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Abstract: Let Xnr be the rth largest of a random sample of size n from a distribution
F (x) = 1 −

∑∞
i=0 cix

−α−iβ for α > 0 and β > 0. An inversion theorem is proved and used to
derive an expansion for the quantile F−1(u) and powers of it. From this an expansion in powers
of (n−1, n−β/α) is given for the multivariate moments of the extremes {Xn,n−si

, 1 ≤ i ≤ k}/n1/α

for fixed s = (s1, . . . , sk), where k ≥ 1. Examples include the Cauchy, Student t, F , second
extreme distributions and stable laws of index α < 1.
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1 Introduction and Summary

For 1 ≤ r ≤ n, let Xnr be the rth largest of a random sample of size n from a continuous
distribution F on R, the real numbers. Let f denote the density of F when it exists. The
study of the asymptotics of the moments of Xnr has been of considerable interest. McCord
(1964) gave a first approximation to the moments of Xn1 for three classes. This showed that a
moment of Xn1 can behave like any positive power of n or n1 = log n. (Here log is to the base
e.) Pickands (1968) explored the conditions under which various moments of (Xn1 − bn)/an
converge to the corresponding moments of the extreme value distribution. It was proved that
this is indeed true for all F in the domain of attraction of an extreme value distribution
provided that the moments are finite for sufficiently large n. For other work, we refer the
readers to Polfeldt (1970), Ramachandran (1984) and Resnick (1987).
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The asymptotics of the quantiles of Xnr have also been studied. Note that Unr = F (Xnr)
is the rth order statistics from U(0, 1). For 1 ≤ r1 < r2 < · · · < rk ≤ n set Un,r = {Unri , 1 ≤
i ≤ k}. By Section 14.2 of Stuart and Ord (1987), Un has the multivariate beta density

Un,r ∼ B(u : r) =

k∏

i=0

(ui+1 − ui)
ri+1−ri−1 /Bn(r) (1.1)

on 0 < u1 < · · · < uk < 1, where u0 = 0, uk+1 = 1, r0 = 0, rk+1 = n+ 1 and

Bn(r) =

k∏

i=1

B (ri, ri+1 − ri) . (1.2)

David and Johnson (1954) expanded Xnri = F−1(Unri) about uni = EUnri = ri/(n + 1):
Xnri =

∑∞
j=0G

(j)(uni)(Uni−uni)j/j!, where G(u) = F−1(u), and using the properties of (1.1)
showed that if r depends on n in such a ways that r/n → p ∈ (0,1) as n → ∞ then the mth
order cumulants of Xn,r = {Xnri , 1 ≤ i ≤ k} have magnitude O(n1−m) – at least for n ≤ 4,
so that the distribution of Xn,r has a multivariate Edgeworth expansion in powers of n−1/2.
(Alternatively one can use James and Mayne (1962) to derive the cumulants of Xn,r from those
of Un,r.) The method requires the derivatives of F at {F−1(pi), 1 ≤ i ≤ k} so breaks down if
pi = 0 or pk = 1 – which is the situation we study here. For definiteness, we confine ourselves
to F−1(u) having a power singularity at 1, say F−1(u) ∼ (1 − u)−1/α as u → 1, where α > 0
that is,

1 − F (x) ∼ x−α (1.3)

as x→ ∞. For a nonparametric estimate of α see Novak and Utev (1990).

Distributions satisfying (1.3) are known as Pareto type distributions. These distributions
arise in many areas of the sciences, engineering and medicine. Some of these areas – where
publications involving Pareto type distributions have appeared – are: hydrology, physics, wind
engineering and industrial aerodynamics, computer science, water resources, insurance math-
ematics and economics, structural safety, material science, performance evaluation, queueing
systems, geophysical research, ironmaking and steelmaking, banking and finance, atmospheric
environment, civil engineering, communications, information processing and management, high
speed networks, lightwave technology, solar energy engineering, supercomputing, natural haz-
ards and earth system sciences, ocean engineering, optics communications, reliability engineer-
ing, signal processing and urban studies.

