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Abstract

A collision of orbifold planes in eleven dimensions has been proposed as an expla-
nation of the hot big bang [1, 2, 10]. When the two planes are close to each other, the
winding membranes become the lightest modes of the theory, and can be effectively
described in terms of fundamental strings in a ten dimensional background. Near
the brane collision, the eleven-dimensional metric is an Euclidean space times a 1+1-
dimensional Milne universe. However, one may expect small perturbations to lead into
a more general Kasner background. In this paper we extend the previous classical
analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian
equations, solve for the wave function of loops with circular symmetry. The evolution
across the singularity is regular, and explained in terms of the excitement of higher
oscillation modes. We also show there is finite particle production and unitarity is
preserved.
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1 Introduction

The initial singularity problem remains an open question in Cosmology and any model of
the early Universe requires a resolution of this paradigm. We know general relativity breaks
down close to it but there is hope that a theory of quantum gravity can resolve the singu-
larity. Recently, interest has turned to the particular case of bouncing models, where the
question of how information propagates across the big crunch/big bang transition has not
been completely solved. For example, in the ekpyrotic/cyclic model this transition is as-
sumed smooth with controlled particle production [1, 2]. In order to prove or disprove such
a statement, most people have used effective field theories, constructed from string theory
or other extensions of general relativity. There is plenty of literature on this approach to
tackle the singularity problem (see for example [3]), however, most of these effective theories
break down near the singularity, and perhaps one should be considering a more fundamen-
tal description beyond general relativity, such as string/M-theory. One such approach is to
directly investigate the string equations of motion in a singular background [4], with special
attention being given to the Milne universe [5, 6]. Some authors have used this to argue that
this particular singularity can not be resolved [6], however, the results are not conclusive and
in fact evidence from a dual description such as investigated in [7] seems to contradict the
result. Furthermore, there is evidence that in a big crunch/big bang transition in asymp-
totically Anti de Sitter spacetime, the Conformal Field Theory (CFT) description leads to
a well-defined evolution of fields across the singularity [8, 9]. In [10], the authors proposed a
novel approach to explain the Milne singularity using eleven dimensional membranes, which
is a natural setup for the cyclic universe, as also discussed recently in [11]. In this paper,
we generalize this M-theory setup to more general backgrounds, corresponding to the ho-
mogeneous and anisotropic Kasner metrics. Such a background could well result once we
include the effects of small perturbations in the background isotropic metric. Moreover, we
also make progress in the quantum evolution of such membranes across the singularity.

In the M-theory model of [10], the singularity is described by two orbifold planes that
collide as the eleventh dimension, which separates them, disappears. The study focuses on
the evolution of membranes stretching from one orbifold plane to the other, but in particular,
considers winding membranes, which correspond to the lowest Kaluza Klein modes in ten
dimensions. As argued in [10], the winding membranes represent the lightest modes and de-
couple from the bulk (heavy Kaluza Klein) modes when the eleventh dimension is sufficiently
small. From the ten dimensional point of view, these winding membranes are described by
perturbative string theory, hence they include perturbative gravity. The classical evolution
has been studied in the case of the Milne universe [13], and some progress has been made
to understand the quantum theory of such modes, either by taking semiclassical approxima-
tions, such as the instanton calculations of [10] or by prescriptions to linearize the classical
equations of motion, as in [13]. Furthermore, as shown in [14] the classical evolution does
not acquire finite-width α′-corrections either far away from the singularity or very close to it.
Therefore, on either side of the singularity there are two semiclassical regimes connected by
a phase where quantum corrections are important. In the present analysis the story repeats,
but in this case we quantize the action for certain membranes – corresponding to circular
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strings from the ten dimensional theory – and show how particle production remains finite
even though higher oscillation modes are excited.

