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We introduce a powerful and flexible MCMC algorithm for stochas-
tic simulation. The method builds on a pseudo-marginal method orig-
inally introduced in [Genetics 164 (2003) 1139–1160], showing how
algorithms which are approximations to an idealized marginal algo-
rithm, can share the same marginal stationary distribution as the
idealized method. Theoretical results are given describing the con-
vergence properties of the proposed method, and simple numerical
examples are given to illustrate the promising empirical characteris-
tics of the technique. Interesting comparisons with a more obvious,
but inexact, Monte Carlo approximation to the marginal algorithm,
are also given.

1. Introduction. We are interested in the problem of simulation from a
probability distribution π(dθ, dz) which, for now, we shall assume admits a
density π(θ, z) with respect to some σ-finite measure (which we shall just
write as dθ × dz). The variables θ and z are elements of essentially arbi-
trary spaces, Θ and Z, respectively. We partition the state space in this way
because, either:

1. interest lies mainly in the marginal law π(dθ) of the variable θ ∈Θ [which
we shall assume, for now, admits density π(θ) with respect to dθ]; or

2. exploration of π(θ) by MCMC methods is more convenient by appropriate
auxiliary simulation.

In a Bayesian framework, for example, θ could represent a parameter
of interest and z a set of missing data or latent variables; this includes,
among others, hidden Markov models and their continuous generalizations,
but also mixture models, and as we shall see in the application section,
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model selection problems in general [8]. Often the variable z is introduced
for convenience, in particular in cases where the marginal density π(θ) is
of sole interest. Indeed π(θ), or expectations with respect to it, might be
analytically intractable or too complex to evaluate, whereas the introduction
of z might lead to an analytical expression, or ease the implementation of
numerical methods.

A relatively generic way of numerically approximating such expectations
consists of simulating an ergodic Markov chain {(θi, zi)} which admits π(θ, z)
as invariant probability density: such techniques are known under the acronym
MCMC (Markov chain Monte Carlo). A typical sampling scheme will alter-
nate sampling from the conditionals π(θ|z) and π(z|θ), or more generally
ergodic Markov transition probabilities with these conditionals as invariant
distributions. Although such so-called data augmentation schemes can very
often ease programming and lead to elegant algorithms, it is well established
that in numerous situations they can result in strongly positively correlated
samples {(θi, zi)} (see, e.g., [5, 9]), which is an undesirable property when
efficiency is sought. On the other hand, if π(θ) was known analytically or
cheap to compute, it would often be possible to generate “more efficient”
samples {θi} from a Markov chain with a transition probability P , typically
a Metropolis–Hastings (MH) transition with invariant density π(θ) and pro-
posal density q(θ,ϑ). This celebrated MCMC update consists, given that
the Markov chain is currently at θ, of proposing θ∗ ∼ q(θ, ·) and set the next
value of the chain ϑ = θ∗ with probability α(θ, θ∗) which depends on the
values of the densities π(θ) and π(θ∗); otherwise we set ϑ= θ. More details
are given below in the form of pseudo-code (note that, in our context, we
shall term such an algorithm a marginal algorithm).

These general remarks have lead to the development of MCMC algorithms
that try to combine the benefits of both approaches: possible statistical and
computational efficiency of sampling directly from π(θ), and implementa-
tional ease of augmented, or auxiliary, schemes. A natural approach consists
of approximating the intractable density values π(θ) and π(ϑ) required for
the computation of the acceptance probability of the MH update with im-
portance sampling estimates [8], that is for some integer N ≥ 1 and some
importance probability density qθ(z) (satisfying the usual support assump-
tion) one can consider the estimators

π̃N (θ) :=
1

N

N
∑

k=1

π(θ, z(k))

qθ(z(k))
with z(k)|θ i.i.d.∼ qθ(·)

and

π̃N (ϑ) :=
1

N

N
∑

k=1

π(ϑ, z(k))

qϑ(z(k))
with z(k)|ϑ i.i.d.∼ qϑ(·),(1.1)
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Table 1

Comparison of the marginal, MCWM and GIMH algorithms

Step Marginal MCWM GIMH

0. Given: θ and π(θ) θ and π(θ) θ,Z and π̃N(θ)
1. Sample: θ∗

∼ q(θ, ·) θ∗
∼ q(θ, ·) θ∗

∼ q(θ, ·)
{

Z ∼ qN
θ (·),

Z∗
∼ qN

θ∗(·)
Z∗

∼ qN
θ∗(·)

2. Compute: π(θ∗)

{

π̃N(θ),
π̃N(θ∗)

π̃N(θ∗)

3. Compute: r = π(θ∗)q(θ∗,θ)
π(θ)q(θ,θ∗)

π̃N (θ∗)q(θ∗,θ)

π̃N (θ)q(θ,θ∗)

π̃N (θ∗)q(θ∗,θ)

π̃N (θ)q(θ,θ∗)

4. With prob. 1∧ r: ϑ = θ∗ ϑ = θ∗

{

ϑ = θ∗,

Z = Z∗

otherwise: ϑ = θ ϑ = θ

{

ϑ = θ,

Z = Z

and simply plug these estimates in the expression for the marginal accep-
tance ratio (2.6). Note that here and hereafter we frequently omit the de-
pendency on Z := (z(1), z(2), . . . , z(N)) and Z := (z(1), z(2), . . . , z(N)) for
notational simplicity. We will denote qN

θ (Z) and qN
ϑ (Z) the densities of Z

and Z.
There are, however, several possible implementations of this idea, and we

now review two of them. Before embarking on a more formal presentation
in Section 2, it can be helpful to give a comparative pseudo-code description
of MCWM and GIMH (the acronyms are explained later in the text) and
the marginal algorithm (see Table 1).

The first approach considered here, which corresponds to the middle col-
umn, is to attempt to approximate P , independently at each iteration using
the importance ratio averages given in equation (1.1). More precisely both
Z and Z∗ are “refreshed” at each iteration independently of previously sam-
pled auxiliary variables given θ and θ∗. This algorithm is referred to as the
Monte Carlo within Metropolis (MCWM ) in [1] following the terminology
of [7]. Due to the fact that the Z’s are independent at each iteration, one
can easily see that {θi} is still a Markov chain with transition probability
denoted P̃MCWM

N hereafter.
However MCWM and the marginal algorithm P are not equivalent. In par-

ticular, π(θ) is typically not the invariant distribution density of P̃MCWM
N and

therefore will not produce samples from π(θ) even in steady state. However,
intuitively, provided that P̃MCWM

N is ergodic, the samples generated by this
procedure will asymptotically be distributed according to an approximation
of π(θ), which should be all the more precise that N is large. Furthermore,
we would like to know whether for sufficiently large N , the transition prob-
ability P̃MCWM

N does indeed inherit the convergence properties of P , as this
was our initial motivation.
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An interesting variation of MCWM could consist of using a single Z,
sampled from some probability density qN

θ,θ∗(Z), to compute both π̃N (θ) and

π̃N (θ∗). We do not pursue this here, but rather focus on the following.
In [1], Beaumont proposes a very interesting variation on the idea above,

called grouped independence MH (GIMH ), which corresponds to the right-
most column above. The MH transition probability of GIMH, as presented
by Beaumont is similar in spirit to MCWM, but differs in that no fresh Z is
sampled at every iteration. Rather, GIMH can be interpreted as a form of
MCWM where Z is “recycled” from the previous iteration; as a result Z is
in general not distributed according to qN

θ , as is the case when the MCWM
algorithm is used. Note that in addition {θi} is not a Markov chain any-
more, but that {θi,Zi} defines a Markov chain; we hereafter denote P̃GIMH

N

the transition probability of this Markov chain.
The remarkable property noticed by Beaumont is that the acceptance

ratio of GIMH can be rewritten as

π̃N (θ∗)q(θ∗, θ)

π̃N (θ)q(θ, θ∗)

=
[1/N

∑N
k=1 π(θ∗, z∗(k))

∏N
l=1;l 6=k qθ∗(z

∗(l))]q(θ∗, θ)qN
θ (Z)

[1/N
∑N

k=1 π(θ, z(k))
∏N

l=1;l 6=k qθ(z(l))]q(θ, θ
∗)qN

θ∗(Z
∗)

,

which suggests that P̃GIMH
N is, to complete Beaumont’s argument, a MH

algorithm with proposal density q(θ,ϑ)qN
ϑ (Z) and target density given be-

tween the brackets above, denoted π̃N (θ,Z) hereafter. Hence, as soon as
GIMH defines an irreducible and aperiodic Markov chain it will produce
samples {θi} distributed in the limit as i→∞ according to the marginal
π(θ). Given this interpretation, it is important to point out that updates of
the type P̃GIMH

N are not the only available to sample from π̃N (θ,Z), a point
apparently missed in the literature. For example, it is possible to update “Z
given θ,” which is crucial to address some of the weaknesses of this approach,
see Section 5. This distinction between target distribution and update also
motivates the pseudo-marginal terminology adopted here.