In Withers and Nadarajah (2007a) we showed that for fixed r when (1.3) holds the dis-
tribution of Xn,n1−r (where 1 is the vector of ones in ℜk), suitably normalized tends to a
certain multivariate extreme value distribution as n→ ∞, and so obtained the leading terms
of the expansions of its moments in inverse powers of n. Here we show how to extend those
expansions when

F−1(u) =

∞∑

i=0

bi(1 − u)αi (1.4)
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with α0 < α1 < · · · , that is, {1−F (x)}x−1/α0 has a power series in {x−δi : δi = (αi−α0)/α0}.
Hall (1978) considered (1.4) with αi = i− 1/α, but did not give the corresponding expansion
for F (x) or expansions in inverse powers of n. He applied it to the Cauchy. In Section 2, we
demonstrate the method when

1 − F (x) = x−α
∞∑

i=0

cix
−iβ, (1.5)

where α > 0 and β > 0. In this case, (1.4) holds with αi = (iβ − 1)/α. In Section 3, we
apply it to the Student t, F and second extreme value distribution and to stable laws of
exponent α < 1. Appendix A gives the inverse theorem needed to pass from (1.5) to (1.4),
and expansions for powers and logs of series.

We use the following notation and terminology. Let (x)i = Γ(x + i)/Γ(x) and < x >i=
Γ(x + 1)/Γ(x − i + 1). An inequality in ℜk consists of k inequalities. For example, for x in
Ck, where C is the set of complex numbers, Re(x) < 0 means that Re(xi) < 0 for 1 ≤ i ≤ k.
Also I(A) = 1 or 0 for A true or false and δij = I(i = j). For θ ∈ Ck let θ̄ denote the vector

with θ̄i =
∑k

j=1 θj.

2 Main Results

For 1 ≤ r1 < · · · < rk ≤ n set si = n− ri. Here, we show how to obtain expansions in inverse
powers of n for the moments of the Xn,s for fixed r when (1.4) holds, and in particular when
the upper tail of F satisfies (1.5).

Theorem 2.1 Suppose (1.5) holds with c0, α, β > 0. Then F−1(u) is given by (1.4) with

αi = ia − 1/α, a = β/α and bi = Ci,1/α, where Ciψ = cψ0 Ĉi(−ψ, c0, x∗ of (3.31) and x∗i =
x∗i (a, 1, c) of (3.32):

C0ψ = cψ0 ,

C1ψ = ψcψ−a−1
0 c1,

C2ψ = ψcψ−2a−2
0

{
c0c2 + (ψ − 2a− 1)c21/2

}
,

C3ψ = ψcψ−3a−3
0

[
c20c2 + (ψ − 3a− 1)c0c1c2 + {(ψ + 1)2/6(ψ + 3a/2)(a + 1)} c31

]
,

and so on. Also for any θ in ℜ,

{
F−1(u)

}θ
=

∞∑

i=0

(1 − u)ia−ψCiψ (2.6)

at ψ = θ/α.

Note 2.1 On those rate occasions where the coefficients di = Ci,1/α in F−1(u) =
∑∞

i=0(1 −
u)ia−1/αdi are known from some alternative formula then one can use Ciψ = dθ0Ĉi(θ, 1/d0, d)
of (3.31).
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Proof of Theorem 2.1 By Theorem A.1 with k = 1, u = x−α, x = c, we have x−α =∑∞
i=0 x

∗
i (1 − u)1+ia at u = F (x), where

x∗0 = c−1
0 ,

x∗1 = c−a−2
0 c1,

x∗2 = c−2a−3
0

{
−c0c2 + (a+ 1)c21

}
,

x∗3 = c−3a−4
0

{
−c20c3 + (2 + 3a)c0c1c2 − (2 + 3a)(1 + a)c21/2

}
,

and so on. So, for S of (3.29), x−α = c−1
0 v(1+ c0S(va, x∗)) at v = 1−u. Now apply (3.30). �

Lemma 2.1 For θ in Ck,

E

k∏

i=1

(1 − Un,ri)
θi = bn

(
r : θ̄

)
, (2.7)

where

bn
(
r : θ̄

)
=

k∏

i=1

b
(
ri − ri−1, n− ri + 1 : θ̄i

)
(2.8)

and b(α, β : θ = B(α, β + θ)/B(α, β). Also in (1.2),

Bn (r) =
k∏

i=1

B (ri − ri−1, n− ri + 1) . (2.9)

Note 2.2 Since B(α, β) = ∞ for Reβ ≤ 0, for (2.7) to be finite we need n− ri+ 1+Reθ̄ > 0
for 1 ≤ i ≤ k.