In the ekpyrotic/cyclic universe, the spacetime is well described by the Milne universe
near the orbifold collision [1, 2]. However, it is well known that as the singularity is ap-
proached, any small perturbation to the Milne universe can lead to a Kasner solution (see
for example [12]). Therefore, we believe it is important to show how these winding mem-
brane modes evolve across Kasner metrics. The metric, gµν , for an eleven dimensional Kasner
space-time is given by

ds211 = −dt2 +
10
∑

i=1

|θ0t|2pi(dxi)2, (1)

where θ0 is a dimensionful positive constant, which for the eleventh direction represents the
rapidity at which the two orbifold planes collide. The usual Kasner conditions hold in eleven
dimensions:

10
∑

i=1

p2i = 1 =
10
∑

i=1

pi. (2)

We have chosen the singularity to be at t = 0 and we have glued the manifolds before and
after the singularity using the absolute-value function. In general, t = 0 is a curvature
singularity, and only for the particular case of pi = 1 for a given coordinate, does the
solution become a direct product of a 9d flat space-time and the Milne universe, with t = 0
a coordinate singularity, which simply represents the fact that we have made a bad choice of
coordinates in flat space. However, if the spatial coordinate of the Milne metric is compact,
then the singularity is a conical singularity. This is the case of the cyclic universe where
the big crunch/big bang transition is modeled by an orbifold collision, where the eleventh
dimension is compact with a Z2 symmetry. The orbifold structure is not essential for the
present discussion, because our results only rely on a very small compact eleventh dimension,
so we will forget about this discrete symmetry. In other words, because we are concentrating
only on the Bosonic sector of the theory, where all the string models have the same field
content, our results apply to either Heterotic or IIA limit of M-theory.

When the eleventh dimension, x10, is small enough we can use a ten dimensional descrip-
tion based on the Kaluza-Klein reduction

ds211 = e−2φ/3ds210 + e4φ/3d(x10)2, (3)

where the dilaton is given by φ = 3
2
pφ ln |θ0t| (with p10 ≡ pφ), and the ten dimensional metric

reduces to

ds210 = a(t)2ds2conf = a(t)2

(

−dt2 +

9
∑

i=1

|θ0t|2pi(dxi)2

)

, a(t) = |θ0t|pφ/2, (4)

where we have assumed pφ > 0, implying the eleventh dimensions disappears as t → 0. As
x10 → 0 we can think of these winding membranes as fundamental strings on the orbifold
planes feeling the metric (4). Alternatively, the winding membranes can be thought of as
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strings with a time-dependent tension living on the metric ds2conf , as will become evident

later. Since the string coupling is eφ, for really small times — close to the singularity — the
strings hardly interact and one can take the free string action as a good description. There-
fore, we will focus our attention on the propagation of free strings on the ten dimensional
dilaton-Kasner background (4).

The paper is organized as follows: in Section 2, we write down the different actions for
membrane excitations in eleven dimensions, and in the following section we solve the classical
equations of motion governing only winding membranes with cylindrical symmetry. Section
3 is devoted to the quantum description of circular loops using a Hamiltonian approach,
before we finally conclude in Section 4.

2 Winding membranes

Our starting point is a Polyakov type of action for a bosonic membrane of tension µ2 in
eleven dimensions

Spol = −µ2

2

∫

d3σLpol (5)

= −µ2

2

∫

d3σ
√−γ

(

γαβ∂αx
µ∂βx

νgµν − 1
)

, (6)

where xµ are fields representing the position of the membrane in a target space with metric
gµν . The worldvolume spanned by the coordinates σα has a metric γαβ, and the variation
of this action with respect to γαβ yields the constraint γαβ = ∂αx

µ∂βx
νgµν , which can be

substituted back into the action to obtain the Nambu-Goto action,

SNG = −µ2

∫

d3σ
√

−Det(∂αxµ∂βxνgµν). (7)

The first action is more convenient to analyze the quantum behavior whereas the second is
more useful to describe the classical evolution, as we will show below. As explained in [10],
the Hamiltonian can be constructed from the action (6), leading to the constraints

H ≡ πµπνg
µν + µ2

2Det(∂α̂x
µ∂β̂x

νgµν) = 0, Pα̂ ≡ πµ∂α̂x
µ = 0, (8)

where πµ ≡ ∂Lpol

∂ẋµ are the canonical conjugate momenta to xµ, ẋµ ≡ ∂xµ

∂σ0 and the hatted
indices run over the spatial dimensions of the membrane’s worldvolume. Therefore, the
most general Hamiltonian is

H =

∫

d2σ

(

A

2
H + Aα̂Pα̂

)

, (9)

where the two functions A and Aα̂ represent the gauge freedom of the membrane’s metric
diffeomorphisms. We consider a partial gauge where the momentum is always orthogonal to
the membrane, which is equivalent to choosing Aα̂ = 0, and will use the remaining gauge

4



freedom to simplify the equations of motion and obtain either classical or quantum solutions.
A winding membrane is obtained by demanding its coordinates xµ are independent of one of
the spatial membrane worldvolume coordinates (say σ2), except for the eleventh dimension
which should be proportional to σ2. We choose x10 = σ2 (where σ2 runs from 0 to 1), so
that after integrating with respect to σ2 in (7) we get an overall factor of |θ0t|pφ in front of
the effective string action.