The dual interpretation of GIMH as an approximation of a MH with tar-
get density π(θ) or an MH with target distribution density π̃N (θ,Z) there-
fore opens the possibility for the design of algorithms that inherit the poten-
tial efficiency of P while still being able to produce samples from π(θ), and
not an approximation. However one can reiterate the questions asked earlier
about the convergence properties of P̃MCWM

N and their relation to the ideal
transition probability P .

Before giving some answers to these questions, we first show how the
approach can be easily generalized in order to allow for more sophisticated
transitions, leading to potential “local adaptation” schemes for example and
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also suggest new applications, such as model selection and applications to
reversible jump MCMC algorithms [3]. Sections 3–5 are dedicated to the
theoretical properties of generalizations of GIMH. Our main results are:
Theorem 1, where we show that if the marginal chain is irreducible and ape-
riodic then generalizations of GIMH also converge; Theorem 6 shows that
under very mild and intuitive conditions, mainly (A2) and (A3), general-
izations of GIMH have finite horizon convergence properties very similar to
those of the marginal algorithm, provided that N is large enough; in Theo-
rem 8, under more stringent assumption, we investigate the geometric and
uniform convergence of generalizations of GIMH. Section 6 is dedicated to
some theoretical properties of generalizations of MCWM which turn out to
be much simpler to establish than for generalizations of GIMH. In particular
we show in Theorem 9 that if the marginal algorithm is uniformly ergodic,
then generalizations of GIMH can inherit this property with arbitrary pre-
cision. We conclude with Section 7 where we show how the ideas developed
in this paper can be used in order to design efficient reversible jump MCMC
algorithms to perform model selection using very simple mechanisms.

2. Set up and notation. Hereafter we will need the following notation.
For some integer N ≥ 1 let Z := (z(1), z(2), . . . , z(N)) ∈ Z

N denote a generic
vector of Z

N with coordinates z(k), k = 1, . . . ,N . For any Z ∈ Z
N and k =

1, . . . ,N we will denote Z−k := (z(1), . . . , z(k−1), z(k+1), . . . , z(N)) ∈ Z
N−1

with obvious conventions. For any Z ∈ Z
N and Z = (z(k1), . . . , z(kl)) (for

l ∈ {1, . . . ,N −1} and k1, . . . , kl ∈ {1, . . . ,N}) a subvector of Z, we define Z \
{Z} := (z(1), . . . , z(k1 − 1), z(k1 + 1), . . . , z(k2 − 1), z(k2 + 1), . . .) and Z l :=
(z(1), . . . , z(l)) ∈ Z

l, with the notational convention Z0 = ∅.

2.1. The pseudo-marginal. Let (Θ,B(Θ)) and (Z,B(Z)) be two measur-
able spaces. Let π(dθ, dz) be a probability distribution on the space (Θ ×
Z,B(Θ)×B(Z)), let π(dθ) be its marginal distribution and let us denote
for any θ ∈ Θ, πθ(dz) the associated conditional (on θ) distribution. Let
{QN

θ (dZ), θ ∈ Θ and N ∈ N} be a family of probability distributions, the
“proposals,” defined on (ZN ,B(ZN )), {(wN

1 ,w
N
2 , . . . ,w

N
N ) ∈ [0,1]N , N ∈ N :

∑N
k=1w

N
k = 1} be a family of weights and let {ZN

k , k = 1, . . . ,N and N ∈ N}
be a family of subvectors of arbitrary sizes of vectors of the type Z−k as
defined above. Before defining the pseudo-marginal and its associated joint
model, we require the following assumption. Denoting for any A ∈ B(Z),
QN

θ (zk ∈A|ZN
k ) the conditional distribution or zk given ZN

k ,

We assume that for our choice of {QN
θ }, {wN

k } and {ZN
k }, for all(A1)

N ≥ 1, any θ ∈ Θ and k = 1, . . . ,N , πθ(·) ≪QN
θ (·|ZN

k ).
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(A1) allows one to define for any N ∈ N the following linear combination of
Radon–Nikodym derivatives for (θ,Z)∈ Θ×Z

N (the importance weights)

γN (θ) :=
N

∑

k=1

wN
k

πθ(dz(k))

QN
θ (dz(k)|ZN

k )
,(2.1)

the dependence on Z being implicit. Whenever γN (θ)> 0, we define λN (θ) :=
| log γN (θ)| and by convention we let λN (θ) := +∞ when γN (θ) = 0. In turn
we can define the following probability distribution on (Θ×Z,B(Θ)×B(Z)),

π̃N (dθ, dZ) := π(dθ)QN
θ (dZ)γN (θ),(2.2)

which, as we shall see, is a generalization of the underlying target distribution
identified in equation (1.2). Hereafter for any θ ∈Θ we will denote

π̃N
θ (dZ) :=QN

θ (dZ)γN (θ),(2.3)

the conditional probability distribution of Z given θ in equation (2.2) and
we introduce for any Z ∈ Z,

π̃N (dθ) := π(dθ)γN (θ)

the “pseudo-marginal.” Note that whenever π(dθ) has a density π(θ) and
provided that Z|θ ∼QN

θ , then the associated probability density π̃N (θ) :=
π(θ)γN (θ) is an unbiased importance sampling estimator of π(θ) a funda-
mental property which ensures that π(dθ) is the marginal of π̃N (dθ, dZ).
It can indeed be easily checked that for any θ ∈ Θ, QN

θ (γN (θ)) = 1. Note
that in practice the variability of π(θ)γN (θ) [and hence QN

θ (dZ)] for any
θ ∈ Θ is expected to have an important influence on the performance of the
algorithm an illustration is given in Theorem 8. We will frequently use the
following identities:

π̃N (dθ, dZ) = π̃N (dθ)QN
θ (dZ) = π(dθ)π̃N

θ (dZ).(2.4)

We conclude this section with various examples of choices of {wN
i } and

{ZN
i } introduced in the general framework presented earlier.

Example 1 (Classical importance sampling). The case where wN
i = 1/N

and QN
θ (dZ) is factorizable and exchangeable, that is,

QN
θ (dZ) =

N
∏

i=1

Qθ(dz(i)),

leads to Beaumont’s GIMH algorithm.
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Example 2 (Sequential sampling). A choice of great practical interest,
as illustrated later on in Section 7, consists of the case where ZN

i = Zi−1,
which allows for sequential sampling of {z(i)}, hence offering the possibility
to adapt the sampling strategy in light of already sampled z(i)’s. This se-
quential framework encompasses the case where {z(i)} is a realization from
a Gibbs sampler with target distribution πθ(dz) for some θ ∈ Θ. In such
situations nondecreasing sequences {wN

k } might be preferable in order to
discount the “burn-in” period.

Example 3 (Gibbs sampler type). In some situations we might have
good reasons to believe that the analytically intractable marginal distribu-
tions of QN

θ (dZ) for θ ∈ Θ are good approximations of πθ(dz). In this case
one can suggest the application of the algorithm with ZN

i =Z−i, which can
be interpreted as a random scan Gibbs sampler to sample from QN

θ (dZ),
and hence its marginals.

2.2. Pseudo-marginal based algorithms. We now introduce a formal de-
scription of the transition probabilities of the marginal algorithm and the
two variants of the pseudo-marginal approach, which can be seen as gener-
alization of MCWM and GIMH. The transition probability of the marginal
algorithm, a standard MH algorithm, targets π(dθ) and uses Q(θ, dϑ) as
proposal distribution is defined for any θ,ϑ ∈ Θ as

P (θ, dϑ) := α(θ,ϑ) Q(θ, dϑ) + δθ(dϑ)

[

1−
∫

Θ

α(θ,ϑ)Q(θ, dϑ)

]

,(2.5)

where α(θ,ϑ) := 1∧ r(θ,ϑ) with (a)

0< r(θ,ϑ) :=
π(dϑ)Q(ϑ,dθ)

π(dθ)Q(θ, dϑ)
<+∞,(2.6)

on a symmetric set R ⊂ Θ × Θ (see [11], Proposition 1 and Theorem 2),
(b) r(θ,ϑ) := 0, π(dθ)Q(θ, dϑ)-almost everywhere on the complement Rc of
R and (c) r(θ,ϑ) := 1 on measurable subsets of Rc of π(dθ)Q(θ, dϑ)-zero
probability.

