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1 Introduction and Summary

For 1 < r < n, let X, be the rth largest of a random sample of size n from a continuous
distribution F' on R, the real numbers. Let f denote the density of F' when it exists. The
study of the asymptotics of the moments of X, has been of considerable interest. McCord
(1964) gave a first approximation to the moments of X,,; for three classes. This showed that a
moment of X,,; can behave like any positive power of n or ny = log n. (Here log is to the base
e.) Pickands (1968) explored the conditions under which various moments of (X1 — b,,)/an,
converge to the corresponding moments of the extreme value distribution. It was proved that
this is indeed true for all F' in the domain of attraction of an extreme value distribution
provided that the moments are finite for sufficiently large n. For other work, we refer the
readers to Polfeldt (1970), Ramachandran (1984) and Resnick (1987).
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The asymptotics of the quantiles of X, have also been studied. Note that U, = F(X,,)
is the rth order statistics from U(0,1). For 1 <7y <rgp < --- <rp <nset Upy = {Upp;, 1 <
i < k}. By Section 14.2 of Stuart and Ord (1987), U,, has the multivariate beta density

k
U ~ = [ (wiss — w77 /B (x) (1.1)
=0

on0<uy <---<up <1, where ug =0, up+1 =1, 7190 =0, rp41 = n+ 1 and

k

By(r) = HB (risTit1 — 1) - (1.2)

i=1

David and Johnson (1954) expanded X,,, = F~Y(U,,) about u,; = EU,,, = r;/(n + 1):

Xory =202 0 GV (i) (Upi — un;) /5!, where G(u) = F~!(u), and using the properties of (1)
showed that 1f r depends on n in such a ways that r/n — p € (0,1) as n — oo then the mth
order cumulants of X,,» = {Xp,,1 < i < k} have magnitude O(n'=™) — at least for n < 4,
so that the distribution of X, , has a multivariate Edgeworth expansion in powers of n=1/2,
(Alternatively one can use James and Mayne (1962) to derive the cumulants of X, , from those
of Upy.) The method requires the derivatives of F' at {F' ~1(p;),1 < i <k} so breaks down if
p; = 0 or pp, = 1 — which is the situation we study here. For definiteness, we confine ourselves
to F~'(u) having a power singularity at 1, say F~(u) ~ (1 —u)""/® as u — 1, where a > 0
that is,

1—-F(z) ~a“ (1.3)
as * — oo. For a nonparametric estimate of o see Novak and Utev (1990).

Distributions satisfying (L3]) are known as Pareto type distributions. These distributions
arise in many areas of the sciences, engineering and medicine. Some of these areas — where
publications involving Pareto type distributions have appeared — are: hydrology, physics, wind
engineering and industrial aerodynamics, computer science, water resources, insurance math-
ematics and economics, structural safety, material science, performance evaluation, queueing
systems, geophysical research, ironmaking and steelmaking, banking and finance, atmospheric
environment, civil engineering, communications, information processing and management, high
speed networks, lightwave technology, solar energy engineering, supercomputing, natural haz-
ards and earth system sciences, ocean engineering, optics communications, reliability engineer-
ing, signal processing and urban studies.

In Withers and Nadarajah (2007a) we showed that for fixed r when (L3]) holds the dis-
tribution of X,, ,1—r (where 1 is the vector of ones in S‘Ek), suitably normalized tends to a
certain multivariate extreme value distribution as n — oo, and so obtained the leading terms
of the expansions of its moments in inverse powers of n. Here we show how to extend those
expansions when

=3 bi(1—u)™ (1.4)
=0



with ag < og < -+, that is, {1 — F(z)}2z~'/20 has a power series in {z % : §; = (a; — ag)/ap}.
Hall (1978) considered (L4) with a; =i — 1/a, but did not give the corresponding expansion
for F(x) or expansions in inverse powers of n. He applied it to the Cauchy. In Section 2, we
demonstrate the method when

1—F(z) = —azc, —iB, (1.5)

where @ > 0 and 8 > 0. In this case, (I4) holds with «; = (i3 — 1)/a. In Section 3, we
apply it to the Student ¢, F' and second extreme value distribution and to stable laws of
exponent o < 1. Appendix A gives the inverse theorem needed to pass from (L5]) to (L4,
and expansions for powers and logs of series.

