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Quantum Interference in a Thermal Bath
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Thermal leptogenesis explains the observed matter-antimatter asymmetry of the universe in terms
of neutrino masses, consistent with neutrino oscillation experiments. We present a full quantum me-
chanical calculation of the generated lepton asymmetry based on Kadanoff-Baym equations. Origin
of the asymmetry is the departure of the statistical propagator of the heavy Majorana neutrino
from the equilibrium propagator, together with CP violating couplings. The lepton asymmetry is
calculated directly in terms of Green’s functions without referring to ‘number densities’. A detailed
comparison with Boltzmann equations shows that conventional leptogenesis calculations have an
uncertainty of at least one order of magnitude.

Most theories of baryogenesis involve quantum inter-
ferences in a thermal bath in a crucial manner [1]. Here
we consider thermal leptogenesis [2] which, in its simplest
version, is dominated by the CP violating interactions of
the lightest of the heavy Majorana neutrinos, the seesaw
partners of the ordinary neutrinos. For neutrino masses
inferred from neutrino oscillations, leptogenesis is dom-
inated just by decays and inverse decays of the heavy
neutrinos in the thermal plasma [3].

Almost all leptogenesis calculations are based on Boltz-
mann equations. This treatment has a basic conceptual
problem: the Boltzmann equations are classical equa-
tions for the time evolution of phase space distribution
functions; the involved collision terms, however, are usu-
ally zero-temperature S-matrix elements which involve
quantum interferences. Clearly, a full quantum mechan-
ical treatment is necessary to understand the range of
validity of the Boltzmann equations and to determine
the size of corrections [4, 5].

Various thermal corrections [6] have been incorporated
in the context of Boltzmann equations, and ‘quantum
Boltzmann equations’ have been derived vom Kadanoff-
Baym equations [7, 8]. In [4], a solution of the Kadanoff-
Baym equations for leptogenesis has been found to lead-
ing order in a derivative expansion in terms of distribu-
tion functions satisfying the Boltzmann equations.

In this Letter we discuss leptogenesis directly in terms
of Green’s functions which are solutions of the Kadanoff-
Baym equations, thus avoiding all approximations nec-
essary to arrive at Boltzmann equations. Our work is
based on [9], where the approach to thermal equilibrium
has been discussed in terms of Green’s functions for a
toy model, a scalar field coupled to a large thermal bath.
Here we extend this method to leptogenesis, which yields
the lepton asymmetry directly in terms of Green’s func-
tions. In the following we describe the main result of our
work. Detailed derivations will be given in [10].

The interactions of N , the lightest of the heavy Ma-
jorana neutrinos, with the Higgs doublet φ and lepton

doublets lLi is described by the lagrangian (cf. [4]),

L = lLiφ̃λ
∗
i1N +NTλi1ClLiφ−

1

2
MNTCN

+
1

2
ηij l

T
Liφ ClLjφ+

1

2
η∗ij lLiφ̃ Cl

T

Lj φ̃ ; (1)

here C is the charge conjugation matrix, φ̃ = iσ2φ, and
the coupling

ηij =
∑

k>1

λik
1

Mk
λT
kj (2)

is obtained by integrating out the heavy Majorana neu-
trinos Nk>1 with Mk>1 ≫ M1 ≡ M . We shall consider
the case of small Yukawa couplings, λi1 ≪ 1, such that
the decay width of N is much smaller than its mass. The
lagrangian (1) represents an effective low-energy theory,
valid for momenta up to Mk>1.

The Boltzmann equations for the time evolution of
the distribution functions of heavy neutrinos, Higgs and
lepton doublets are well known [11]. In this letter our
main goal is the comparison of Boltzmann and Kadanoff-
Baym equations. We therefore focus on the CP-violating
source term for the asymmetry and ignore the washout
terms and the Hubble expansion, which can be added in
a straightforward way [10].