3 Classical evolution

To describe the classical evolution of a winding membrane in a Kasner background we use
the t = τ gauge in the Nambu-Goto type of action (7). Then the action reduces to

S = −µ2

∫

dσdτ |θ0t|pφ
√

√

√

√

(

1−
9
∑

i=1

|θ0t|2pi(ẋi)2

)

9
∑

i=1

|θ0t|2pi(∂σxi)2, (10)

where τ ≡ σ0 and σ ≡ σ1. For simplicity we will assume θ0 = 1 during the calculations and
then restore a general θ0 at the end. The equations of motion, in units of µ2 = 1, read

ẋi =
πi|t|−2pi

ǫ
, π̇i = |t|2(pφ+pi)∂σ

(

∂σx
i

ǫ

)

,

ǫ̇i = (pφ + 2pi)|t|2(pφ+2pi)
(∂σx

i)2

t ǫi
, ǫ2i = π2

i + |t|2(pφ+2pi)(∂σx
i)2, (11)

where the string energy density π0 ≡ ǫ is given by

ǫ2 =

9
∑

i=1

|t|−2piǫ2i . (12)

Using the last expression we can rewrite the differential equation for ǫi in the following way

∂t

(

ǫ2i
|t|2(pφ+2pi)

)

= −2(pφ + 2pi)

t|t|2(pφ+2pi)
π2
i , (13)

which will be useful later. From (11), divergent solutions arise when at least one of the
Kasner exponents in the 10d space-time is negative enough to lead to a divergent term in
the energy density ǫ at t = 0, as previously shown by Tolley [15]. On the other hand, regular
solutions across t = 0 are obtained if all pi ≥ −pφ/2. To avoid divergences we will assume

pi ≥ −pφ/2 for all i. (14)

The divergent cases correspond to situations where, before the singularity, one spatial di-
mension expands faster than the contraction of the 10d conformal factor a(t), as appreciated
in (4). We are more interested in situations which are small perturbations away from the
Milne universe, but still close to it.
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To construct a perturbative solution around the singularity, one can expand the equations
of motion (11) in terms of the string tension, as was done in [13]. Formally, one introduces
a parameter λ in place of the tension (i.e. µ → µλ) and solves iteratively the equations of
motion as a series in λ. At the end, one sets λ = 1. As shown in [13], the only equation where

λ appears is π̇i = λ|t|2(pφ+pi)∂σ

(

∂σxi

ǫ

)

, whose solution to zeroth order in λ is πi = πi(0), where

πi(0) = πi(0, σ) is the loop momentum at t = 0. Assuming (14) holds, one can integrate
equation (13) and insert the solution of ǫ and πi in the ẋi-equation, to obtain the zeroth
order solution

xi(t) ≃ xi(0) +

∫ t

t0

dt
πi(0)|t|−2pi

√

∑

j |t|−2pj
[

π2
j (0) + (∂σxj(0))2 |t|2pφ+4pj

]

+O(λ), (15)

where xi(0) = xi(0, σ) is the string shape at the singularity. The last integral is finite, hence
the solution is regular at t = 0. In general, this integral has to be done numerically, but there
are specific string geometries or configurations where the solution can be found analytically;
this is the case of a circular string.