The transition probability of the generalization of MCWM is not a stan-
dard MH algorithm. It consists of proposing ϑ ∼Q(θ, ·), Z ∼QN

θ and Z ∼
QN

ϑ , compute an acceptance probability α̃N (θ,ϑ) defined below, and accept
or reject the proposal according to α̃N (θ,ϑ). More formally the transition
probability is defined for any θ,ϑ ∈ Θ as

P̃ noisy
N (θ, dϑ) :=QN

θ ⊗QN
ϑ (α̃N (θ,ϑ))Q(θ, dϑ)

(2.7)

+ δθ(dϑ)

[

1−
∫

Θ
QN

θ ⊗QN
ϑ (α̃N (θ,ϑ))Q(θ, dϑ)

]

,
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where ⊗ indicates the product for measures and α̃N (θ,ϑ) := 1 ∧ r̃N(θ,ϑ),
with (a)

r̃N (θ,ϑ) :=
π̃N (dϑ)Q(ϑ,dθ)

π̃N (dθ)Q(θ, dϑ)
,(2.8)

on an appropriate set R̃ ⊂ (Θ × Z
N )2, (b) r̃N (θ,ϑ) := 0, π̃N (dθ)Q(θ, dϑ)-

almost everywhere on the complement of R̃ and (c) 1 otherwise. Note that
r̃N (θ,ϑ) can be computed even in situations where the normalizing constant
of π̃N (dθ, dZ) is unknown but that, on the other hand, the normalizing
constant of QN

θ (dZ) might be required.
The transition probability of the GIMH variant of the pseudo-marginal

approach is of the MH type and is defined on the extended space Θ× Z
N .

It targets π̃N (dθ, dZ) and uses the proposal distribution Q(θ, dϑ)QN
ϑ (dZ)

P̃ exact
N (θ,Z;dϑ,dZ)

= α̃N (θ,ϑ) Q(θ, dϑ)QN
ϑ (dZ)(2.9)

+ δθ,Z(dϑ,dZ)

[

1−
∫

Θ×ZN
α̃N (θ,ϑ)Q(θ, dϑ)QN

θ (dZ)

]

,

with α̃N (θ,ϑ) as above equation (2.8). This expression for the acceptance
probability of the exact pseudo-marginal algorithm relies on an identity,
which we will frequently use later on, between the marginal acceptance ratio
(2.6) and its exact pseudo-marginal counterpart,

r̃N (θ,ϑ) :=
π̃N (dϑ,dZ)Q(ϑ,dθ)QN

θ (dZ)

π̃N (dθ, dZ)Q(θ, dϑ)QN
ϑ (dZ)

=
γN (ϑ)

γN (θ)
r(θ,ϑ)(2.10)

for any (θ,Z,ϑ,Z) ∈ R̃ := {(θ,Z,ϑ,Z) : (θ,ϑ) ∈ R, Z ∈ Zθ, Z ∈Zϑ} with
Zθ := {Z ∈ Z : γN (θ) > 0}. For any N ∈ N and (θ,Z) ∈ Θ × Z

N we will
denote α(θ,Z) [resp. ρ(θ,Z)]

α(θ,Z) := 1− ρ(θ,Z) :=

∫

Θ×ZN
α̃N (θ,ϑ)Q(θ, dϑ)QN

ϑ (dZ),(2.11)

the probability of leaving (resp. staying in) state (θ,Z). Note that we do
not here make the dependence of this quantity on N explicit for notational
simplicity. Similarly we will denote α(θ) [resp. ρ(θ)] the probability of leaving
(resp. staying in) state θ for transition P .

In the next two sections we study the Markov chain {θi,Zi} started
at (θ0,Z0) ∈ Θ × Z

N and with transition probability P̃ exact
N (which will

be denoted P̃N for simplicity, when no ambiguity is possible) as given in
equation (2.9) that is a MH with target distribution π̃N (dθ, dZ) and pro-
posal distribution Q(θ, dϑ)QN

ϑ (dZ) and acceptance ratio given by equation
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(2.10). In order to analyze the performance of the Markov chain gener-
ated by P̃N we will embed the exact marginal Markov chain with transition
P as in equation (2.5) defined on (ΘN,B(ΘN)) into a Markov chain de-
fined on ((Θ × Z

N )N, (B(Θ)×B(Z))N) as follows. We define a Markov chain
which is generated by a MH transition probability P̄N , with invariant dis-
tribution π̃N (dθ, dZ) and proposal distribution Q(θ, dϑ)π̃N

ϑ (dZ) [instead of

Q(θ, dϑ)QN
ϑ (dZ) for P̃N ], leading to the transition probability,

P̄N (θ,Z;dϑ,dZ) := α(θ,ϑ)Q(θ, dϑ)π̃N
ϑ (dZ)

(2.12)

+ δθ,Z(dϑ,dZ)

[

1−
∫

Θ
α(θ,ϑ)Q(θ, dϑ)

]

,

with α(θ,ϑ) := 1∧ r(θ,ϑ), where r(θ,ϑ) is as in equation (2.6). Our analysis
will rely upon a comparison of P̃N and P̄N , which live on a common space.

Finally, we will hereafter use the following standard notation for prob-
abilities and Markov chain transition probabilities. For a space (E,E) we
define for f :E→ R: for µ a measure on (E,E) µ(f) :=

∫

E f(x)µ(dx); ‖µ‖ :=
1
2 sup|f |≤1 |µ(f)|; for any A ∈ E µ(A) = µ(I{x ∈A}), where I{· ∈A} = I{A}
denotes the indicator function of set A; for a transition probability Π :E ×
E → [0,1] Πf(x) :=

∫

E Π(x,dy)f(y) and Πif(x) := Π(x,Πi−1f) for i≥ 1 with
Π0f(x) := f(x).

3. A simple convergence result for exact algorithms. The theory of
ψ-irreducible Markov chains has proved to be a very powerful tool in or-
der to analyze classical MCMC algorithms, and in particular the MH algo-
rithm. More precisely, since MCMC deal with the situation where πP = π,
then if in addition P is ψ-irreducible and aperiodic, it can be shown that
‖P k(θ0, ·)−π(·)‖→ 0 as k→∞ π-a.s. [4]. This motivates the following the-
orem.

Theorem 1. Assume (A1) and that P defines a ψ-irreducible and ape-
riodic Markov chain such that πP = π. Then for any N ∈ N such that for
any (θ,Z) ∈Θ× Z

N , ρ(θ,Z)> 0 [with ρ(θ,Z) as in equation (2.11)], P̃N is
also ψ-irreducible and aperiodic, and hence π̃N -a.s. [in (θ0,Z0) ∈Θ× Z

N ],

lim
k→+∞

‖P̃ k
N (θ0,Z0; ·)− π̃N (·)‖ = 0.

Proof. We here drop N for simplicity. First notice that by construction
if P is ψ-irreducible and aperiodic, then so is P̄ [defined in equation (2.12)]
and consequently P̄ defines an ergodic Markov chain with invariant distri-
bution π̃N . We will show that under the assumptions the accessible sets of P̄
are included in those of P̃ , which will allow us to conclude. More precisely
we show by induction that for any k ∈ N, (θ,Z) ∈ Θ × Z

N and A × B ∈
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B(Θ)×B(ZN) such that P̄ k(θ,Z;A×B)> 0, then P̃ k(θ,Z;A×B)> 0. For
any θ ∈ Θ recall that Zθ := {Z :γN (θ)> 0} and for notational simplicity we
will use the convention 1∧γN (ϑ)/γN (θ) = 1 whenever γN (θ) = 0 below. First
notice that from (2.10), for any (θ,Z)∈ Θ×Z

N and A×B ∈ B(Θ)×B(ZN),

P̃ (θ,Z;A×B)≥
∫

A
QN

ϑ

(

1∧ γN (ϑ)

γN (θ)
I(Z ∈B ∩Zϑ)

)

α(θ,ϑ)Q(θ, dϑ)

+ I{(θ,Z) ∈A×B}ρ(θ,Z)
(3.1)

≥
∫

A
π̃N

ϑ

(

1

γN (ϑ)
1∧ γN (ϑ)

γN (θ)
I(Z ∈B ∩Zϑ)

)

α(θ,ϑ)Q(θ, dϑ)

+ I{(θ,Z) ∈A×B}ρ(θ,Z).