For the distribution function of the heavy neutrinos
one has [12],

∂

∂t
fN (t, ω) =−

2

ω

∫

k,q

(2π)4δ4(k + q − p)
(
λ†λ

)
11

p · k

× [fN (t, ω)(1− fl(k))(1 + fφ(q))

− fl(k)fφ(q)(1 − fN (t, ω))] , (3)

where ω =
√
M2 + p2, k and q are the energies of N ,

l and φ with equilibrium distribution functions fl and
fφ, respectively; the averaged decay matrix element is
|M(N(p) → l(k)φ(q)|2 = 2

(
λ†λ

)
11

p · k (cf. [4]). For the
momentum integrations we use the notation

∫

p

. . . =

∫
d3p

(2π)32ω
. . . . (4)
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The sum of decay and inverse decay widths, which de-
termines the rate for the approach to equilibrium [13], is
given by

Γβ(ω) =
(
λ†λ

)
11

2

ω

∫

k,q

(2π)4δ4(k + q − p)

p · k flφ(k, q) , (5)

where we have introduced the function

flφ(k, q) = fl(k)fφ(q) + (1 − fl(k))(1 + fφ(q))

= 1− fl(k) + fφ(q) . (6)

For the solution of the Boltzmann equation (3) with vac-
uum initial condition, fN (0, ω) = 0, one easily obtains
(Γβ(ω) ≡ Γ),

fN (t, ω) = feq
N (ω)

(
1− e−Γt

)
, (7)

where feq
N (ω) = 1/(eβω + 1), and β = 1/T is the inverse

temperature.
The Boltzmann equation for the lepton distribution

function is given by

∂

∂t
fl(t, k) = −

1

2k

∫

q,p

(2π)4δ4(k + q − p)

×
[
|M(lφ → N)|2fl(k)fφ(q)(1 − fN(t, ω)) (8)

− |M(N → lφ)|2fN (t, ω)(1− fl(k))(1 + fφ(q))
]
,

where now O(λ4) corrections to the matrix elements have
to be kept. Using Eq. (7) one obtains for the lepton asym-
metry fLi = fli− fl̄i, with initial condition fLi(0, k) = 0,

fLi(t, k) = −ǫii
1

k

∫

q,p

(2π)4δ4(k + q − p) p · k

× flφ(k, q)f
eq
N (ω)

1

Γ

(
1− e−Γt

)
, (9)

where

ǫij =
3Im{λ∗

i1(ηλ
∗)j1}M

16π
. (10)

Summing over all flavours, the generated asymmetry
is proportional to the familiar CP-asymmetry: ǫ =∑

i ǫii/
(
λ†λ

)
11

= 3Im(λ†ηλ)M/(16π
(
λ†λ

)
11

) [4].
For later comparison with solutions of the Kadanoff-

Baym equations, it is convenient to rewrite (9) in the
form

fLi(t, k) = −ǫii
16π

k

∫

q,p,q′,k′

k · k′

× (2π)4δ4(k + q − p)(2π)4δ4(k′ + q′ − p)

× flφ(k, q)f
eq
N (ω)

1

Γ

(
1− e−Γt

)
. (11)

Note that the integrand is now proportional to the aver-
aged matrix element |M(lφ → l̄φ̄)|2 = 2k · k′(λ†λ)11/M

2

(cf. [4]), which involves the product of the 4-vectors k and

φ

(ω,p)(ω,p)

l NN

FIG. 1: 1-loop contribution to the self-energies Σ±
p of the

Majorana neutrino N .

k′. At low temperatures, T ≪ M , the integrand falls off
like e−βω < e−βM , i.e., the generated lepton asymmetry
is strongly suppressed.

Let us now consider spectral function and statistical
propagator (cf. [14]) for the heavy Majorana neutrino,

G−
αβ(x1, x2) = i〈{Nα(x1), Nβ(x2)}〉 , (12)

G+

αβ(x1, x2) =
1

2
〈[Nα(x1), Nβ(x2)]〉 , (13)

which satisfy the Kadanoff-Baym equations [4, 10]

C(iγ0∂t1−pγ −M)G−
p (t1 − t2) =

−

∫ t2

t1

dt′Σ−
p (t1 − t′)G−

p (t
′ − t2) , (14)

C(iγ0∂t1−pγ −M)G+
p (t1, t2) =

+

∫ t2

0

dt′Σ+
p (t1 − t′)G−

p (t
′ − t2)