Proof of Lemma 2.1 Set Ik = LHS(2.7) =
∫
Bn(u : r)

∏k
i=1(1 − ui)

θidu1 · · · duk integrated
over 0 < u1 < · · · < uk < 1 by (1.1). So, (2.7), (2.9) hold for k = 1. Set si = (ui − ui−1)/(1 −
ui−1). Then

I2 =

∫ 1

0
ur1−1

1 (1 − u1)
θ1

∫ 1

u1

(u2 − u1)
r2−r1−1 (1 − u2)

r3−r2−1+θ2 du2/Bn(r),

which is the RHS (2.7) with denominator replaced by the RHS (2.8). Putting θ = 0 gives
(2.7), (2.9) for k = 2. Now use induction. �

Lemma 2.2 In Lemma 2.1, the restriction

1 ≤ r1 < · · · < rk ≤ n may be relaxed to 1 ≤ r1 ≤ · · · ≤ rk ≤ n. (2.10)
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Proof For k = 2, the second factor in RHS (2.8) is b(r2 − r1, n − r2 + 1 : θ̄2) = f(θ̄2)/f(0),
where f(θ̄2) = Γ(n − r2 + 1 + θ̄2)/Γ(n − r1 + 1 + θ̄2) = 1 if r2 = r1 and the first factor is
b(r1, n−r1 +1 : θ̄1) = E(1−Unr1)θ̄1 . Similarly, if ri = ri−1, the ith factor is 1 and the product
of the others is E

∏k
j=1,j 6=i(1 − Unrj)

θ∗j , where θ∗j = θj for j 6= i − 1 and θ∗j = θi−1 + θi for
j = i− 1. �

Corollary 2.1 In any formulas for Eg(Xn,r) for some function g, (2.10) holds. In particular
it holds for the moments and cumulants of Xn,r.

This result is very important as it means we can dispense with treating the 2k−1 cases
(ri < ri+1 or ri = ri+1, 1 ≤ i ≤ k− 1 separately. For example, Hall (1978) treats the two cases
for cos(Xn,r,Xn,s) separately and David and Johnson (1954) treat the 2k−1 cases for the kth
order cumulants of Xn,r separately for k ≤ 4.

Theorem 2.2 Under the conditions of Theorem 2.1,

E

k∏

i=1

Xθi
n,ri =

∞∑

i1,...,ik=0

Ci1,ψ1
· · ·Cik,ψk

bn
(
r : īa− θ̄/α

)
(2.11)

with bn as in (2.8). All terms are finite if Reθ̄ < (s + 1)α, where si = u− ri.

Lemma 2.3 For α, β positive integers θ in C,

b(α, β : θ) =

α+β−1∏

j=β

(1 + θ/j)−1 . (2.12)

So, for θ in Ck,

bn(r : θ̄) =

k∏

i=1

si−1∏

j=si+1

(
1 + θ̄/j

)−1
, (2.13)

where si = n− ri and r0 = 0.

Proof: LHS (2.12) = Γ(β + θ)Γ(α + β)/{Γ(β + θ + α)Γ(β)}. But Γ(α + x)/Γ(x) = (x)α, so
(2.12) holds, and hence (2.13). �

From (2.8) we have, interpreting
∏k
i=2 bi as 1 when k − 1,

Lemma 2.4 For si = n− ri,

bn(r : θ̄) = B(s : θ̄)n!/Γ
(
n+ 1 + θ̄1

)
, (2.14)
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where

B(s : θ̄) = Γ
(
s1 + 1 + θ̄1

)
(s1!)

−1
k∏

i=2

b
(
si−1 − si, si + 1 : θ̄1

)

does not depend on n for fixed s.

Lemma 2.5 We have

n!/Γ(n+ 1 + θ) = n−θ
∞∑

i=0

ei(θ)n
−i,

where

e0(θ) = 1, e1(θ) = −(θ)2/2, e2(θ) = (θ)3(3θ + 1)/24,

e3(θ) = −(θ)4(θ)2/(4!2), e4(θ) = (θ)5(15θ
3 + 30θ2 + 5θ − 2)/(5!48),

e5(θ) = −(θ)6(θ)2(3θ
2 + 7θ − 2)/(6!16),

e6(θ) = (θ)7(63θ
5 + 315θ4 + 315θ3 − 91θ2 − 42θ + 16)/(7!576),

e7(θ) = −(θ)8(θ)2(9θ
4 + 54θ3 + 51θ2 − 58θ + 16)/(8!144).