We use the following notation and terminology. Let (z); = I'(x +i)/I'(x) and < x >;=
I'(z +1)/T(x —i+1). An inequality in R* consists of k inequalities. For example, for x in
C*, where C is the set of complex numbers, Re(x) < 0 means that Re(x;) <0 for 1 <i < k.
Also I(A) =1 or 0 for A true or false and d;; = I(i = j). For @ € C¥ let 6 denote the vector

with 0; = Z?zl 0;.

2 Main Results

For1 <7 <---<rp<nsets; =n—r;. Here, we show how to obtain expansions in inverse
powers of n for the moments of the X, ¢ for fixed r when (L4 holds, and in particular when
the upper tail of F' satisfies (L.0]).

Theorem 2.1 Suppose (I3) holds with cy, o, 5 > 0. Then F~Y(u) is given by (1.4) with
o =ia—1/a, a = B/a and b; = C /., where Cyy = Co Ci(—v, co, z* of (3:3D) and x =
zi(a,1,¢) of (332):

C()dj = Cg},

Cry = deg e,
Cop = ¢c¢ 2a=2 {6002 + (¥ —2a—-1 c%/Z}
Cyyp = ¢c¢ da=3 [COC + (¢ —3a — 1)coerca + { (¥ + 1)2/6(¢ + 3a/2)(a + 1)} ¢ ]

and so on. Also for any 6 in R,

o0

(F ) =3 (1 —w)Cy (2.6)

=0
at Y =0/a.

Note 2.1 On those rate occasions where the coefficients d; = Cj 1/, in Fl(u) = 32,0 -

u)=1/d; are known from some alternative formula then one can use Cip = d9 Ci(0,1/dy,d)

of (2.31).



«

Proof of Theorem 2.1 By Theorem A.1 with £k = 1, u = 7%, * = ¢, we have 27 =
S Xoxi(l —u)@ at w = F(z), where

Ty = ¢ 1,
* —a—2
i = g% o,
S 2a3{ coca + ( a—l—l }
i = 03“ 4 {- cdes + (2 + 3a)cocica — (24 3a) (1 + a)c?/2} ,

and so on. So, for S of @29, 27 = ¢ v(1+coS(v?, 2*)) at v = 1 —u. Now apply B30). O

Lemma 2.1 For 6 in C*,

where
by, (r:@):Hb(ri—ri_l,n—ri—l—lzéi) (2.8)

and b(a, B : 0 = B(a, B+ 0)/B(«, 3). Also in (1.3),

k

Bn(r):HB(Ti—Tz'—l,n—n—Fl)- (2.9)
i=1

Note 2.2 Since B(a, 8) = 0o for Ref3 <0, for (2.7) to be finite we need n —r; + 1+ Ref > 0
for1 <i<k.

Proof of Lemma 2.1 Set I, = LHS27) = [ B,(u:r) Hle(l — )% duy - - - duy, integrated
over 0 <uj < --- <ug <1by [TI). So, (Z7), 29) hold for k = 1. Set s; = (u; — ui—1)/(1 —
ui_l). Then

1 1
I — / W (1 - ul)el/ (g — 1) (1 — )™ Gy /B (),
0 u

1

which is the RHS (2.7)) with denominator replaced by the RHS (2.8). Putting 8 = 0 gives
@), 29) for k = 2. Now use induction. [J

Lemma 2.2 In Lemma 2.1, the restriction

1<ri < - <rp<n may be relazed to 1 <ry <--- <rp < n. (2.10)



Proof For k = 2, the second factor in RHS 8] is b(ry — r1,n — 12 + 1 : 62) = £(02)/f(0),
where f(f) = F(n —rg+ 1+ 92)/F(n — 71+ 1+ 602) = 1if 1o = 71 and the first factor is
b(ri,n—ri+1:0;)=E(1— Uml) Slmllarly, if r; = r;_1, the ith factor is 1 and the product
of the others is EH] 1Hél(l — UWJ) J’, where 9* =0 for j #i—1 and 9* = 6;_1 + 0; for
j=:—1. 01

Corollary 2.1 In any formulas for Eg(X, ) for some function g, (2.10) holds. In particular
it holds for the moments and cumulants of X, r.