3.1 Circular loops

For the rest of the paper we will focus on the circular loop, which as explained in [13] is the
classical analogue of the dilaton field. The simplification rests on the fact that the only dy-
namical coordinate is the radius of the circle. Furthermore, to preserve the circular symmetry,
the two Kasner exponents of the plane where the loop oscillates should be equal. Without
loss of generality, we assume the circular loop oscillates in the xy plane and has a center of
mass velocity v in the z direction, with the ansatz xi = (R(t) cos(σ), R(t) sin(σ), vτ, 0, ..., 0),
and the Kasner exponents in these directions are p ≡ p1 = p2 and p3 = pz. Under these
assumptions the equations of motion (11) simplify to

v =
πz|t|−2pz+p

ǫ̃
, π̇z = 0,

Ṙ =
πR|t|−p

ǫ̃
, π̇R = −|t|2pφ+3pR

ǫ̃
,

˙̃ǫ = (pφ + 2p)|t|2(pφ+2p)R
2

t ǫ̃
, ǫ̃2 = π2

R + |t|2(p−pz)π2
z + |t|2(pφ+2p)R2, (16)

where π2
R = π2

1 + π2
2 and ǫ̃ = tpǫ. Again, we can rewrite the differential equation for ǫi using

the last constraint, namely

∂t

(

ǫ̃2

|t|2(pφ+2p)

)

= −2(pφ + 2p)

t|t|2(pφ+2p)
(π2

R + |t|2(p−pz)π2
z). (17)

Moreover, in the case of a circular loop it is not hard to find another constraint by combining
the different equations in (16), given by

(v2 + Ṙ2)|t|2p + π̇2
R|t|−2(pφ+p) = 1. (18)

6



Notice that the speed (squared) of any point in the loop is V 2 = V 2
z + V 2

R = (v2 + Ṙ2)|t|2p,
which is unaffected by the contraction or expansion of the plane of oscillation. After a careful
analysis of the second term in the last constraint, one can be convinced that every point
in the string reaches the speed of light (V 2 → 1) as t → 0, if the inequalities (14) hold.
As a result of this, the solutions are not time invariant and the outgoing mode is different
from the incoming one. Quantum mechanically this time asymmetry is the origin of particle
production and excitation of higher order oscillation modes, as we will show later. This effect
is enhanced when the center of mass momentum πz vanishes. Furthermore, in the case when
the bound (14) is saturated for the p Kasner exponent, the speed of the loop will be finite
and generically smaller than the speed of light; hence there will not be a time asymmetry in
the solution and no particle production or higher oscillation modes will be expected across
the singularity. This should be expected, since the effective metric on the xy plane (see
equation (4)) neither contracts or expands when the bound (14) is saturated for p.

Although the set of equations (16) can not be solved analytically everywhere they can be
solved approximately in different regions and these results can then be compared to the full
numerical solutions. The solutions evolve similarly to those in [13], so we refer the reader
to this previous work for details. However, we would like to stress a few general points,
especially when more general Kasner exponents are considered and not only the Milne case,
as it was done in [13].

Far away from the singularity, the string does not feel the contraction or expansion of the
universe, and therefore, it oscillates as if it lived in the ds2conf metric of equation (4), which
reduces to flat spacetime for the Milne universe. Following the notation of [13], at a time
t0 the winding membrane in eleven dimensions can be effectively described by perturbative
string theory in ten dimensions. Furthermore, the string coupling eφ = |θ0t|3pφ/2 tends to zero
as the singularity is approached, hence the free string action becomes more accurate closer
the orbifold collision. By definition, t0 corresponds to the time where the string coupling
hits unity, namely

t0 = θ−1
0 . (19)

The string tension is therefore µ1 = |θ0t0|pφ/2 = 1 and its length is ls ∼ µ−1
1 = 1. In terms

of a quantum analysis we would expect this regime to be well described by a semiclassical
solution, which can be obtained using the WKB approximation. However, classically we
start with a string configuration in the metric ds2conf at time t = −t0 and evolve it towards
the singularity. The solution crosses the singularity and after it has reached a large enough
positive time (comparable with t = +t0), we can trust the description of strings living on
the metric ds2conf again. We aim to compare both states, the ingoing and the outgoing states
at t = ±t0 respectively, to determine whether there was particle production or excitation
of higher vibrational states. Quantum mechanically, it corresponds to calculating a mini
S-matrix, defined by the evolution of the quantum ingoing states at t = −t0 to the outgoing
ones at t = +t0.