Proof: Apply equation (6.1.47) of Abramowitz and Stegun (1964) for i ≤ 2 and Withers and
Nadarajah (2007b) for i ≤ 7. �

So, (2.11), (2.14) yield the joint moments of Xn,rn
−1/α for fixed s as a power series in

(1/n, n−α):

Corollary 2.2 We have

E

k∏

i=1

Xθi
n,n−si

=

∞∑

j=0

n!Γ
(
n+ 1 + ja− ψ̄1

)−1
Cj (s : ψ) , (2.15)

where ψ = θ/α and

Cj (s : ψ) =
∑{

Ci1,ψ1
· · ·Cik,ψk

B
(
s : īa− ψ̄

)
: i1 + · · · + ik = j

}
.

So, if s, θ are fixed as n→ ∞ and Re(θ̄) < (s + 1)α,

LHS(2.15) = nψ1

∞∑

i,j=0

n−i−jaei
(
ja− ψ̄1

)
Cj (s : ψ) . (2.16)

If a is rational, say a = M/N then

LHS(2.15) = nψ̄1

∞∑

m=0

n−m/Ndm (s : ψ) , (2.17)
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where

dm (s : ψ) =
∑ {

ei
(
ja− ψ̄1

)
Cj (s : ψ) : iN + jM = m

}

=
∑ {

em−ja

(
ja− ψ̄1

)
Cj (s : ψ) : 0‘j ≤ m/a

}

if N = 1; so for dm to depend on c1 and not just c0 we need m ≤M .

Note 2.3 The following dimensional checks can be used throughout. By (1.5), dimci =
(dimX)α+iβ . By (2.6), dimCiψ = (dimX)θ. Also dimx̄i = (dimX)−α and dimdm(s : ψ) =

dimCj(s : ψ) = (dimX)θ̄1 .

Note 2.4 The leading term in (2.16) does not involve c1 so may be deduced from the multi-
variate extreme value distribution that the law of Xn,n−si

, suitably normalized, tends to. The
same is true of the leading terms of its cumulants. See Withers and Nadarajah (2007a) for
details.

The leading terms in (2.16) are

nψ̄1
[{

1 − n−1 < ψ̄1 >2 /2
}
C0(s : ψ) + n−aC0(s : ψ) +O

(
n−2a0

)]
,

where

a0 = min(a, 1),

C0(s : ψ) = c0B(s : −ψ̄),

C1(s : ψ) = cψ̄1−a−2
0 c1

k∑

j=1

ψjB
(
s : aIj − ψ̄

)

and for Ij = ī for im = δmj , that is Ijm = I(m ≤ j). For k = 1,

Cj(s : ψ) = Cjψ(s + 1)ja−ψ,

C0(s : ψ) = cψ0 (s + 1)−ψ = cψ0 / < s >ψ,

C1(s : ψ) = ψcψ−a−1
0 c1(s+ 1)a−ψ = ψcψ−a−1

0 c1/ < s >ψ−a .

Set πs(λ) = b(s1 − s2, s2 + 1 : λ) =
∏s1
j=s2+1 1/(1 + λ/j) for λ an integer. For example,

πs(1) = (s2 + 1)/(s1 + 1) and πs(−1) = s1/s2. Then for k = 2,

C0(s : λ1) = c2λ0 < s1 >
−1
2λ πs(−λ)

= c20 (s1 − 1)−1 s2 for λ = 1

= c20 < s2 − 2 >−1
2 < s2 >

−1
2 for λ = 2

and

C1(s : λ1) = λc2λ−a−1
0 c1 < s1 >

−1
2λ−a {πs(−λ) + πs(a− λ)}

= λc1−a0 c1 < s1 >
−1
2−a {s1/s2 + πs(a− 1)} for λ = 1

= λc3−a0 c1 < s1 >
−1
4−a

{
< s1 >2< s2 >

−1
2 +πs(a− 2)

}
for λ = 2.
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Set λ = 1/α, Yns = Xn,n−s/(nc0)
λ and Ec = λc−a−1

0 c1. Then for s > λ− 1

EYns =
{
1 − n−1 < λ >2 /2

}
< s >−1

λ +n−aEc < s >−1
λ−a +O

(
n−2a0

)
(2.18)

and for s1 > 2λ− 1, s2 > λ− 1, s1 ≥ s2,

EYns1Yns2 =
{
1 − n−1 < 2λ >2 /2

}
B20 + n−aEcDa +O

(
n−2a0

)
, (2.19)

where B20 =< s1 >
−1
2λ πs(−λ), Da =< s1 >

−1
2λ−a {πs(−λ) + πs(a− λ)} and

Covar (Yns1, Yns2) = F0 + F1/n+ EcF2/n+O
(
n−2a0

)
, (2.20)

where F0 = B20− < s1 >
−1
λ < s2 >

−1
λ , F1 =< λ >2< s1 >

−1
λ < s2 >

−1
λ − < 2λ >2 B20/2

and F2 = Da− < s1 >
−1
λ < s2 >

−1
λ−a − < s1 >

−1
λ−a< s2 >

−1
λ . Similarly, we may use (2.16)

to approximate higher order cumulants. If a = 1 this gives EYns and Covar(Yns1, Yns2) to
O(n−2).