Consequently, since for any θ ∈ Θ and B ∈ B(ZN ) we have π̃N
θ (B) = π̃N

θ (B ∩
Zθ), we deduce that the implication is true for k = 1. Assume the induction
assumption true up to some k = n ≥ 1. Now for some (θ,Z) ∈ Θ × Z

N let
A×B ∈ B(Θ)×B(ZN) be such that P̄n+1(θ,Z;A×B)> 0 and assume that

∫

Θ×ZN
P̃n(θ,Z;dϑ,dZ)P̃ (ϑ,Z;A×B) = 0 ,

which implies that P̃ (ϑ,Z;A×B) = 0, P̃n(θ,Z; ·)-a.s. and hence that P̄ (ϑ,Z;
A×B) = 0, P̃n(θ,Z; ·)-a.s. from the induction assumption for k = 1. From
this and the induction assumption for k = n, we deduce that P̄ (ϑ,Z;A×
B) = 0, P̄n(θ,Z; ·)-a.s. (by contradiction), which contradicts the fact that
P̄n+1(θ,Z;A×B)> 0. �

4. Performance of the pseudo-marginal approach. For the purpose of
our analysis we introduce the following subsets of Θ. For any ǫ > 0, N ∈ N

and denoting for any random variable X with probability distribution µ,
µ(X > ǫ) := µ({X :X > ǫ}),

T (ǫ,N) := {θ ∈ Θ:QN
θ (λN (θ)> ǫ)≤ ǫ},(4.1)

S(ǫ,N) := {θ ∈ Θ:Q(θ,T (ǫ,N)) ≥ 1− ǫ},(4.2)

R(ǫ,N) := S(ǫ,N)∩ T (ǫ,N),(4.3)

with λN (θ) as defined below equation (2.1). For a set A⊂ Θ we will denote
Ā its complement in Θ.

The main result of this section is Theorem 6 and relies, in addition to
(A1), on the following mild assumptions.

For any θ0 ∈Θ, limk→∞ ‖P k(θ0, ·)− π(·)‖ = 0.(A2)

For any θ ∈Θ and any ǫ > 0,(A3)
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lim
N→∞

QN
θ (λN (θ)> ǫ) = 0.

Assumption (A3) is fundamental to our analysis, and implies the following
two lemmata. First, it is a sufficient condition to control the total variation
distance between π̃N

θ and QN
θ .

Lemma 2. Assume (A1) and (A3). Then for any θ ∈ Θ, N ∈ N and
ǫ ∈ (0,1],

‖π̃N
θ (·)−QN

θ (·)‖ ≤ (3 + e)ǫ+ 2QN
θ (λN (θ)> ǫ)I{θ ∈ �T (ǫ,N)}.

Proof. For any θ ∈ Θ, from equation (2.3)

‖π̃N
θ (·)−QN

θ (·)‖ =QN
θ (|γN (θ)− 1|I{λN (θ)> ǫ})

(4.4)
+QN

θ (|γN (θ)− 1|I{λN (θ)≤ ǫ}).

On the one hand

QN
θ (|γN (θ)− 1|I{λN (θ)≤ ǫ}) ≤ exp(ǫ)− 1 ≤ eǫ,(4.5)

and on the other hand

QN
θ (|γN (θ)− 1|I{λN (θ)> ǫ}) ≤QN

θ (γN (θ)I{λN (θ)> ǫ})
(4.6)

+QN
θ (λN (θ)> ǫ).

Notice that

(1− ǫ)QN
θ (λN (θ)≤ ǫ)≤ exp(−ǫ)QN

θ (λN (θ)≤ ǫ)≤QN
θ (γN (θ)I{λN (θ)≤ ǫ}).

This, together with the fact that for any θ ∈ Θ, QN
θ (γN (θ)) = π̃N

θ (1) = 1,
leads to

QN
θ (γN (θ)I{λN (θ)> ǫ}) = 1−QN

θ (γN (θ)I{λN (θ)≤ ǫ})
≤ 1− (1− ǫ)(1−QN

θ (λN (θ)> ǫ))(4.7)

≤ ǫ+QN
θ (λN (θ)> ǫ).

Now combining equations (4.4)–(4.7), we have for any θ ∈ Θ,

‖π̃N
θ (·)−QN

θ (·)‖ ≤ (1 + e)ǫ+ 2QN
θ (λN (θ)> ǫ)

(4.8)
≤ (3 + e)ǫ+ 2QN

θ (λN (θ)> ǫ)I{θ ∈ T̄ (ǫ,N)}. �

Assumption (A3) also implies the following important intermediate re-
sults.
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Lemma 3. Let ǫ > 0 and S(ǫ,N),T (ǫ,N) and R(ǫ,N) be as in (4.1)–
(4.3). Assume (A1) and (A3). Then for any probability measure µ on (Θ,B(Θ)),

lim
N→∞

µ(T (ǫ,N)) = 1,(4.9)

lim
N→∞

µ(S(ǫ,N)) = 1,(4.10)

lim
N→∞

µ(R(ǫ,N)) = 1.(4.11)

Proof. For any ǫ > 0 and θ ∈ Θ, limN→∞ I{θ ∈ T (ǫ,N)} = 1 from (A3).
Equation (4.9) follows from the dominated convergence theorem. To prove
equation (4.10), note that equation (4.9) implies that for any θ ∈ Θ,

lim
N→∞

Q(θ, I{ϑ ∈ T (ǫ,N)}) = 1.

Consequently for any θ ∈ Θ, limN→∞ I{θ ∈ S(ǫ,N)} = 1 and for any prob-
ability measure µ, we have limN→∞µ(I{θ ∈ S(ǫ,N)}) = µ(1) = 1. Equation
(4.11) is immediate. �

As we shall see, our results heavily rely on an estimate of the distance
between P̄N and P̃N under (A3).

Lemma 4. Assume (A1) and (A3). Let ǫ ∈ (0,1] and (θ,Z)∈ S(ǫ,N)×
Z

N with Z such that λN (θ) ≤ ǫ [S(ǫ,N) being defined in (4.2)]. Then for
P̄N as defined in equation (2.12) and for any ψ :Θ× Z

N → [−1,1],

|P̄Nψ(θ,Z)− P̃Nψ(θ,Z)| ≤ 24ǫ.

Proof. For simplicity we here drop N in the notation for the transition
probabilities. Let (θ,Z) ∈ Θ × Z

N and ψ :Θ × Z
N → [−1,1]. We have, by

definition of P̄ ,

P̄ψ(θ,Z)− P̃ψ(θ,Z) = S1 + S2,

with

S1 := P̄ψ(θ,Z)− P̂ψ(θ,Z),

S2 := P̂ψ(θ,Z)− P̃ψ(θ,Z),

where P̂ is the MH transition probability with invariant distribution π(dθ)QN
θ (dZ)

and proposal distribution Q(θ, dϑ)QN
ϑ (dZ), that is

P̂ (θ,Z;dϑ,dZ) := α(θ,ϑ)Q(θ, dϑ)QN
ϑ (dZ)

(4.12)

+ δθ,Z(dϑ,dZ)

[

1−
∫

Θ
α(θ,ϑ)Q(θ, dϑ)

]

.
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From this and the definition of P̄ in equation (2.12), the first term writes

|S1| ≤ |Q(θ, (π̃N
ϑ −QN

ϑ )α(θ,ϑ)ψ)|
(4.13)

≤ 2Q(θ,‖π̃N
ϑ (·)−QN

ϑ (·)‖).
From this, Lemma 2 and since θ ∈ S(ǫ,N)

|S1| ≤ 2[(3 + e)ǫ+ 2Q(θ,QN
ϑ (λN (ϑ)> ǫ)I{ϑ ∈ T̄ (ǫ,N)})]

(4.14)
≤ 2(5 + e)ǫ.

The second term writes

S2 =

∫

Θ×ZN
ψ(ϑ,Z)

[

1∧ r(θ,ϑ)− 1∧ γN (ϑ)

γN (θ)
r(θ,ϑ)

]

Q(θ, dϑ)QN
ϑ (dZ)

−ψ(θ,Z)

∫

Θ×ZN

[

1 ∧ r(θ,ϑ)− 1∧ γN (ϑ)

γN (θ)
r(θ,ϑ)

]

Q(θ, dϑ)QN
ϑ (dZ),

and we therefore focus on the quantity

S0 :=

∫

Θ×ZN

∣

∣

∣

∣

1∧ r(θ,ϑ)− 1∧ γN (ϑ)

γN (θ)
r(θ,ϑ)

∣

∣

∣

∣

Q(θ, dϑ)QN
ϑ (dZ)

=

∫

Θ×ZN

∣

∣

∣

∣

1∧ r(θ,ϑ)− 1∧ γN (ϑ)

γN (θ)
r(θ,ϑ)

∣

∣

∣

∣

I{λN (ϑ)> ǫ}Q(θ, dϑ)QN
ϑ (dZ)

+

∫

Θ×ZN

∣

∣

∣

∣

1 ∧ r(θ,ϑ)− 1∧ γN (ϑ)

γN (θ)
r(θ,ϑ)

∣

∣

∣

∣

I{λN (ϑ)≤ ǫ}Q(θ, dϑ)QN
ϑ (dZ).