This result is very important as it means we can dispense with treating the 2*~1 cases

(r; <mriy1orr; =141, 1 <i<k—1separately. For example, Hall (1978) treats the two cases
for cos(Xpr, Xns) separately and David and Johnson (1954) treat the 25~! cases for the kth
order cumulants of X, , separately for k < 4.

Theorem 2.2 Under the conditions of Theorem 2.1,

H b = Z Cirpr -+ Cip b (v 110 — 8/@) (2.11)

115000 =0

with by, as in (Z38). All terms are finite if Re@ < (s + 1)a, where s; = u —r;

Lemma 2.3 For «, 3 positive integers 6 in C,

a+6—1
b, 3:0)= ] (1+6/5)". (2.12)
=0

So, for @ in C*,

Si—1

H I a+e/) ", (2.13)

i=1j=s;+1

where s; =n —r; and rg = 0.

Proof: LHS 212) =T'(8+0)['(a+ B)/{T'(B+ 60+ a)I'(B)}. But I'(a + z)/I'(x) = (x)q, so
(212) holds, and hence (213)). O

From (2.8) we have, interpreting Hf:2 b; as 1 when k — 1,

Lemma 2.4 For s;=n—r;,

bp(r:60)=B(s:0)n!/T (n+1+6), (2.14)

5



where

k
B(S : 0) =T (81 +1 —|—9_1) (81!)_1 Hb (Si—l — 8,8+ 1: 9_1)
=2

does not depend on n for fized s.

Lemma 2.5 We have

nl/T(n+1+6) =n"" i ei()n~,

=0
where
eo(0) =1, e1(0) = —(0)2/2, e2(0) = (0)3(360 + 1)/24,
e3(0) = —(0)4(0)2/(412), ea(0) = (0)5(1560° + 3007 + 50 — 2)/(5!48),
e5(0) = —(0)5(0)2(36% + 70 — 2)/(6!16),
e6(0) = (0)7(630° + 3150% 4 31503 — 916 — 426 + 16) /(7!576),
e7(0) = —(0):(0)2(90" + 540° + 5102 — 580 + 16)/(8144).

Proof: Apply equation (6.1.47) of Abramowitz and Stegun (1964) for i < 2 and Withers and
Nadarajah (2007b) for i < 7. O

So, [EII), ZI4) yield the joint moments of X, ,n~/® for fixed s as a power series in
(1/n,n=):

Corollary 2.2 We have

H nn S anr(n+1+ja_7;;1)_lcj(s3'1,0), (215)

where ¥ = 0/a and
Z{Cuﬂlil . de’k ( ia—{b)zl_|_+zk:]}
So, if s, @ are fixed as n — oo and Re(é) < (s+1)a,

,j=0

If a is rational, say a = M/N then

LHSEIE) =n" > 0 ™Nd,, (s ), (2.17)
m=0



where
dm (s: 1) = Z{ei(ja—i/jl)Cj(szz/J):iN+jM:m}
= Z{em_j“ (ja—11) Cj(s:9): 05 <m/a}

if N =1; so for d,, to depend on ¢; and not just ¢y we need m < M.

Note 2.3 The following dimensional checks can be used throughout. By (I.J), dimc; =
(dimX)*+8. By (2.4), dimCiy = (dimX)?. Also dimz; = (dimX)™ and dimd,(s : ) =
dimCj(s : 1) = (dimX )% .

Note 2.4 The leading term in (Z16]) does not involve c¢; so may be deduced from the multi-
variate extreme value distribution that the law of Xy, n—s,, suitably normalized, tends to. The
same is true of the leading terms of its cumulants. See Withers and Nadarajah (2007a) for
details.