Example 2.1 Suppose α = 1. Then Yns = Xn,n−s/(nc0), Ec = c−a−1
0 c0, B20 = −F1 =

(s1 − 1)−1s−1
2 , F0 =< s1 >

−1
2 s−1

2 , Da =< s1 >
−1
2−a Ga, where Ga = s1s

−1
2 + πs(a − 1) for

s1 ≥ s2, Ga = 2 for s1 = s2 and F2 = Da − s−1
1 < s2 >

−1
1−a −s−1

2 < s1 >
−1
1−a. So,

EYns = s−1 + n−aEc < s >−1
1−a +O(n−2a0) (2.21)

for s > 0 and (2.19)-(2.20) hold if

s1 > 1, s2 > 0, s1 ≥ s2. (2.22)

A little calculation shows that C0(s : 1) = ck0Bk0, C1(s : 1) = ck−a−1
0 c1Bk·, and

E

k∏

i=1

Yn,si
=

{
1 + n−1 < k >2 /2

}
Bk0 + n−aEcBk +O(n−2a0)

= m0(s) + n−1m1(s) + n−ama(s) +O(n−2a0)

say for si > k − i, 1 ≤ i ≤ k and s1 ≥ · · · ≥ sk, where

Bk· =
k∑

j=1

Bkj,

Bk0 =
k∏

i=1

1/ (s1 − k + 1) ,

Bkj =

j−1∏

i=1

(si − k + a+ i)−1 < sj − k + j + 1 >a−1

k∏

i=j+1

(si − k + i)−1 ,

Bkk =
k−1∏

i=1

(si − k + a+ i)−1 < sk >
−1
1−a

8



for si > k − i and 1 ≤ j < k. For example, B10 = s1, B20 = (s1 − 1)−1s−1
2 and B30 =

(s1 − 2)−1(s2 − 1)−1s−1
3 . So, κn(s) = κ(Yns1 , . . . , Ynsk

) is given by κn(s = κ0(s) + n−1κ1(s) +
n−aκa(s)+O(n−2a0), where, for example, writing Σ3a(s1)b(s2s3) = a(s1)b(s2s3)+a(s2)b(s3s1)+
a(s3)b(s1s2),

κ0 (s1s2s3) = m0 (s1s2s3) −
3∑
m0 (s1)m0 (s2s3) + 2

3∏

i=1

m0 (si)

= 2 (s1 + s2 − 2)D (s1s2s3) ,

κ1 (s1s2s3) = m1 (s1s2s3) −
3∑
m0 (s1)m1 (s2s3)

= 2
{
s2 (1 − 2s1) + s1 − s21

}
/D (s1s2s3) since m1(s1) = 0,

κa (s1s2s3) = ma (s1s2s3) −
3∑

{m0 (s1)ma (s2s3) +ma (s1)m0 (s2s3)}

+2

3∑
m0 (s1)m0 (s2)ma (s3) ,

where D(s1s2s3) =< s1 >3< s2 >2 s3.

Consider the case a = 1. Then κa(s1s2s3) = 0 so

κn (s1s2s3) = 2
{
s1 + s2 − 2 + n−1

(
s2 (1 − 2s1) + s1 − s21

)}
/D (s1s2s3) +O

(
n−2

)
.(2.23)

Set s· =
∑k

j=1 sj. Then

B1· = B11 − 1, B22 = 1/s2, B22 = 1/s2, B22 = s1,

B2· = s−1
1 + s−1

2 = (s1 + s2) / (s1s2) ,

B31 = (s2 − 1)−1 s−1
3 , B32 = (s1 − 1)−1 s−1

3 , B33 = (s1 − 1)−1 s−1
2 ,

B3· = {s2 (s· − 2) − s3} (s1 − 1)−1 < s2 >
−1
2 s−1

3 ,

B41 = (s2 − 2)−1 (s3 − 1)−1 s−1
4 , B42 = (s1 − 2)−1 (s3 − 1)−1 s−1

4 ,

B43 = (s1 − 2)−1 (s2 − 1)−1 s−1
4 , B44 = (s1 − 2)−1 (s2 − 1)−1 s−1

3 ,

B4· = {s·s3 (s2 − 2) + s3 (s2 − 4s2 + 4) − s2s4} {(s1 − 2) < s2 − 2 >2< s3 >2 s4}−1 .