−

∫ t1

0

dt′Σ−
p (t1 − t′)G+

p (t
′, t2) . (15)

Here we have assumed spatial homogeneity and per-
formed a Fourier transform. The 1-loop contribution to
the self-energies Σ±

p is shown in Fig. 1. For small cou-
plings, λ ≪ 1, leading to a small width Γ ≪ M , explicit
solutions of the Kadanoff-Baym equations can be found
in the Breit-Wigner approximation [10],

G−
p
(y) =

(
iγ0 cos(ωy) +

M − pγ

ω
sin(ωy)

)
(16)

× e−Γ|y|/2C−1 ,

G+
p
(t, y) = −

(
iγ0 sin(ωy)−

M − pγ

ω
cos(ωy)

)
(17)

×



tanh

(
βω
2

)

2
e−Γ|y|/2 + feq

N (ω)e−Γt


C−1,

where t = (t1+ t2)/2, y = t1− t2 and Γ = Γβ(ω) (5). For
large t, G+

p approaches the equilibrium solution G+eq
p (y),

and for small temperatures, i.e., large β, it becomes the
vacuum solution G+vac

p (y). Note that the solution (17)

for G+
p (y) satisfies the initial condition

G+
p (0, 0) = G+vac

p (0) , (18)

which is the analogue of the initial condition fN(0, ω) = 0
for the distribution function. For spectral function and
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FIG. 2: 2-loop contributions to the lepton self-energies Π±

k ,
which leads to a non-zero lepton number densities.

statistical propagator of lepton and Higgs fields we shall
use the free equilibrium expressions Ŝ±

k (y) and ∆̂±
q (y),

respectively. The thermal equilibrium is assumed to be
established by Standard Model interactions.

We are now ready to calculate the lepton asymme-
try which is generated during the approach of the right-
handed neutrino N to equilibrium. The ‘lepton number
matrix’ is obtained from the statistical propagator of the
lepton fields,

Lkij(t, t
′) = −tr[γ0S+

kij(t, t
′)] . (19)

One easily verifies that for free fields in equilibrium,
Lkii|t=t′ = fli(k)− f̄li(k), which vanishes for zero chem-
ical potential. To leading order in λ, a flavour non-
diagonal asymmetry is generated by the 2-loop self-
energies shown in Fig. 2 (cf. [4]). Solving the Kadanoff-
Baym equation for S+

k to first order in the self-energy

Π±
k , one finds after some algebra

Lkij(t, t) = −i

∫ t

0

dt1

∫ t

0

dt2 tr[Ŝ+

k (t2 − t1)Π
−
kij(t1, t2)

− Ŝ−
k (t2 − t1)Π

+

kij(t1, t2)] . (20)

A non-zero asymmetry is generated by the departure
of G+

p from equilibrium. Due to the chiral couplings only

a chiral projection of G+
p contributes,

G̃p(t, y)PL = PL

(
G+

p (t, y)−G+eq
p (y)

)
PL ,

G̃p(t, y) =
M

ω
cos(ωy)feq

N (ω)e−Γt . (21)

After a lengthy calculation one obtains for the lepton
number matrix to leading order in the width Γ [10]:

Lkij(t, t) = −ǫij 8π

∫

q,q′

k · k′

kk′ω

×
1

2
Γ

((ω − k − q)2 + Γ2

4
)((ω − k′ − q′)2 + Γ2

4
)

× flφ(k, q)flφ(k
′, q′)feq

N (ω)

×
(
cos[(k + q − k′ − q′)t] + e−Γt (22)

−(cos[(ω − k − q)t] + cos[(ω − k′ − q′)t])e−
Γt

2

)
,

where p = q + k = q′ + k′. This expression for the
lepton asymmetries, generated by quantum interference
in a thermal bath, is the main result of this Letter.

The expression (22) contains a logarithmic divergence
O(λ4). It has to be combined with other divergent terms
which have been neglected in (22) since they do not
contribute to leading order in Γ. The total divergence
will be subtracted by a counter term. The dominant
finite contribution to the integral stems from momenta
k + q ∼ k′ + q′ ∼ ω. In the zero-width limit Γ → 0, with
Γt fixed, the integrand is O(1/Γ). Since Γ ∝ λ2, this
dominant contribution to the integral is O(λ2).