The leading terms in (2.16]) are

ntt [{1- nTh <y >y /2} Co(s :p) +n~"Co(s : ) + O (n—2a0)] ’

where
ap = min(a,l),
Cols ) = coB(s: —),
. k
Ci(s: ) = cg”_a_zcl Z%B (s calj — {b)
j=1

and for I; = i for i, = Omj, that is Iy, = I(m < j). For k=1,
Cj(S : ¢) = de;(S + 1)ja—¢7
Co(s:v) = cg(s +1)_y = cg’/ <5 >y,
Ci(s:9) = vy er(s+ Vasy =0cy e/ < s >pa -

Set ms(A) = b(s1 — s2,82 + 1+ A) = [[7L,, ., 1/(1 + A/j) for A an integer. For example,
ms(1) = (s2+1)/(s1 + 1) and mg(—1) = s1/s2. Then for k = 2,

Co(s: A1) = & < s1>5) ms(—N)
= E(s1—1)tsyfor a=1
= c(2)<32—2>2_1<32 >2_1 for A =2
and
Ci(s: A1) = Aoy < 51 >0, {ms(—A\) + 7ms(a— N)}
= Ay % < 81 >3, {s1/s2 +ms(a—1)} for A =1
= )\cg_“cl < 81 >Z_1a {< $1 >9< S9 >2_1 +7s(a — 2)} for A = 2.

7



Set A\=1/a, Y5 = n,n_s/(nco))‘ and E, = )\ca“_lcl. Then for s > A —1

EYps={l-n"'<X>y/2} <s>'+n"E. <s>', +0 (n ™) (2.18)
and for s1 > 2\ —1, s9 > A — 1, 81 > s9,

EYp Vs, = {1 =n"1 <2X\ >; /2} Bog + n *E.Dy + O (n™2%), (2.19)

where Byy =< s1 >2_)\1 7s(—=A), Dy =< 81 >2_)\1_a {ms(—=A) + ms(a — \)} and
Covar (Ys,, Yns,) = Fo + Fi /n+ E.Fy /n+ O (n72%) (2.20)
where Fy = Bag— < 51 >3 '< 82 >\, FI =< A >9< 81 >1'< 59 >11 — < 2\ >y Byy/2
and Fb = D,— < 81 >;1< So >;Ea — < 5 >;ia< S9 >)_\1. Similarly, we may use (2.16])

to approximate higher order cumulants. If a = 1 this gives EY,s and Covar(Y,s,, Yns,) to

O(n™2).

Example 2.1 Suppose o = 1. Then Y,s = Xy n—s/(ncy), E. = ca“_lco, Byy = —F =
(s1 — 1)_132_1, Fy =< 51 >2_1 32_1, D, =< s >2__1a G, where G, = 3132_1 + ms(a — 1) for
81> 89, Gy =2 for s1 =585 and F» = D, — sl_l < 89 >1__1a —32_1 < 851 >1__1a. So,

EY,s =581 4+n""E. < s>, +0(n"2%) (2.21)
for s >0 and (Z13)-(220) hold if
s1>1, s9 >0, s; > so. (2.22)

A little calculation shows that Co(s : 1) = ckByo, C1(s: 1) = clg_“_lclBk., and

EHYn,si = {1+n7' <k >y /2} Byo+n "E.By + O(n™?%)

= mo(s) +n " 'mi(s) + n " mg(s) + O(n~2")

say for s >k —1i,1<i¢<kand sy >--- > s, where

k
By = ZBkja
j=1
k
BkO = Hl/(sl—k-l-l),
=1
i1 k
By = H(si—k‘+a—|—i)_1 <sj—k+j+1>, H (Si—k‘—l-i)_l,
i=1 i=j+1
k—1
By, = H(Si—k—i-a—l-i)_l < 8 >1__1a



for si > k—1i and 1 < j < k. For example, Byyg = s1, Bay = (s1 — 1)_152_1 and B3y =
(51— 2)"N(s2 —1)7ts3t. So, kin(s) = K(Vnsy, - Yas,) is given by kn(s = ro(s) +n " k1 (s) +
N %q(5)+0(n"2%), where, for example, writing X3a(s1)b(s253) = a(s1)b(s253)+a(s2)b(s351)+
a(s3)b(s1s2),

3 3
Ko (s18283) = mg(s18283) — Z mo (s1) mo (s283) + 2 Hmo €))
i=1
= 2 (81 + S9 — 2) D (818283) s
3
K1 (818283) = ma (818283) — Z mo (81) ma (8283)
= 2{sy(1—2s1) 4+ s1 — 57} /D (s15283) since my(s1) =0,
3
Ka ($15283) = ma(s15253) — > {mo (s1) ma (s253) + ma (s1) mo (5253)}

3
+2 " mo (s1)mo (s2) M (s3)

where D(s15283) =< 81 >3< S >9 S3.