Noting that for any (x, y) ∈ R
2,

|1∧ exp(x)− 1∧ exp(y)|= 1∧ | exp(0 ∧ x)− exp(0 ∧ y)| ≤ 1∧ |x− y|,
we deduce that for θ ∈ S(ǫ,N),

S0 ≤Q(θ,QN
ϑ (I{λN (ϑ)> ǫ}))

+Q(θ,QN
ϑ (1∧ | log(γN (θ))− log(γN (ϑ))|I{λN (ϑ)≤ ǫ})),

and consequently since γN (θ) depends on θ and Z only,

|S2| ≤ 2(1∧ λN (θ)) + 2Q(θ,QN
ϑ (I{λN (ϑ)> ǫ}))

(4.15)
+ 2Q(θ,QN

ϑ (1∧ λN (ϑ)I{λN (ϑ)≤ ǫ})).
Consequently since θ ∈ S(ǫ,N),

|S2| ≤ 2(1∧ λN (θ)) + 2Q(θ,QN
ϑ (I{λN (ϑ)> ǫ}I{ϑ ∈ T̄ (ǫ,N)}))

+ 2Q(θ,QN
ϑ (1∧ λN (ϑ)I{λN (ϑ)≤ ǫ})I{ϑ ∈ T̄ (ǫ,N)})

+ 2Q(θ,QN
ϑ (I{λN (ϑ)> ǫ}I{ϑ ∈ T (ǫ,N)}))(4.16)

+ 2Q(θ,QN
ϑ (1∧ λN (ϑ)I{λN (ϑ)≤ ǫ})I{ϑ ∈ T (ǫ,N)})

≤ 2(ǫ+ ǫ+ ǫ+ ǫ) = 8ǫ.
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One concludes by combining (4.14) and (4.16). �

We now combine Lemmata 3 and 4 to prove the following proposition.

Proposition 5. For any ǫ ∈ (0,1] and any probability measure µ on
(Θ,B(Θ)), there exists N(ǫ,µ) such that for any N ≥N(ǫ,µ) and any ψ :Θ×
Z

N → [−1,1],

|µ(π̃N
θ ((P̄N − P̃N )ψ(θ,Z)))| ≤ ǫ.

Proof. Let ε ∈ (0,1], µ be a probability distribution on (Θ,B(Θ)) and
ϕ :Θ → [−1,1]. We have, with R(ε,N) defined in equation (4.3),

|µ(ϕ)| ≤ |µ(ϕI{θ ∈R(ε,N)})|+ µ(R̄(ε,N)).

By Lemma 3 there exists N0(ε,µ) ∈ N (independent of ϕ) such that for
N ≥N0(ε,µ),

|µ(R̄(ε,N))|< ε.(4.17)

For any ψ :Θ× Z
N → [−1,1], we have

µ(I(θ ∈R(ε,N))π̃N
θ ((P̃ − P̄ )ψ)) = T1 + T2,(4.18)

with

T1 = µ(I(θ ∈R(ε,N))π̃N
θ (I(λN (θ)≤ ε)(P̃ − P̄ )ψ)),

T2 = µ(I(θ ∈R(ε,N))π̃N
θ (I(λN (θ)> ε)(P̃ − P̄ )ψ)).

We apply Lemma 4 to T1 and conclude that

|T1| ≤ 24ε.(4.19)

We now turn to T2. First recall from equation (2.3) that for any θ ∈Θ,

π̃N
θ (λN (θ)≤ ε) =QN

θ (γN (θ)I{λN (θ)≤ ε}),
and, since QN

θ (λN (θ) > ε) ≤ ε for θ ∈ T (ε,N), we conclude that for any
θ ∈ T (ε,N)

(1− ε)2 ≤ (1− ε)QN
θ (λN (θ)≤ ε)

≤QN
θ (exp(−ε)I{λN (θ)≤ ε}) ≤ π̃N

θ (λN (θ)≤ ε).

Hence, from the definition of R(ε,N),

|T2| = |µ(I{θ ∈R(ε,N)}π̃N
θ (I{λN (θ)> ε}(P̃ − P̄ )ψ))|

≤ 2|µ(I{θ ∈R(ε,N)})|(1− (1− ε)2)(4.20)

≤ 4ε.
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Now we choose ε= ǫ/30 and conclude with N(ǫ,µ) =N0(ε,µ) and by com-
bining (4.17) (for 2ϕ), (4.19) and (4.20). �

Our main result is as follows and provides us with a bound ℓ on the loss
of efficiency of the approximating chain compared to the ideal chain, which
can be made arbitrarily small for large N ’s. Define for any θ ∈ Θ and any
ε ∈ (0,1], k(ε, θ) := inf{k :‖P k(θ, ·)−π(·)‖ ≤ ε} and recall that for any θ ∈Θ,
ρ(θ) := 1− ∫

Θα(θ,ϑ)Q(θ, dϑ) is the probability of not leaving θ for P .

Theorem 6. Assume (A1), (A2) and (A3). Let ǫ, ℓ > 0 and θ0 ∈ Θ.
Then there exists N(ǫ, ℓ, θ0) ∈ N such that for any N ≥N(ǫ, ℓ, θ0) and Z0 ∈
Θ× Z

N such that λN (θ0)< ℓǫ/(24k(ǫ, θ0)) we have for any k ≥ k(ǫ, θ0),

‖P̃ k
N (θ0,Z0; ·)− π̃N (·)‖ ≤ (1 + ℓ)ǫ+ ρk(θ0).

Corollary 7. Under the assumptions of Theorem 6, for any ǫ, ℓ > 0
and θ0 ∈Θ, there exists N(ǫ, ℓ, θ0) ∈ N such that for any N ≥N(ǫ, ℓ, θ0) and
Z0 ∈Θ×Z

N such that λN (θ0)< ℓǫ/(24k(ǫ, θ0)) we have for any k ≥ k(ǫ, θ0)
and any ϕ :Θ → [−1,1],

1
2 |P̃ k

N (θ0,Z0;ϕ)− π(ϕ)| ≤ (1 + ℓ)ǫ+ ρk(θ0).

Proof. Dropping N for notational simplicity, we have that for any k ≥
1, (θ0,Z0) ∈ Θ× Z

N and any ψ :Θ× Z
N → [−1,1],

P̃ kψ(θ0,Z0)− π̃(ψ) = S0(k) + S1(k) + S2(k),(4.21)

with [π̃N
θ (ψ) := π̃N

θ (ψ(θ, ·)) hereafter for notational simplicity]

S0(k) = P̄ kψ(θ0,Z0)−P k(π̃N
θ (ψ))(θ0),

S1(k) = P k(π̃N
θ (ψ))(θ0)− π(π̃N

θ (ψ)),

S2(k) = P̃ kψ(θ0,Z0)− P̄ kψ(θ0,Z0),

where the magnitude of S1(k) can be controlled thanks to the properties
of the transition probability P , S0(k) and S2(k) correspond to the bias
introduced by the approximation to the “ideal” chain. As we shall see, for a
fixed k this bias can be made arbitrarily small for N sufficiently large. Let
ǫ > 0 and (θ0,Z0) ∈ Θ × Z

N such that λN (θ0)< ǫ. By a coupling argument
or induction |S0(k)| ≤ 2 ρ(θ0)

k. Since π̃N
θ (ψ) :Θ → [−1,1], by (A2) we have

k(ǫ, θ0)<+∞ and |S1(k(ǫ, θ0))| ≤ 2ǫ.(4.22)

From now on we set k0 := k(ǫ, θ0) and use the following telescoping sum
decomposition:

S2 := S2(k0) =
k0−1
∑

l=0

P̄ lP̃ k0−lψ(θ0,Z0)− P̄ l+1P̃ k0−(l+1)ψ(θ0,Z0)
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=
k0−1
∑

l=0

P̄ l(P̃ − P̄ )P̃ k0−(l+1)ψ(θ0,Z0).