Starting from a large negative time in this adiabatic vacuum (t = −t0), the string evolves
into the singularity increasing its size, according to the contraction of the conformal factor
of the universe. By a simple rescaling of the coordinates it is possible to show that the
loop scales as a power of 1/a(t) ∼ t−pφ/2. Once the size of the loop is comparable to the
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averaged conformal Hubble radius (∼ 1/|t|), the “stringy” quantum corrections become
really important and the evolution can no longer be described by a semiclassical analysis.
Remember the string coupling goes to zero as t → 0, hence only the α′-corrections become
important as the solution approaches the singularity. As shown in [14], these α′-corrections
modify the semiclassical evolution, but in a finite way. Finally, close to the singularity,
there is another semiclassical phase in which the modes freeze, stop oscillating and cross the
singularity. In detail, the string “breaks” into string bits which evolve independently of each
other. In other words, the spatial gradients that tie the string together become negligible and
the evolution only depends on time. This phenomenon is a consequence of the ultra-local
behavior that one expects near a cosmological singularity (see for example [12]). At t = 0,
however, the string receives an energy kick, because it has to travel at the speed of light,
which either increases or decreases the amplitude of the outgoing mode, leading to classical
gain or loss of energy. Quantum mechanically this translates into particle production, as we
will discuss in the next Section.

Different Kasner exponents can dramatically change the outcome because they play an
important role close to the singularity. In order to simplify the discussion, we will only
consider the πz = 0 case, but the analysis can be easily generalized for a non-zero center
of mass momentum. Therefore, from the equations of motion (16) one may consider the
exponents p and pφ as two free parameters of the model, however, the 11d constraints (2)
relate these parameters, together with the exponents of the orthogonal directions. To simplify
the argument, one may think of the orthogonal exponents as being split into two sets, the
first being all the same (m of them) and the other set being zero (6−m of them), i.e. pi = p̄
(i = 3, ..., m+ 3) and pj = 0 (j = m+ 4, ..., 9). Then, after solving for pφ in terms of p and
m using the constraints (2), one obtains

pφ = [(1− 2p)±
√

m(m+ 4p− 2(m+ 3)p2)]/(m+ 1). (20)

To get real exponents, p should lie between (1 −
√

1 +m(m+ 3)/2)/(m + 3) ≤ p ≤ (1 +
√

1 +m(m+ 3)/2)/(m + 3). There is therefore a wider range of allowed values for p as m
increases, but also divergent solutions are more likely to arise since pφ may be smaller than
−2p, and especially for the negative branch of the pφ solution above (see Figure 1).

To have a feeling of how sensitive the solutions are to the Kasner exponents let us vary
p around the Milne solution (p = 0 and pφ = 1). Figure (2) shows a slight variation around
the Milne universe, and even though the general behavior remains similar, the amplitude
and periodicity of the outgoing modes strongly depends on the precise value of the Kasner
exponents. Figure (3) shows a more dramatic change near the singularity when the Kasner
exponents are taken to be far away from the Milne universe. If p ∼ −pφ/2, the energy density
has a very mild dependence on |t|, so the modes do not feel the contraction or expansion
of the universe. Therefore, there is no classical energy production, and as we will see later,
there is also a mild particle production in the quantum theory, which consistently tends to
zero for p = −pφ/2. The opposite case, when p is positive and relatively large, the string
feels effectively a larger contraction/expansion of the scale factor, which produces a big effect
around t = 0, and thus a greater quantum production of particles.
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Figure 1: Kasner exponent pφ as a function of the Kasner exponents in the xy plane (p) and
the m equal-valued Kasner exponents in the orthogonal directions. The blue solid straight
line is for m = 0, the solid line ellipsis is for m = 1 and the blue dotted one for m = 6.
Divergent solutions which cannot be followed across the singularity correspond to values of
pφ below the red dashed line which only exist for m > 1.

As mentioned before, we can describe the evolution of these strings as an expansion in
the string tension around t = 0. Formally, we introduce a parameter λ where the string
tension is and then truncate the expressions to the desired order in λ. Finally we set λ = 1.
This was done above explicitly for a general string configuration to zeroth order in the string
coupling, and in the case of circular loop (with πz = 0) the integral (15) can be solved
analytically to give:

R = R0 + t
Sign(π0

R)

(1− p)|t|p 2F1

[

1− p

2(pφ + 2p)
,
1

2
; 1 +

1− p

2(pφ + 2p)
;
R2

0

π0
R

|t|2(pφ+2p)

]

+O(λ), (21)

where R0 and π0
R are the values of R and πR at t = 0, and 2F1 is the Gauss hypergeometric

function, defined as the series

2F1[a, b; c; z] =

∞
∑

n=0

(a)n(b)n
(c)nn!

zn, (22)

with (w)n ≡ w(w+1)...(w+n−1) for any complex number w. The hypergeometric function
is well behaved for all values of the Kasner exponents that satisfy the bound (14). Solution
(21) reduces to that found in [13] for pφ = 1 (and p = 0).