Consider the case a = 1. Then kq(s15283) =0 so

Kn (S18283) = 2 {31 +59—24n"t (32 (1 —2s1)+ 81— S%)} /D (s15283) + O (n_2§2.23)
Set s. = Z?Zl sj. Then

By. = B11 — 1, Byy =1/s2, Baa =1/s2, Bag = 51,

By = sy + syt = (514 82) / (s182)

Bs1 = (s2 — 1)_1 sgl, Bsy = (81 — 1)_1 sgl, Bss = (s1 — 1)_1 32_1,

Bz = {sy(s. —2) —s3} (51— 1) <59 >, 537,

By = (s2 — 2)_1 (s3— 1)_1 le, Byy = (s1 — 2)_1 (s3 — 1)_1 le,

Bys = (s1 — 2)_1 (s9 — 1)_1 sgl, By = (s1 — 2)_1 (s9 — 1)_1 sgl,

By ={s.53(s2 —2) +s3(s0 —4sy+4) — 5284} {(51 — 2) < 89 — 2 >9< 83 >9 54}_1 .

Also E,. = 66261, D, = 81_1 + 82_1, F, =0, and

EY,s = s'+n'E.4+0(n?) fors>0, (2.24)
EYn,slyn,sz = (1 - n_l) Bz + n_lEcDa +0 (’I’L_2) Zf AM) hOldS, (225)
Covar (Y 51, Yns,) = <81 >2_1 32_1 (s — n_lsl) + 0 (n_2) if (223) holds. (2.26)

In the case a > 2, ([2:24))-(2:26) hold with E,. replaced by 0. In the case a < 1, (2.19)-(221)
with ag = a give terms O(n~2%) with the n=' terms disposable if a < 1/2.

We now investigate what extra terms are needed to make (2.24)-(2.26]) depend on ¢ when
a=1or 2.



Example 2.2 a = 8 = 1. Here, we fine the coefficients of n=2. By (2.17),

2
do(s:p) = 262_]‘ (7 —41) Ci(s : ¥) + ea (—11) Co(s : )
j=0
+&1 (1 —11) Ci(s 1) + Ca(s : 1)
= Cy(s:) ifhy =1 or2.
For k =1, Ca(s : ) = Coyp(s + 1)a—y, where Coy, = 1[)63)_4{6062 + (¢ — 3)c2/2}, so da(s :

1) = (s + 1)F., where F. = c;>(coca — ¢3), so in ([2.2) we may replace O(n2) by n2(s +
DF.cyt +0(n=3). Fork =2,

Cys:1) = Y {CaCjB(s:0,j—1):i+j=2}
= CpCn{B(s:0,1)+B(s:0,—1)} + C%lB(S : 0),
where B(s : 0,\) = b(sy — 89,52 +1: \) = ms(\), 50 da(s: 1) = C(s : 1) — DagH, + c52c3,
where Do = (s2+ 1)(s1 + 1) + 5185 ", He = ¢y 2(coca — ¢2) and in (Z28) we may replace
O(n=2) by n2da(s : 1)cg2 + O(n=3). Upon simplifying this gives

Covar (Yo s, Y s) =< 1 >2_1 32_1 (1 — n_lsl) — 052HCF37571_2 +0 (n_z) ,

where F3 ¢ = (so+ 1)/ < s1 >9 +32_1.
Example 2.3 a=1, §=2. So,a=2, A\=1, ¢ =0. By (2.17),