It is interesting to compare the diagonal elements of
the lepton number matrix Lkij(t, t) with the distribution
functions fLi(t, k) given in (11). As expected, the same
CP asymmetries ǫii appear, whereas the dependence of
the integrands on time and temperature is different. The
reason for the different temperature dependence is the
fact that the matrix elements in the Boltzmann equations
were calculated at zero temperature. Hence, the factor
flφ(k

′, q′) is missing in (11). Since Boltzmann equations
are local in time whereas Kadanoff-Baym equations con-
tain ‘memory effects’, the different time dependence of
the asymmetries is also expected. One consequence is
that ∂tfLi(t, k)|t=0 6= 0, whereas ∂tLkij(t, t)|t=0 = 0.
Particularly important are off-shell effects in (22), which
lead to terms oscillating in time.

It is instructive to consider the approximations, even
if they might not be justified, which lead from (22) to
the result of Boltzmann equations. Neglecting off-shell
effects, i.e., imposing ω = k+ q = k′ + q′, the cosines are
replaced by one; performing then the zero-width approx-
imation Γ → 0, with Γt fixed, the integral (22) becomes

Los
kij(t, t) = −ǫij

16π

k

∫

q,q′,p,k′

k · k′

× (2π)4δ4(k + q − p)(2π)4δ4(k′ + q′ − p)

× flφ(k, q)flφ(k
′, q′)feq

N (ω)

×
1

Γ

(
1− e−

Γt

2

)2

. (23)

Except for the factor flφ(k
′, q′), the only difference com-

pared to the solution (11) of the Boltzmann equations
is the time dependence. It is obvious from Fig. 2 and
Eq. (20) that in the quantum theory the generation of
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the lepton asymmetry is nonlocal in time. This leads
to the square of the exponential fall-off in (23). On the
contrary, in the Boltzmann equations the asymmetry is
generated locally in time yielding a simple exponential
behaviour. The difference can be numerically important
at cosmologically relevant times tL ∼ 1/Γ.

The calculations leading to Eq. (22) also demonstrate
that the result for the lepton asymmetry will be signifi-
cantly modified by the thermal damping rates for lepton
and Higgs fields in the plasma. These thermal widths
(cf. [15]) are known to be much larger than the decay
width of the Majorana neutrino: Γl ∼ Γφ ∼ g4T ≫ λ2M
for M . T . For quantum interferences the thermal
damping rates are qualitatively more important than
thermal masses which, for simplicity, we ignore in the fol-
lowing. Including naively thermal widths for lepton and
Higgs fields in the self-energy Π+

k , one obtains instead of
(22) to leading order in these widths (Γlφ = Γl + Γφ)

L̃kij(t, t) = −ǫij 16π

∫

q,q′

k · k′

kk′ω

×
1

4
ΓlφΓφ

((ω − k − q)2 + 1

4
Γ2
lφ)((ω − k′ − q′)2 + 1

4
Γ2
φ)

× flφ(k, q)flφ(k
′, q′)feq

N (ω)

×
1

Γ

(
1− e−Γt

)
. (24)

Note that the factors oscillating in time have disap-
peared. The thermal widths of lepton and Higgs fields
have led to a behaviour which is local in time. In the

zero-width limit one now obtains the result (11) of the
Boltzmann equations except for the thermal correction
factor flφ(k

′, q′). We emphasize that (24) is speculative
at present, and it remains to be seen whether it follows
from a solid calculation which includes gauge interactions
in a systematic way.

We have studied the generation of a lepton asymmetry
at constant temperature as the heavy Majorana neutrino
approaches thermal equilibrium. For cosmological lepto-
genesis one has to calculate the lepton asymmetry in the
case of decreasing temperature, which is caused by the
expansion of the universe. Analyses based on Boltzmann
equations suggest that both asymmetries are of compa-
rable size for T ∼ M [3]. A more detailed discussion will
be given in [10].