Also Ec = c−2
0 c1, Da = s−1

1 + s−1
2 , F2 = 0, and

EYns = s−1 + n−1Ec +O
(
n−2

)
for s > 0, (2.24)

EYn,s1Yn,s2 =
(
1 − n−1

)
B2 + n−1EcDa +O

(
n−2

)
if (2.22) holds, (2.25)

Covar (Yn,s1, Yn,s2) = < s1 >
−1
2 s−1

2

(
s− n−1s1

)
+O

(
n−2

)
if (2.22) holds. (2.26)

In the case a ≥ 2, (2.24)-(2.26) hold with Ec replaced by 0. In the case a ≤ 1, (2.19)-(2.21)
with a0 = a give terms O(n−2a) with the n−1 terms disposable if a ≤ 1/2.

We now investigate what extra terms are needed to make (2.24)-(2.26) depend on c when
a = 1 or 2.
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Example 2.2 α = β = 1. Here, we fine the coefficients of n−2. By (2.17),

d2(s : ψ) =
2∑

j=0

e2−j
(
j − ψ̄1

)
Cj(s : ψ) + e2

(
−ψ̄1

)
C0(s : ψ)

+ē1
(
1 − ψ̄1

)
C1(s : ψ) + C2(s : ψ)

= C2(s : ψ) if ψ̄1 = 1 or 2.

For k = 1, C2(s : ψ) = C2ψ(s + 1)2−ψ, where C2ψ = ψcψ−4
0 {c0c2 + (ψ − 3)c21/2}, so d2(s :

1) = (s + 1)Fc, where Fc = c−3
0 (c0c2 − c21), so in (2.24) we may replace O(n−2) by n−2(s +

1)Fcc
−1
0 +O(n−3). For k = 2,

C2(s : 1) =
∑

{Ci1Cj1B(s : 0, j − 1) : i+ j = 2}
= C01C21 {B(s : 0, 1) +B(s : 0,−1)} + C2

11B(s : 0),

where B(s : 0, λ) = b(s1 − s2, s2 + 1 : λ) = πs(λ), so d2(s : 1) = C2(s : 1) −D2,sHc + c−2
0 c21,

where D2,s = (s2 + 1)(s1 + 1)−1 + s1s
−1
2 , Hc = c−2

0 (c0c2 − c21) and in (2.25) we may replace
O(n−2) by n−2d2(s : 1)c−2

0 +O(n−3). Upon simplifying this gives

Covar (Yn,s1, Yn,s2) =< s1 >
−1
2 s−1

2

(
1 − n−1s1

)
− c−2

0 HcF3,sn
−2 +O

(
n−2

)
,

where F3,s = (s2 + 1)/ < s1 >2 +s−1
2 .

Example 2.3 α = 1, β = 2. So, a = 2, λ = 1, ψ = θ. By (2.17),

d2(s : ψ) =

1∑

j=0

e2−2j

(
2j − ψ̄1

)
Cj(s : ψ)

= e2
(
−ψ̄1

)
C0(s : ψ) + C1(s : ψ)

= C1(s : ψ) if ψ̄1 = 0, 1 or 2.

For k = 1,

C1(s : ψ) = ψcψ−3
0 c1 < s >−1

ψ−2=

{
c−2
0 c1(s + 1), if ψ = 1,

2c−1
0 c1, if ψ = 2,

so EYns = s−1 + c−3
0 c1(s + 1)n−2 + O(n−3) for s > 0. For k = 2, C1(s : 1) = c−1

0 c1D2,s for
D2,s above, so

EYn,s1Yn,s2 =
(
1 − n−1

)
(s1 − 1)−1 s−1

2 + n−2c−3
0 c1D2,s +O

(
n−3

)

and

Covar (Yn,s1, Yn,s2) =< s1 >
−1
2 s−1

2

(
1 − n−1s1

)
− n−2c−3

0 c1F3,s +O
(
n−3

)
.
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3 Examples

Example 3.1 For Student’s t distribution, X = tN has density

(
1 + x2/N

)−γ
gN =

∞∑

i=0

dix
−2γ−2i,

where γ = (N + 1)/2, gN = Γ(γ)/{
√
NπΓ(N/2)} and di =

(
−γ
i

)
Nγ+igN . So, (1.5) holds with

α = N , β = 2 and ci = di/(N + 2i):

c0 = Nγ−1gN ,

c1 = −γNγ+1(N + 2)−1gN = −Nγ+1(N + 1)(N + 2)−1gN/2,

c2 = (γ)2N
γ+2(N + 4)−1gN/2,

c3 = −(γ)3N
γ+3GN (N + 6)−1/6,

and so on. So, a = 2/N and (2.17) gives an expression in powers of n−a/2 if N is odd or n−a

if N is even. The first term in (2.17) to involve c1, not just c0, is the coefficient of n−a.