1
da(s:p) = 262—2]' (2.7 - 1;1) Ci(s: )
§=0
= e2 (1) Co(s: ) + Ci(s : )
Ci(s: ) if 1 = 0,1 or 2.
For k=1,

o la(s+1), ifyp=1,

] _ Y—3 -1 _
Culs 1 9) = vy e <s >0 ,= { 265 cr, if =2,

so EY,s = s™1 + 66361(8 +1)n"2+0(Mn73) fors>0. Fork=2,Cy(s:1) = 66101D2,s for
Dy s above, so

EYn,slyn,sz = (1 - n_l) (31 - 1)_1 82_1 + 77,_2663611)275 + O (Tl_3)
and

Covar (Yo, s, Y s,) =< 81 >2_1 82_1 (1 — n_lsl) - 7’L—266361F37s +0 (n_?’) .
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3 Examples

Example 3.1 For Student’s t distribution, X =ty has density
i .
(1 + x2/N) Tgn = Z diz= 2%,
i=0

where v = (N +1)/2, gy = T(7)/{VN7I'(N/2)} and d; = (7))N"*'gn. So, {L3) holds with
a=N, =2 andc¢;=d;/(N + 2i):

co = N'7'gn,

c = — NN +2) gy = —N"TH(N +1)(N +2) 'gn/2,
2 = (VNN +4)"gn/2,

s = —(1)sN"Gy(N +6)71/6,

and so on. So, a =2/N and (2:17) gives an expression in powers of n=%2 if N is odd or n=®
if N is even. The first term in (2.17) to involve c1, not just co, is the coefficient of n™°.

Putting N =1 we get

Example 3.2 For the Cauchy distribution, (I.3) holds with « =1, 3 =2 and ¢; = (—1)*(2i+
D) ln). 8o, a=2, 4 =6, Cop = 7Y, Cry = —m®¥/3, Cay = br*¥{1/5 + (4 — 5)/a)
and Czy = —pm®~¥{1/105 — 2¢/15 + (¢ + 1)2/162}. By Ezample 2.3, Vs = (7/n) Xy n—s
satisfies

EYps=st1—n"2n%(s+1)+0 (n_?’) (3.27)
for s >0 and when (2.22) holds
EYnoYns,=1—n"") (s1—1) " s3' —n27?Dag/3+ O (n?) (3.28)

for Days = (s2+1)/(s1 + 1)+ s1/s2 and
Covar (Yo s, Y s,) =< 81 >2_1 82_1 (1 - n_lsl) + n_27T2F3,S/3 + 0 (n_3)

for F3g = (s2 4+ 1)/ < s1 > +s;'. Hall (1978, page 274) gave the first term in (327
and (328) when s; = sy but his version of (3.28) for s1 > so replaces (s; — 1)7 sy and
Dy by complicated expressions each with sy — sy terms. The joint order of order three for
{Yn.s:, 1 <i <3} is given by (2.23). Hall points out that F~!(u) = cot(r — 7u), so F~1(u) =
Yol —u)?71Cy, where Ciy = (—4m?)'m =1 By, /(2i)!. Note 2.1 could be used. We have not
done so.

Example 3.3 Consider the F' distribution. For N,M > 1, set v = M/N, v = (M + N)/2
and gun = v™/2/B(M/2,N/2). Then X = Fyrny has density

o0
M/? (1+ve) " gun = v Vg N/ (1 + V_I:IJ_I)_V JMN = Zdix_N/z_i,
i=0

11



where d; = hyn (7)) and hyy = gunv™" = v=2/B(M/2,N/2). So, for N > 2, (2.34)
holds with o« = N/2 -1, =1 and ¢; = d;/(N/2+i—1). If N =4 then a = 1 and Ezam-
ples 2.1-2.2 apply. Otherwise (218)-(2.20) give EY, s, EY, s, Y, s, and Covar(Y, s,,Yn s,) to
O(n=2%), where Yy s = Xnn—s/(nco)A, A\=1/a, a=2/(N —2), ag = min(a,1) = a if N > 4
and ap = min(a,1) =1 if N < 4.

