ey(1− 2ey)

3 (1− ey)2
(4.32)

Equation (4.31) can now be used to get y in terms of Ne, while a substitution of
y(Ne) into eq. (4.32) yields both ε(Ne) and η(Ne). The results of our numerical
calculations (by using MATHEMATICA) are summarized in Table 1.

An analytic approximation can be obtained by using the expansion with re-
spect to the inverse number of e-foldings. For instance, eq. (4.31) yields

ey =
3

4Ne

− 9 lnNe

16N2
e

− 0.94

N2
e

+O
(

ln2Ne

N3
e

)

(4.33)

Equation (4.32) now implies

ε =
3

4N2
e

+O
(

ln2Ne

N3
e

)

(4.34)

and

η = − 1

Ne
+

3 lnNe

4N2
e

+
5

4N2
e

+O
(

ln2Ne

N3
e

)

(4.35)

We are now ready for a calculation of the CMB observable quantitites in
our inflationary model, ie. for its specific physical predictions. The primordial
spectrum in a power-law approximation takes the form of kn−1 in terms of the
comoving wave number k and the spectral index n. In particular, the slope ns

of the scalar power spectrum, associated with the density perturbations, is given
by [3]

ns = 1 + 2η − 6ε , (4.36)

the slope of the tensor primordial spectrum, associated with the gravitational
waves, is given by [3]

nt = −2ε , (4.37)

whereas the scalar-to-tensor ratio is given by [3]

r = 16ε . (4.38)

For instance, eqs. (4.34), (4.35) and (4.36) in our model imply

ns = 1− 2

Ne

+
3 lnNe

2N2
e

− 2

N2
e

+O
(

ln2Ne

N3
e

)

(4.39)

The spectral indices are constrained by cosmological observations — see eg.,
the recent WMAP5 data [11] that implies

ns = 0.960± 0.013 and r < 0.22 (4.40)

8



Table 1: The slow-roll parameters and spectral indices for some values of Ne

Ne ε(×10−4) η(×10−2) r(×10−3) nt(×10−4) ns

35 5.13 - 2.56 8.20 - 10.3 0.946
40 3.99 - 2.27 6.39 - 7.98 0.952
45 3.20 - 2.03 5.12 - 6.40 0.957
50 2.62 - 1.84 4.19 - 5.24 0.962
55 2.19 - 1.69 3.50 - 4.37 0.965
60 1.85 - 1.55 2.96 - 3.71 0.968
65 1.59 - 1.44 2.54 - 3.18 0.970
70 1.38 - 1.34 2.21 - 2.76 0.972
75 1.21 - 1.26 1.93 - 2.42 0.974

In addition, the amplitude of the initial perturbations, ∆2

R = M4

Pl
V/(24π2ε), is

yet another physical observable, whose experimental value is [3]

(

V

ε

)1/4

= 0.027MPl = 6.6× 1016 GeV (4.41)

Equation (4.41) determines the normalization of the R2-term in eq. (2.4) as

M

MPl

= 4 ·
√

2

3
· (2.7)2 · ey

(1− ey)2
· 10−4 = (3.5± 1.2) · 10−5 (4.42)

where, in the last step, we have used the value of Ne = 53.8 ± 18, as it follows
from eqs. (4.39) and (4.40). The results of our numerical calculations of the
spectral indices are collected in Table 1. In particular, we find that the WMAP5
experimental bounds on the scalar spectral index in eq. (4.40) are satisfied in the
cosmological model (2.4) provided that the e-foldings number Ne lies between
35.9 and 71.8, with the middle value of N̄e = 53.8. We also find the noticable
suppression of tensor fluctuations as |r| < 8.2 · 10−3 and |nt| < 10−3. There is
a possibility of further theoretical modification, which would imply more tuning
of the spectral indices, when more terms of the higher-order in the curvature are
added into the action (2.4).

5 Conclusion

Our main results are given by eqs. (4.29), (4.31), (4.32), (4.39), (4.42) and Table
1. The leading terms agree with the known results [10, 12]. We confirm that
the simplest model of modified gravity with the single new parameter M may
describe inflation and agree with experimental (CMB) observations. As regards
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possible generalizations to the quartic curvature terms, see eg., ref. [13]. Modified
gravity is extendable to modified supergravity [14].
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