In this Letter we have compared lepton asymmetries
calculated on the basis of Boltzmann equations with
those obtained from Kadanoff-Baym equations. Our
discussion illustrates, that even ignoring spectator and
flavour effects [16], current leptogenesis calculations
have an uncertainty of at least one order of magnitude.
Particularly urgent is the inclusion of gauge interac-
tions with the thermal bath in a full quantum calculation.

Acknowledgements. We would like to thank
D. Bödeker, L. Covi and O. Philipsen for helpful discus-
sions. AA and WB acknowledge support of the German
Research Foundation (DFG) in the SFB 676 “Particles,
Strings and the Early Universe”; SM has been supported
by the German Academic Exchange Service (DAAD).

[1] E. W. Kolb and M. S. Turner, The Early Universe,
Addison-Wesley, New York, 1990.

[2] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986)
45.

[3] W. Buchmuller, P. Di Bari and M. Plumacher, Annals
Phys. 315 (2005) 305 [hep-ph/0401240].

[4] W. Buchmuller and S. Fredenhagen, Phys. Lett. B 483

(2000) 217 [hep-ph/0004145].
[5] D. Boyanovsky, K. Davey and C. M. Ho, Phys. Rev. D

71 (2005) 023523 [arXiv:hep-ph/0411042].
[6] L. Covi, N. Rius, E. Roulet and F. Vissani, Phys. Rev.

D 57 (1998) 93 [hep-ph/9704366]; G. F. Giudice, A. No-
tari, M. Raidal, A. Riotto and A. Strumia, Nucl. Phys.
B 685 (2004) 89 [hep-ph/0310123]; C. P. Kiessig and
M. Plumacher, 0910.4872 [hep-ph].

[7] A. De Simone and A. Riotto, JCAP 0708 (2007) 002
[hep-ph/0703175].

[8] M. Garny, A. Hohenegger, A. Kartavtsev and M. Lind-
ner, 0909.1559 [hep-ph]; 0911.4122 [hep-ph]

[9] A. Anisimov, W. Buchmuller, M. Drewes and S. Mendiz-
abal, Annals Phys. 324 (2009) 1234 [0812.1934 [hep-th]].

[10] A. Anisimov, W. Buchmüller, M. Drewes and S. Mendiz-
abal, in preparation.

[11] For a recent discussion and references, see F. Hahn-
Woernle, M. Plumacher and Y. Y. Y. Wong, JCAP 0908

(2009) 028 [0907.0205 [hep-ph]].
[12] To simplify notation, we shall use the same symbol for the

modulus of 3-momentum and 4-momentum, e.g., k = |k|
and k = (|k|,k).

[13] H. A. Weldon, Phys. Rev. D 28 (1983) 2007.
[14] J. Berges, Introduction to Nonequilibrium Quantum Field

Theory, AIP Conf. Proc. 739 (2005) 3 [hep-ph/0409233].
[15] P. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0301

(2003) 030 [hep-ph/0209353].
[16] R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis,

Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315]; W. Buch-
muller and M. Plumacher, Phys. Lett. B 511 (2001) 74
[hep-ph/0104189]; A. Abada, S. Davidson, F. X. Josse-
Michaux, M. Losada and A. Riotto, JCAP 0604 (2006)
004 [hep-ph/0601083]; E. Nardi, Y. Nir, E. Roulet and
J. Racker, JHEP 0601 (2006) 164 [hep-ph/0601084].

http://arxiv.org/abs/hep-ph/0401240
http://arxiv.org/abs/hep-ph/0004145
http://arxiv.org/abs/hep-ph/0411042
http://arxiv.org/abs/hep-ph/9704366
http://arxiv.org/abs/hep-ph/0310123
http://arxiv.org/abs/hep-ph/0703175
http://arxiv.org/abs/hep-ph/0409233
http://arxiv.org/abs/hep-ph/0209353
http://arxiv.org/abs/hep-ph/9911315
http://arxiv.org/abs/hep-ph/0104189
http://arxiv.org/abs/hep-ph/0601083
http://arxiv.org/abs/hep-ph/0601084