4 Quantum description

We now turn our attention to the more complicated problem of quantization. If one tries
to näıvely quantize the classical equations (11), all sorts of problems arise, because of the
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Figure 2: The radial coordinate R and the energy density ǫ̃ evolving in time t for different
Kasner exponents around the Milne solution (pφ = 1 and p = 0). The evolution is regular
across t = 0, when the energy density takes its lowest value. The solutions are not time
reversal and strongly depend on the Kasner exponents. We have assumed πz = 0, and the
initial conditions are R(−t0) = 1 and Ṙ(−t0) = 0, with t0 = 20.

square root present in the action. However, one can take a different approach, by considering
the Polyakov type action and using the Wheeler-de Witt formalism, namely

ĤΨ = 0, (23)
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Figure 3: The radial coordinate R evolving in time t for different Kasner exponents far away
from the Milne solution (pφ = 1 and p = 0). For positive p the kick around the singularity
is stronger and the outgoing solution is drastically modified. On the other hand, negative
values for p, close to saturating the bound (14), lead to relatively little modification of the
outgoing solution, resulting in less particle production, as will be explained in the quantum
model. We have assumed πz = 0, and the initial conditions are R(−t0) = 1 and Ṙ(−t0) = 0,
with t0 = 20.

where Ψ is the wave function of the string. However, it is hard to proceed from here,
because the Hamiltonian includes a term proportional to ∂σx

0 ≡ ∂σt, so it is difficult to
synchronize the different points on the string and to talk about a common time for the
string. Fortunately, if we restrict ourselves to circular strings where the only degree of free-
dom is the radius of the loop, R, then the Hamiltonian simplifies enough for the problem
to be tackled. In order to preserve the circular symmetry in time, we also need the Kas-
ner exponents of the plane where the loop oscillates to be equal, as we assumed in the
previous section. Moreover, a circular loop can have an initial center of mass momentum
perpendicular to the plane of oscillation. We take the circular winding membrane ansatz
xµ = (t(τ, σ1), R(τ) cos(σ1), R(τ) sin(σ1), vτ, 0, ..., 0, σ2), where without loss of generality we
allow the string to oscillate in the xy plane, with p1 = p2 = p, and a constant center of
mass velocity v in the z direction with Kasner exponent p3 = pz. Notice that the circular
symmetry forces ∂σt = 0, which implies t is a function of τ only. Then the Hamiltonian (9),
reduces to

H =

∫

d2σ
A

2

[

−(π0)
2 + |θ0t|−2pπ2

R + |θ0t|−2pzπ2
z + |θ0t|2(pφ+p)R2

]

, (24)
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where, as mentioned before, we have chosen the partial gauge Aα̂ = 0. To simplify this
expression we can perform a canonical transformation to a new time coordinate given by
t̃ ∼ t1+p, up to a constant factor. Finally, because the Hamiltonian density does not depend
on the spatial worldvolume variables, we can choose the extra gauge freedom to fix A =
2t2p/(

∫

d2σ), simplifying the Hamiltonian to

H = −(π̃0)
2 + π2

R + |θ0t̃|2(p̃−p̃z)π2
z + |θ0t̃|2(p̃φ+2p̃)R2, (25)

where π̃0 = tpπ0 is the canonical momentum of t̃, and the new Kasner exponents are

p̃φ = pφ/(1 + p), p̃ = p/(1 + p), (26)

where we assume p 6= −1 (which is consistent with (14)). In fact, it is possible to rescale t̃
and R (preserving the Poisson brackets) in such a way that θ0 only appears in the πz term.
Then, one can redefine the center of mass momentum to absorb the information of both, the
orbifold rapidity θ0 and the loop’s center of mass momentum πz, into a single parameter, πo,
in the following way

πo = θ
(2∆p+s)/(s+2)
0 πz , (27)

where
s ≡ p̃φ + 2p̃, ∆p ≡ p̃− p̃z. (28)

Notice that making θ0 larger increases π0 if ∆p > −s/2, which is true within some open set
of the allowed parameter space of the Kasner exponents. Evidently, this open set includes
the Milne universe (p̃ = p̃z = 0 and p̃φ = 1). So in order to understand the physics of the
cyclic model with respect to the orbifold rapidity, in what follows, we will consider Kasner
combinations which obey 2∆p > −s/2.