Let ε ∈ (0,1]. Noticing for any l > 1 we have for any ψ̄ :Θ× Z
N → [−1,1]

P̄ lψ̄(θ0,Z0) = ρ(θ0)
lψ̄(θ0,Z0)

+
l

∑

j=1

P̄ j−1{Q(θj−1, α(θj−1, θj)ρ(θj)
l−jπ̃N

θj
(ψ̄(θj, ·)))}(θ0,Z0)

we apply Lemma 4 k0 times and Proposition 5 (k0 − 1) times (the result
trivially applies to any finite measure) to show that there exists N(ε, θ0)
such that for any N ≥N(ε, θ0) and some C < ℓ/(24k0)

|S2| ≤ 24Ck0ǫ+ (k0 − 1)ε.(4.23)

We conclude by taking ε = 2ǫ(ℓ − 24k0C)/(k0 − 1) in equation (4.23) and
combining with equation (4.22) in equation (4.21). �

5. Uniform and geometric ergodicity of exact algorithms. In this section
we illustrate the critical importance of the choice of a good importance
sampling distribution QN

θ to ensure that P̃N is uniformly ergodic. More
precisely we show that, for a given N ∈ N, if the importance weights γN (θ)
involved in the definition of the pseudo-marginal π̃N (dθ) are unbounded for
“too many” θ’s, then P̃N cannot be geometrically ergodic. As we shall see
“too many” will be quantified in terms of the measure of the set UN :=
{θ :∀M > 0, QN

θ (γN (θ)>M)> 0} under π. In addition, for a fixed N ∈ N,
using the fact that it is most often possible to prove the uniform ergodicity of
the MH update P defined in (2.5) by establishing a minorization condition
for the sub-stochastic kernel K(θ, dϑ) := α(θ,ϑ)Q(θ, dϑ) [that is there exists
n0 ≥ 1, a constant ǫ > 0 and a probability measure ν on (Θ,B(Θ)) such that
for any (θ,A) ∈Θ×B(Θ), Kn0(θ,A)≥ ǫν(A)], we show that this property is
systematically inherited by P̃N whenever γN

∗ := supθ,Z∈Θ×ZN γN (θ)<+∞.

Theorem 8. Assume (A1) and let N ∈ N. Then:

1. if π(UN )> 0, then P̃N cannot be geometrically ergodic;
2. if we assume that there exist n0 ≥ 1, a constant ǫ > 0 and a measure ν on

(Θ,B(Θ)) such that for any θ,A ∈ Θ ×B(Θ), Kn0(θ,A) ≥ ǫν(A) (which
implies that P is uniformly ergodic) then if in addition γN

∗ < +∞ then
P̃N is uniformly ergodic.

Remark 1. Concerning the second point of the theorem, it should be
noted that it is not possible in general to achieve the rate of convergence
of the marginal chain P , even when {γN

∗ } is bounded. Indeed, consider the
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independent MH algorithm, in the discrete case for simplicity and densities
with respect to the counting measure. It is possible to characterize exactly
the second-largest eigenvalue of the transition probability. For P it takes the

form 1− (supθ∈Θ
π(θ)
q(θ) )

−1, while for Beaumont’s form of the pseudo-marginal

algorithm it will take the form 1− (sup(θ,z)∈Θ×Z

π(θ,z)
q(θ,z) )

−1. In the particular

case where π(θ, z) = π(θ)π(z) and q(θ, z) = q(θ)q(z) this latter expression

becomes 1 − (supθ∈Θ
π(θ)
q(θ) )

−1(supz∈Z

π(z)
q(z) )

−1 which in general will be larger

than 1− (supθ∈Θ
π(θ)
q(θ) )

−1. As we shall see this is not the case for the MCWM

algorithm under appropriate assumptions (see Theorem 9).

Proof of Theorem 8. We dropN in P̃N and prove the first statement.
We want to show that under the stated assumptions, for any ǫ > 0

π̃N (I{α(θ,Z)≤ ǫ}) = π{QN
θ (γN (θ)I{α(θ,Z)≤ ǫ})}> 0,

where α(θ,Z) is defined in equation (2.11). From [10], Theorem 5.1, this
indeed implies that P̃ cannot be geometric. For any (θ,Z) ∈ Θ × Z

N with
γN (θ)> 0, by Fubini’s theorem, Jensen’s inequality and since for any ϑ ∈Θ,
QN

ϑ (γN (ϑ)) = 1, we have

αN (θ,Z) =

∫

Θ×ZN

(

1∧ γN (ϑ)

γN (θ)
r(θ,ϑ)

)

Q(θ, dϑ)QN
ϑ (dZ)

≤
∫

Θ

(

1∧ r(θ,ϑ)

γN (θ)

)

Q(θ, dϑ).

For any (θ,ϑ)∈ UN ×Θ, since r(θ,ϑ)<+∞ [see equation (2.6)] and

{Z :γN (θ)>M} 6= ∅

for any M > 0, we have

lim
M→∞

sup
{Z : γN (θ)>M}

1∧ r(θ,ϑ)

γN (θ)
= 0.

Consequently, by the dominated convergence theorem,

lim
M→∞

sup
{Z : γN (θ)>M}

α(θ,Z) = 0,

hence for any ǫ > 0 there exists M <+∞ such that

QN
θ ({Z :γN (θ)>M,α(θ,Z)≤ ǫ})> 0

and hence

QN
θ (γN (θ)I{α(θ,Z)≤ ǫ}) ≥MQN

θ (I{γN (θ)>M, α(θ,Z)≤ ǫ})> 0.
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We deduce that

π{QN
θ (γN (θ)I{α(θ,Z)≤ ǫ})}> 0.

We now turn to the proof of the second claim. We first show by in-
duction that for any k ≥ 1 and A×B ∈ B(Θ) × B(ZN ), P̃ k(θ,Z;A×B) ≥
γ−k
∗

∫

AK
k(θ, dϑ)π̃N

ϑ (B). For k = 1,

P̃ (θ,Z;A×B) ≥
∫

A×B
α̃N (θ,ϑ)Q(θ, dϑ)Qϑ(dZ)

≥
∫

A×B

(

1∧ γN (ϑ)

γN (θ)

)

α(θ,ϑ)Q(θ, dϑ)QN
ϑ (dZ)

(5.1)

≥ γ−1
∗

∫

A×B
QN

ϑ (γN (ϑ))α(θ,ϑ)Q(θ, dϑ)

= γ−1
∗

∫

A
K(θ;dϑ)π̃N

ϑ (B).

Assume the inequality is true for some k ≥ 1. Then from the induction
assumption and equation (5.1),

P̃ k+1(θ,Z;A×B) =

∫

Θ×ZN
P̃ k(θ,Z;dϑ,dZ)P̃ (ϑ,Z;A×B)

≥
∫

Θ
γ−k
∗ Kk(θ, dϑ)π̃N

ϑ (ZN )γ−1
∗

∫

A
K(θ;dϑ)π̃N

ϑ (B)

≥ γ
−(k+1)
∗

∫

A
Kk+1(θ, dϑ)π̃N

ϑ (B).

Hence the result. From this result for k = n0 and the minorization assump-
tion on K we deduce that for any (θ,Z,A×B) ∈Θ×Z

N × (B(Θ)×B(ZN ))

P̃n0(θ,Z;A×B) ≥ γ−n0
∗

∫

A
Kn0(θ, dϑ)π̃N

ϑ (B)

≥ ǫγ−n0
∗ ν(IA{ϑ}π̃N

ϑ (B)),

and hence the second claim. �

6. Epilogue: MCWM. As pointed out earlier, the analysis of generaliza-
tions of MCWM, defined in equation (2.7), is simpler than that of GIMH
generalizations and relies on more classical arguments. This is due mainly
to the fact that in this case Z ∼QN

θ and Z∼QN
ϑ . However the existence of

an invariant distribution for P̃ noisy
N is not obvious in general (it is not a MH

update). This is in contrast with P̃ exact
N , for which the invariant distribution

as well as its marginal distribution are known to be π̃N (dθ, dZ) and π(dθ),
respectively. We give here a result which characterizes the invariant π̌N (dθ)
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when it exists, and the rate of convergence of P̃ noisy
N (denoted P̃N in this

section for simplicity), when P is uniformly ergodic, and a simple uniform
weak law of large numbers holds for λN (θ).

There exist C ∈ (0,+∞) and ρ∈ (0,1) such that for any θ0∈Θ and k ∈ N(A4)

‖P k(θ0, ·)− π(·)‖ ≤Cρk.

We assume that for any ǫ > 0,(A5)

lim
N→∞

sup
θ∈Θ

QN
θ (λN (θ)> ǫ) = 0.