Putting N = 1 we get

Example 3.2 For the Cauchy distribution, (1.5) holds with α = 1, β = 2 and ci = (−1)i(2i+
1)−1π−1. So, a = 2, ψ = θ, C0ψ = π−ψ, C1ψ = −ψπ2−ψ/3, C2ψ = ψπ4−ψ{1/5 + (ψ − 5)/a}
and C3ψ = −ψπ6−ψ{1/105 − 2ψ/15 + (ψ + 1)2/162}. By Example 2.3, Yns = (π/n)Xn,n−s

satisfies

EYns = s−1 − n−2π2(s+ 1) +O
(
n−3

)
(3.27)

for s > 0 and when (2.22) holds

EYn,s1Yn,s2 =
(
1 − n−1

)
(s1 − 1)−1 s−1

2 − n−2π2D2,s/3 +O
(
n−3

)
(3.28)

for D2,s = (s2 + 1)/(s1 + 1) + s1/s2 and

Covar (Yn,s1, Yn,s2) =< s1 >
−1
2 s−1

2

(
1 − n−1s1

)
+ n−2π2F3,s/3 +O

(
n−3

)

for F3,s = (s2 + 1)/ < s1 >2 +s−1
2 . Hall (1978, page 274) gave the first term in (3.27)

and (3.28) when s1 = s2 but his version of (3.28) for s1 > s2 replaces (s1 − 1)−1s−1
2 and

D2,s by complicated expressions each with s1 − s2 terms. The joint order of order three for
{Yn,si

, 1 ≤ i ≤ 3} is given by (2.23). Hall points out that F−1(u) = cot(π − πu), so F−1(u) =∑∞
i=0(1 − u)2i−1Ci1, where Ci1 = (−4π2)iπ−1B2i/(2i)!. Note 2.1 could be used. We have not

done so.

Example 3.3 Consider the F distribution. For N,M ≥ 1, set ν = M/N , γ = (M + N)/2
and gMN = νM/2/B(M/2, N/2). Then X = FM,N has density

xM/2 (1 + νx)−γ gMN = ν−γx−N/2
(
1 + ν−1x−1

)−γ
gMN =

∞∑

i=0

dix
−N/2−i,

11



where di = hMN

(
−γ
i

)
νi and hMN = gMNν

−γ = ν−N/2/B(M/2, N/2). So, for N > 2, (2.6)
holds with α = N/2 − 1, β = 1 and ci = di/(N/2 + i − 1). If N = 4 then α = 1 and Exam-
ples 2.1-2.2 apply. Otherwise (2.18)-(2.20) give EYn,s, EYn,s1Yn,s2 and Covar(Yn,s1, Yn,s2) to
O(n−2a0), where Yn,s = Xn,n−s/(nc0)λ, λ = 1/α, a = 2/(N − 2), a0 = min(a, 1) = a if N ≥ 4
and a0 = min(a, 1) = 1 if N < 4.

Example 3.4 Consider the stable laws. Feller (1966, page 549) proves that the general stable
law of index α ∈ (0, 1) has density

∞∑

k=1

|x|−1−akak(α, γ),

where ak(α, γ) = (1/π)Γ(kα + 1){(−1)k/k!} sin{kπ(γ − α)/2} and | γ |≤ α. So, for x > 0 its
distribution F satisfies (2.6) with β = α and ci = ai+1(α, γ)γ

−1(i+ 1)−1. Since a = 1 the first
two moments of Yn,s = Xn,n−s/(nc0)

λ, where λ = 1/α are given to O(n−2) by (2.18)-(2.20).