However, solutions of the wave function using the Hamiltonian (25) are messy when the
term with π0 is present, thus we will focus our attention to the limit π0 → 0 first and then
present the results for a non-vanishing π0. One can neglect π0 in two different limits: either
when the orbifold rapidity is very small compared to the loop’s momentum, or when the
center of mass velocity is small enough on its own1.

4.1 Zero center of mass momentum

When dropping the center of mass momentum term, some observables, such as the amount
of particle production, do not depend explicitly on the orbifold rapidity, which is given by
θ0. This statement may sound like a contradiction because we would expect more particles
being produced for larger collision rapidities, but if one looks in more detail, the result is
consistent with QFT in curved space. The basic idea of particle production is to measure
the “difference” between two vacuum states, which in our case correspond to one in the far
past, before the singularity, and another in the far future. However, a change in θ0 not only

1Note that θ0 < 1 is needed to start with loops inside the Hubble horizon during the contracting phase,
as shown in [13], so that in this case πz ≃ 0 implies π0 ≃ 0 (where we have also assumed 2∆p > −s/2).
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changes the orbifold rapidity but also the two vacua we are comparing, and for the case of
π0 → 0 the changes are such that their effects cancel each other.

Therefore, knowing that we can absorb θ0 by a constant rescaling of the variables in the
case of negligible π0, we will set θ0 = 1 and then restore it in the final expressions. Thus,
for the present discussion we consider the simpler Hamiltonian

H = −(π̃0)
2 + π2

R + |t̃|2sR2, (29)

A canonical quantization (π̃0 → i∂t̃ and πR → i∂R) implies that the Wheeler-de Witt
equation (23) reduces to

[∂2
t − ∂2

R + |t|2sR2]Ψ(t, R) = 0, (30)

where we have dropped the tilde over the time variable for simplicity, but the reader should
remember that we are actually still referring to t̃ defined earlier. Eqn. (30) corresponds to
the Klein-Gordon equation with the potential of a harmonic oscillator with a time-dependent
frequency ω(t) ∼ |t|s. There is a parallel line of thought to understand this result: as was
mentioned earlier, an alternative description of a string evolving across the metric (4) is to
think of a string oscillating in the space-time ds2conf with a tension that varies with respect to
time (i.e. µ1 = µ2|θ0t|pφ). From this point of view, a natural wave equation for the string is
that of a harmonic oscillator in the metric ds2conf with a time-dependent mass, which after a
change of variables can be recast into a time-dependent frequency problem (see for example
[16]). Furthermore, when solving string equations in singular backgrounds, we generally find
harmonic oscillator equations with a time-dependent frequency (see for example [17]).

4.1.1 Asymptotic solution

The first step to construct a solution to equation (30) is to understand the asymptotic
behavior, where the adiabatic or WKB approximation provides a good approximation to the
true solution. Näıvely we would expect this to be in the adiabatic regime when |t| is large
enough, however, as we will see later, the story is a bit more complicated and the adiabatic
regime holds only for large T time (T ∼ t(2+s)/2) 2. Nevertheless, we can still get a feeling of
the asymptotic solution if we set the frequency to be constant, namely

[∂2
t − ∂2

R + t2s0 R2]Ψ(t, R) = 0, (31)

where t0 >> 1. The wave function that solves this simplified equation is related to the usual
harmonic oscillator form, and is given by

Ψ(t, R) =
∞
∑

n=0

Hn(t
s/2
0 R) exp(−ts0R

2/2) [A exp(iEnt) +B exp(−iEnt)] , (32)

where E2
n ≡ (2n + 1)ts0 = (2n + 1)ω(t) and Hn(x) is the Hermite polynomial of degree n.