Theorem 9. Assume (A1), (A4), (A5) and that for any N ≥ 1 there
exists a probability distribution π̌N on (Θ,B(Θ)) such that π̌N P̃N = π̌N , with

P̃N = P̃ noisy
N defined in equation (2.7). Then for any ǫ ∈ (0, ρ−1 − 1) there

exists N(ǫ, ρ) ∈ N, ρ̃ ∈ (ρ, ρ(1+ ǫ)] ⊂ (ρ,1) and C̃ ∈ (0,+∞) such that for all
N ≥N(ǫ, ρ), θ0 ∈Θ and k ≥ 1,

‖P̃ k
N (θ0, ·)− π̌N (·)‖ ≤ C̃ρ̃k,(6.1)

‖π− π̌N‖ ≤ C
ǫ

1− ρ
.(6.2)

Proof. In some instances we here drop N for notational simplicity.
First notice that for any θ ∈Θ and n ∈ N,

‖P̃n(θ, ·)−Pn(θ, ·)‖ ≤
n−1
∑

i=0

‖P̃n−i−1(θ, (P − P̃ )(P i − π)(·))‖

≤C sup
θ∈Θ

‖P (θ, ·)− P̃ (θ, ·)‖
n−1
∑

i=0

ρi(6.3)

≤ C

1− ρ
sup
θ∈Θ

‖P (θ, ·)− P̃ (θ, ·)‖.

We bound the last term on the right-hand side. We have

P (θ, dϑ)− P̃ (θ, dϑ) =QN
θ ⊗QN

ϑ (α(θ,ϑ)− α̃(θ,Z;ϑ,Z))Q(θ, dϑ)

+ δθ(dϑ)

∫

Θ
QN

θ ⊗QN
ϑ (α̃(θ,Z;ϑ,Z)−α(θ,ϑ))

×Q(θ, dϑ).

Let ε ∈ (0,1] and notice that since

{Z,Z ∈ Z
N} ⊂ {Z,Z :λN (θ)> ε} ∪ {Z,Z :λN (ϑ)> ε}

∪ {Z,Z : λN (θ)≤ ε,λN (ϑ) ≤ ε},
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we have

|QN
θ ⊗QN

ϑ (α(θ,ϑ)− α̃(θ,Z;ϑ,Z))| ≤QN
θ (λN (θ)> ε) +QN

ϑ (λN (ϑ)> ε)

+QN
θ (1∧ λN (θ)I(λN (θ)≤ ε))

+QN
ϑ (1∧ λN (ϑ)I(λN (ϑ)≤ ε)).

Following the proof of Lemma 4, and from (A5), we conclude that there
exists N(ε) such that for N ≥N(ε) and any θ,ϑ ∈ Θ,

|QN
θ ⊗QN

ϑ (α(θ,ϑ)− α̃(θ,Z;ϑ,Z))| ≤ 4ε.

Consequently for any ε ∈ (0,1] there exists N(ε) ∈ N such that for any N ≥
N(ε) and θ ∈ Θ,

‖P (θ, ·)− P̃ (θ, ·)‖ ≤ 4ε.

As a result and from (A4) for any (θ,ϑ)∈ Θ and n ∈ N,

‖P̃n(θ, ·)− P̃n(ϑ, ·)‖ ≤ ‖P̃n(θ, ·)− Pn(θ, ·)‖+ ‖Pn(ϑ, ·)− P̃n(ϑ, ·)‖
+ ‖Pn(ϑ, ·)−Pn(θ, ·)‖

≤Cρn +
8Cε

1− ρ
.

Define

ρ̃ := ρ n

√

C

(

1 +
8ερ−n

1− ρ

)

≤ ρ
n
√
C

(

1 +
1

n

8ερ−n

1− ρ

)

.

Choose ǫ ∈ (0, ρ−1 − 1) and let n ∈ N be such that n
√
C ≤

√
1 + ǫ and ε

(depending on n and ρ) be such that

1 +
1

n

8ερ−n

(1− ρ)
≤
√

1 + ǫ.

This implies that ρ̃ ≤ ρ(1 + ǫ) < 1 for N ≥ N(ε), and hence that equation
(6.1) follows. To prove equation (6.2) we notice that from equation (6.3), for
any n≥ 1 and N ≥N(ǫ/4)

‖πPn − πP̃n‖ ≤
n−1
∑

i=0

‖π(P̃n−i−1(P − P̃ )(P i − π)(·))‖ ≤Cǫ
n−1
∑

i=0

ρi ≤ Cǫ

1− ρ
,

and since ‖π − π̌N‖ = limn→∞ ‖πPn − π̃N P̃n‖. We conclude the proof by
taking N(ǫ, ρ) =N(ε) ∨N(ǫ/4). �
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7. Examples: Reversible jumps. In this section we illustrate the poten-
tial of the pseudo-likelihood approach to Monte Carlo computations devel-
oped in this paper in the context of reversible jump MCMC [3] algorithms
(RJMCMC hereafter), which are well known for their difficult implementa-
tion. We start with a toy example, for which the true marginals are known
exactly, hence providing a simple ground truth, and illustrate the interest
of the approach in a scenario, which in our opinion reflects the difficulties
encountered in practice when implementing RJMCMC in more realistic and
difficult scenarios. We then move on to a more substantial example related
to variable selection for generalized linear models. We first show how an ap-
parently reasonable RJMCMC applied to a seemingly simple nested models
selection problem can easily fail to produce reliable results and demonstrate
how our methodology can easily circumvent this problem and render the
algorithm much more reliable.

7.1. Toy example. We consider here a toy transdimensional target dis-
tribution defined on {1} ×R∪ {2} ×R

2,

π(θ, z) = I(θ = 1)1
4N (z; 0,1)

+ I(θ = 2)3
4N

(

z =

[

x
y

]

;

[

0
0

]

,Σ =

[

1 −0.9
−0.9 1

])

.

In a Bayesian setup this would correspond to an inference problem for which
two models M1 and M2 are considered to explain the data, the models being
indexed by θ. Obviously here π(θ = 1) = 1/4 and π(θ = 2) = 3/4. However
in order to illustrate our methodology we develop here a reversible jump
algorithm [3] to sample from this distribution, and compare our results with
the exact distribution. A simple marginal ideal chain can be defined through
the transition

P (θ,ϑ) = 1∧ π(ϑ)

π(θ)
I(ϑ 6= θ) + I(ϑ= θ)

[

1− 1∧ π(ϑ′)

π(θ)
I(ϑ′ 6= θ)

]

,(7.1)

that is in other words when in model M1 (resp. M2) we propose a jump to
model M2 (resp. M1) with probability 1. This chain is obviously uniformly
ergodic, which is often the case for finite discrete chains in practice. Now
assume that we are given the algebraic expression for π(θ, z) up to a factor
of 1/4 and that, possibly with age, we fail to recognize 3 times a bivari-
ate normal distribution for model M2. For simplicity, we will assume that
we successfully recognize a univariate normal distribution for model M1. A
standard approach in such situations consists of resorting to a RJMCMC
algorithm that uses the (available to a constant) density π(θ, z) for model
M2 and requires one to propose a bidimensional vector z ∼Q(·) when at-
tempting a move from model M1 to M2. Naturally the effectiveness of the
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algorithm will, as we shall see, highly depend on this proposal distribution
whose choice might be far from obvious in more complex scenarios. In order
to improve this basic RJMCMC algorithm, we investigate here a very sim-
ple strategy which relies on the pseudo-likelihood framework described ear-
lier more sophisticated and efficient approaches are possible and currently
being explored in other work. For any η > 0, let Nη(z;µ,Σd) denote the
truncated normal distribution such that Nη(z;µ,Σd) ∝ N (z;µ,Σd) when-
ever (z − µ)TΣ−1(z − µ) ≤ η2 and Nη(z;µ,Σd) = 0 otherwise. For θ = 2 we

define QN
θ (Z) = Q(z(1))

∏N
i=2Nη(z(i); z(i− 1) + σ2

2 ∇z logπθ(z(i− 1)), σ2I2)
for some σ2 ≪ 1, that is we use a form of discretization of the Langevin diffu-
sion with drift 1

2∇z logπθ(z), and run a Markov chain with transition density

Π(z, z) = Nη(z; z + σ2

2 ∇z logπθ(z), σ
2) whose equilibrium distribution is an

approximation of πθ(z). The algorithm proceeds as the marginal algorithm
described earlier in equation (7.1), except that for θ = 2, π(θ) is replaced
with the estimator

π̃N (θ) =
1

N

[

π(θ, z(1))

Q(z(1))
(7.2)

+
N

∑

i=2

π(θ, z(i))

Nη(z(i); z(i− 1) + σ2/2∇z logπθ(z(i− 1)), σ2)

]

,

where z(1), z(2), . . . , z(N) are sampled according to QN
θ above. Note that the

case N = 1 corresponds to the “standard” RJMCMC algorithm described
above. For the purpose of illustration we took Q(z) = N (z; [3,3]T, I2), which
while being an obviously bad choice ensures irreducibility, and hence (in
theory) convergence for the standard RJMCMC algorithm. We ran our al-
gorithm for N = 1,5 and 10 for 450,000, 90,000 and 45,000 iterations, re-
spectively, resulting in comparable computational efforts. The respective
empirical expected acceptance probabilities were 0.0121, 0.5206 and 0.5056
(note that the theoretical expected acceptance probability in the stationary
regime for the marginal algorithm is 1/4 + 3/4× 1/3 = 1/2). In Figure 1 we
present the “instantaneous” model probability estimators 1/k

∑k
i=1 I(θi = 1)

and 1/k
∑k

i=1 I(θi = 2) as a function of the iterations k. Note the deceptive
behavior observed for N = 1 which suggests that convergence has occurred.