Example 3.5 Finally, consider the second extreme value distribution. Suppose F (x) = exp
(−x−α) for x > 0, where α > 0. Then (1.5) holds with β = α and ci = (−1)i/(i + 1)!. Since
a = 1 the first two moments of Yn,s = Xn,n−s/n

1/α are given to O(n−2 by (2.18)-(2.20).
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Appendix A: An Inversion Theorem

Given xj = yj/j! for j ≥ 1 set

S = Ŝ(t, x) =

∞∑

j=1

xjt
j = S(t, y) =

∞∑

j=1

yjt
j/j!. (3.29)

The partial ordinary and exponential Bell polynomials B̂ri(x) and Bri(y) are defined for r =
0, 1, . . . by

Si =

∞∑

r=i

trB̂ri(x) = i!

∞∑

r=i

trBri(y)/r!.

So, B̂r0(x) = Br0(y) = δr0 (1 or 0 as r = 0 or r 6= 0), B̂ri(λx) = λiB̂ri(x) and Bri(λy) =
λiBri(y). They are tabled on pages 307–309 of Comtet (1974) for r ≤ 10 and 12. Note that

(1 + λS)α =

∞∑

r=0

trĈr =

∞∑

r=0

trCr/r!, (3.30)

where

Ĉr = Ĉr(α, λ, x) =
r∑

i=0

B̂ri(x)

(
α

i

)
λi (3.31)

and

Cr = Cr(α, λ, x) =

r∑

i=0

Bri(y) < α >i λ
i.

So, Ĉ0 = 1, Ĉ1 = αλx1, Ĉ2 = αλx2+ < α >2 λ
2x2

1/2, Ĉ3 = αλx3+ < α >2 λ
2x1x2+ < α >3

λ3x3
1/6 and C0 = 1, C1 = αλy1, C2 = αλy2+ < α >2 λ

2y2
1. Similarly,

log(1 + λS) =

∞∑

r=1

trD̂r =

∞∑

r=1

trDr/r!

and

exp(λS) = 1 +
∞∑

r=1

trB̂r = 1 +
∞∑

r=1

trBr/r!,

where

D̂r = D̂r(λ, x) = −
r∑

i=1

B̂ri(x)(−λ)i/i!,

Dr = Dr(λ, y) = −
r∑

i=1

Bri(y)(−λ)i/(i− 1)!,
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B̂r = B̂r(λ, x) =

r∑

i=1

B̂ri(x)λ
i/i!

and

Br = Br(λ, y) =

r∑

i=1

Bri(y)λ
i.

Here, B̂r(1, x) and Br(1, y) are known as the complete ordinary and exponential Bell polyno-
mials. If xj = yj = 0 for j even, then S = t−1

∑∞
j=1Xjt

2j, where Xj = x2j−1, so

Si = t−i
∞∑

r=i

t2rB̂ri(X) and exp(λS) = 1 +

∞∑

k=1

tkB̂k,

where

B̂k =
∑{

B̂ri(X)λi/i! : i = 2r − k, k/2 < r ≤ k
}
.

The following derives from Lagrange’s inversion formula.

Theorem A.1 Let k be a positive integer and a any real number. Suppose

v/u =

∞∑

i=0

xiu
ia =

∞∑

i=0

yiv
ia/i!

with x0 6= 0. Then

(u/v)k =

∞∑

i=0

x∗i v
ia =

∞∑

i=0

y∗i v
ia/(ia)!,

where x∗i = x∗i (a, k, x) and y∗i = y∗i (a, k, y) are given by

x∗i = kn−1Ĉi (−n, 1/x0, x) = kx−n0

i∑

j=0

(n + 1)j−1B̂ij(x) (−x0)
−j /j! (3.32)

and

y∗i = kn−1Ci (−n, 1/y0, y) = ky−n0

i∑

j=0

(n+ 1)j−1Bij(y) (−y0)
−j , (3.33)

respectively, where n = k + ai.

Proof: u/v has a power series in va so that (u/v)k does also. A little work shows that (3.32)-
(3.33) are correct for i = 0, 1, 2, 3 and so by induction that x∗i x

ia
0 and y∗i y

ia
0 are polynomials in

a of degree i− 1. Hence, (3.32)-(3.33) will hold true for all a if they hold true for all positive
integers a. Suppose then a is a positive integer. Since v/u = x0(1 + x−1

0 S) for S = Ŝ(ua, x) =

S(ua, y), the coefficient of uai in (v/y)−n is x−n0 Ĉi(−n, 1/x0, x) = y−n0 Ci(−n, 1/y0, y)/(n− k)!.
Now set n = k + ai and apply Theorem A in Comtet (1974, page 148) to v = f(u) =∑∞

i=0 xiu
1+ai. �

Note A.1 Comtet (1978, page 15, Theorem F) proves (3.32) for the case k = 1 and a a
positive integer.
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