Example 3.4 Consider the stable laws. Feller (1966, page 549) proves that the general stable
law of index o € (0,1) has density

o
> T ag(a, ),
k=1

where ay(a, ) = (1/7)T(ka + ){(=1)*/E!} sin{km(y — @)/2} and | v |< a. So, for x > 0 its
distribution I satisfies (2.6) with 3 = o and ¢; = a;y1(a,y)y (i +1)7L. Since a = 1 the first
two moments of Yy, s = Xnn—s/(nco)?, where A = 1/a are given to O(n=2) by (218)-(220).

Example 3.5 Finally, consider the second extreme value distribution. Suppose F(x) = exp
(—2x=%) for x > 0, where o > 0. Then (I3) holds with 8 = « and ¢; = (—1)*/(i + 1)!. Since
a =1 the first two moments of Yy, s = Xpn_s/n'® are given to O(n=2 by (213)-(2.20).
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Appendix A: An Inversion Theorem

Given z; = y;/j! for j > 1 set
S=S(tax) = zit! =S(t,y) =D y;t'/j. (3.29)
j=1

The partial ordinary and exponential Bell polynomials Em(aj) and B,;(y) are defined for r =
0,1,... by

= itrém- =q! Zt B,i(y)/r!.
r=t

So, Byo(z) = Byo(y) = 60 (Lor 0 as r = 0 or 7 # 0), Bri(Az) = N B,i(z) and B,;(\y) =
X B,i(y). They are tabled on pages 307-309 of Comtet (1974) for 7 < 10 and 12. Note that

(1+A8)* Z t"C i t"Cy /7!, (3.30)
r=0
where
Cp = Cola, M\ z) = y Bi(x) (‘;‘) A (3.31)
=0
and

Cr=Crla,\x) =Y Bri(y) < o >; X,

So, Oy =1, C; = adxy, Cy = adma+ < a > A222 /2, Cs = adrst+ < a >9 N2x129+ < o >3
N23/6 and Cp = 1, C1 = adyy, Oz = adya+ < a >3 A2y?. Similarly,

log(1 4 \S) = Zt"p = Ztr /!
and
exp(AS) =1+ "B, =1+ t"B,/rl,
r=1 r=1

where



and
= Br()H y) = Z Bm(y))‘l
i=1

Here, Br(l, x) and B, (1,y) are known as the complete ordinary and exponential Bell polyno-
mials. If z; = y; = 0 for j even, then § = t=1 Z‘;’;l thzj, where X; = x9;_1, so

St=1t"" Zt2T§r2~(X) and exp(AS) =1+ Ztkgk,
; k=1

where
Bi=Y" {BM(X)Ai/z'! =2 —kk/2 <1 < k} .

The following derives from Lagrange’s inversion formula.
Theorem A.1 Let k be a positive integer and a any real number. Suppose
o o
v/u= inui“ = Zyivm/i!
i=0 i=0
with xg # 0. Then
o0
(u/v)" Zx* Z“—nyvm/(ia)!,
i=0

where x} =z} (a, k,z) and y; =y, (a, k‘,y) are given by

)

x = kn~ 'y (—n, 1/zo,x) = kag" Y _(n+1);-1By(x) (—0) ™ /5! (3.32)
=0
and
yi = kn"'Ci (=n,1/yo,y) = kyg" Y _(n+1);-1B5(y) (—y0) (333)
§j=0

respectively, where n = k + ai.

Proof: u/v has a power series in v® so that (u/v)F does also. A little work shows that (3.32)-
([333) are correct for i = 0,1,2,3 and so by induction that x¥z* and y}yi* are polynomials in
a of degree i — 1. Hence, (BB'ZI) B33) will hold true for all a 1f they hold true for all positive
integers a. Suppose then a is a positive integer. Since v/u = zo(1 + x5 'S) for S = S(u®, z) =
S(u®,y), the coefficient of u® in (v/y)~™ is x&"@-(—n, 1/xo,2) =y, "Ci(—n, 1/y0,y)/(n — k).
Now set n = k + ai and apply Theorem A in Comtet (1974, page 148) to v = f(u) =
Z;‘io l‘i’LLH_ai. N

Note A.1 Comtet (1978, page 15, Theorem F) proves (3.32) for the case k = 1 and a a
positive integer.
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