7.2. Application to variable selection in GLMs. In this section we present
an application of the pseudo-marginal principle to model selection in gen-
eralized linear models, and focus here more particularly on the logit link.
More precisely we assume that we observe M ≥ 1 realizations (yi, xi) for
i ∈ {1, . . . ,M} of a random variable pair (Y,X) taking values in {0,1} ×R

k

for some k ≥ 1 and that the dependence between Y and X is characterized
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Fig. 1. Instantaneous estimation of the model probabilities as a function of the iterations
for N = 1,5,10 from top to bottom.

by the conditional distribution P(Y = 1|X,z), assumed to satisfy

log

(

P(Y = 1|X,z)
1− P(Y = 1|X,z)

)

=Xz,

for a column vector z ∈ R
k. Not all components X(l), l= 1, . . . , k, of X (the

“covariates”) might be relevant to sparsely explain the data and as a result
we might seek to compare models for which some of the components of z are
set to zero this is what we refer to as the model selection problem. In order to
carry out inference in a Bayesian setup it is convenient to introduce indicator
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variables θ(l) ∈ {0,1} for l = 1, . . . , k such that covariate X(l) is excluded
whenever θ(l) = 0. This allows us to index the 2k − 1 models (we exclude
the model with no dependence) with the vector θ := (θ(1), θ(2), . . . , θ(k)).
Let C be the M × k matrix whose ith row is xi, we then denote Cθ the
submatrix of C that contains the columns C for which θ(l) = 1 and likewise
for zθ the subvector of z. It will be convenient to denote θ̄ =

∑k
l=1 θ(l) the

number of active covariates in model θ. We ascribe prior distributions to
k and zθ : Pr(θ̄ = k) ∝ λk/k! for some fixed λ > 0 and following [6] we
set zθ ∼N (0, [CT

θCθ/4M ]−1) a priori. Denoting pi(zθ) := P(yi = 1|xi, zθ) the
joint posterior distribution is

π(θ, zθ)∝
N
∏

i=1

pi(zθ)
θ(i)(1− pi(zθ))

1−θ(i)N (zθ; 0, [C
T

θCθ/4M ]−1)λθ̄/θ̄!.

Variable selection in a Bayesian context typically relies on the marginal
posterior model probabilities π(θ), which are in the present situation in-
tractable. One can for example resort to MCMC and this is the route fol-
lowed up here.

The basis of our algorithm is a reversible jump MCMC algorithm for the
marginal model which consists of a birth/death update. We first describe
a marginal algorithm with transition P (θ, dϑ) which of course cannot be
implemented. The pseudo-marginal algorithm will be a simple variation of
this algorithm. Given a model θ, P (θ, dϑ) can be described algorithmically
as follows. With probability 1/2, either:

• set θ+ = θ and if θ̄ < k,

1. choose uniformly among the k− θ̄ nonactive components’ indexes, say
j, and set θ+(j) = 1,

2. set ϑ= θ+ with probability

1∧ π(θ+)

π(θ)

1/(θ̄ + 1)

1/(k − θ̄)
,(7.3)

otherwise ϑ= θ,

or

• set θ− = θ and if θ̄ > 0,

1. choose uniformly among the θ̄ active components’ indexes, say j, and
set θ−(j) = 0,

2. set ϑ= θ− with probability

1 ∧ π(θ−)

π(θ)

1/(k − θ̄+ 1)

1/θ̄
,(7.4)

otherwise ϑ= θ.
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This algorithm cannot be implemented, but it is nevertheless possible to
implement a reversible jump algorithm on the joint distribution π(θ, zθ). A
solution suggested in [2, 6], which we will refer to as the standard RJ algo-
rithm here, can be understood as being a simple variation on the algorithm
above, where in the birth move the additional sampling of a new coefficient
from a distribution Q is required, resulting in the acceptance ratio

1∧ π(θ+, z+
θ+)

π(θ, zθ)

1

Q(z+(j))

1/(θ̄ + 1)

1/(k − θ̄)
.

In [6] it is suggested to use as a proposal distribution for z+(j) the marginal
of the normal distribution with mean the maximum likelihood estimator
zML
1111 of the saturated model and covariance the corresponding Hessian. Our

pseudo-likelihood algorithm is very similar to the algorithm developed for
the toy example in the previous section, that is it relies on a discretized
Langevin diffusion, and consists formally of simply replacing π(θ+) and
π(θ−) in the pseudo-code above with an estimator of the form equation
(7.2) for θ ∈ {θ+, θ−}. The following setup was considered. We generated
artificial data from the logit model as follows. We chose M = 50, k = 4, a set
of coefficients z∗ = [1 0.5 −2 0.01]T and generated covariates as follows: with
Zi ∼ N (0, IM ) we set Ci = Zi for i = 1,3,4 and C2 = 0.9 × Z1 + 0.1 × Z2.
This resulted into two correlated covariates, number 1 and 2. The maximum
likelihood estimate for z∗ was found to be zML

1111 = [5.22445 − 3.71672 −
2.4011 −0.587472]T , suggesting (a) the presence of a main mode for the sat-
urated model around this value, significantly different from the truth and
(b) a mismatch between the modes and marginal modes of π(1111, z1111)
with those of π(1011, z1011) (zML

1011 = [1.73253 −2.30933 −0.648927]T) and
π(0111, z0111) (zML

0111 = [1.5968 −1.98855 −0.0922961]T) which might result in
poor mixing of the standard “birth–death” RJMCMC algorithm described
above, a behavior likely to be reinforced here by the choice of the proposal
distribution. This is confirmed by our simulation. In Figure 2 we present the
estimated model probabilities (indexed by the decimal representation of θ)
for N = 1,5,50,100,200. Note that for the case N = 1 the birth/death move
was complemented by 10 iterations of a within model one variable at a time
random walk MH for each sweep. We observe the large discrepancy between
the results for N = 1,5 and the results for N = 50,100,200 the latter being
in agreement. Note that this is despite the apparent convergence of estima-
tors of the posterior inclusion probabilities P(θ(j) = 1) for j = 1, . . . , k for
the case N = 1 (Figure 3) and that the results obtained after 20,000, 10,000
and 5,000 for N = 50,100 and 200 are much more reliable than for N = 1
after 1,000,000 iterations. The respective expected acceptance probabilities
are given in the table below. Note that using the estimated model probabili-
ties obtained for N = 200 one finds an acceptance rate of 0.29592. Finally, in
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Fig. 2. Model probabilities for N = 1,5,50,100,200 (from top to bottom).
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Fig. 3. Instantaneous estimation of the model probabilities as a function of the iterations
for N = 1,5,50,100,200.
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Fig. 4. Snapshots of the transitions for zθ between models for N = 100, together with
their associated importance weights (the horizontal lines correspond to the true values of
z∗).
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Figure 4 we present the trace of the z’s drawn with our discretized Langevin
while attempting to jump between models, which together with the evolu-
tion of the values of the importance weights illustrates why our approach
might be of interest.

N/nb iter.×1000 1/1000 5/400 50/40 100/50 200/50
accept prob. 0.064293 0.16569 0.25885 0.28433 0.29371

8. Conclusion. The pseudo-marginal approach to stochastic simulation
is a highly versatile methodology which has diverse potential applications
in a variety of areas. The focus of this paper has been on some of the the-
oretical underpinnings of the method. Our main results describe ergodicity
and uniform ergodicity of GIHM and its exact generalizations suggested in
this paper, and we also give a comparison with an inexact variants, akin to
MCWM. Empirical evidence in [1] and in the present paper in the context
of reversible jumps for model selection in generalized linear models suggests
that the methodology has considerable promise. Currently ongoing work
confirms this.
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