Notice that the energy levels En are actually the square root of the usual harmonic oscillator

2Remember the effective (2+1)-metric where the string oscillates is given by equation (4), namely

ds23d = |t|pφ(−dt2 + |t|2pdx2 + |t|2pdy2) = |̃t|(p̃φ+2p̃)
(−dt̃2 + dx2 + dy2), where t̃ ∼ tp+1 and p̃φ and p̃ given

by (26). Therefore, the “10-dimensional” time T is simply given by T =
∫

dT ∼
∫

t̃s/2dt̃, with s = p̃φ + 2p̃.

13



levels. To understand this, one can think of the classical string analysis previously done,
where in fact, the Hamiltonian ǫ̃ (see equation (16)) is the square root of the harmonic
oscillator for constant time.

The asymptotic solution (32), provides a hint as to the best ansatz we can adopt to
obtain the general solution to (30). Using the harmonic oscillator as a basis and replacing
t0 by t, we consider an ansatz of the form:

Ψ(t, R) =
∞
∑

n=0

An(t)Hn(|t|s/2R) exp(−|t|sR2/2), (33)

where the An’s are considered to be functions of time and determine the evolution of the
harmonic oscillator states from the incoming vacuum at negative times to the outgoing modes
far after the singularity. We can then use the orthogonality of the Hermite polynomials

∫

Hn(x)Hm(x)e
−x2/2dx =

√
π(2nn!)δmn (34)

and the relations H ′
n(x) = 2nHn−1(x) and Hn+1(x) = 2xHn(x) − 2nHn−1(x) to decompose

equation (30) into an infinite system of coupled ODEs for the An’s, which are given by the
following recursive equation

0 = Än −
s

2t
Ȧn +

[

4s− s2(1 + 2n+ 2n2) + 16(1 + 2n)|t|2+s
] An

16|t|2 (35)

+(n + 1)(n+ 2)
s

t
Ȧn+2 − (2 + s)(n+ 1)(n+ 2)

s

4|t|2An+2 −
s

4t
Ȧn−2

+(2 + s)
s

16|t|2An−2 + (n+ 1)(n+ 2)(n+ 3)(n+ 4)
s2

4|t|2An+4 +
s2

64|t|2An−4.

One should note that these equations are not regular at t = 0, so one cannot find solutions
which interpolate between negative times and positives ones. This implies nothing else than
using the harmonic oscillator basis is not a good approximation around the singularity.
However, as we will see in the next section the evolution across the singularity is simpler
than one could possibly have expected.

Consider the zeroth mode A0 equation,

Ä0 −
s

2t
Ȧ0 +

(

4s− s2 + 16|t|2+s
)

A0 +
2s

t
Ȧ2 −

s(2 + s)

2t2
A2 +

6s2

t2
A4 = 0. (36)

If we assume the higher modes are negligible, An = 0 for n > 0 (which should be the case if
the incoming state is the vacuum and will be justified later), then Eqn. (36) can be solved
in closed form for either positive or negative times, resulting in

A0 = |t|(2+s)/4(θ0)
s/4
[

c1K
(1)
l

(

2kθ
s/2
0 |t|(2+s)/2

)

+ c2K
(2)
l

(

2kθ
s/2
0 |t|(2+s)/2

)]

, (37)

where K
(1)
l (x) and K

(2)
l (x) are the Hankel functions of the first and second kind respectively,

c1 and c2 are integration constants, k ≡ 1/(2 + s), l ≡ k
√

1 + s2/2, and we have restored
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θ0 in the expression. Using the asymptotic expansion of the Hankel functions K
(1,2)
α (x) =

√

π/(2x) exp (±i(x− (2α± 1)π/4)), we obtain an asymptotic solution for the ground state
given in terms of positive and negative frequency components, namely

Ψ(t, R) = exp(−|θ0t|sR2/2) [C1 exp(iE0|t|) + C2 exp(−iE0|t|)] , (38)

where C1 =
√

π
2
c1 exp(−i(2α+1)π/4), C2 =

√

π
2
c2 exp(i(2α−1)π/4) and now the frequency

is time-dependent and given by E0(t) =
√

ω0(t) =
2

2+s
|θ0t|s/2.

To justify dropping the higher order modes (An with n > 0) in equation (36) for large
times one can re-write the recursive differential equation in terms of the T time ( T =
2

2+s
θs/2t(2+s)/2) and then see which are the leading terms for large T . Equation (35), in

T -time and with θ0 = 1, reads

0 =
d2An

dT 2
+ (1 + 2n)An +O

(

1

T

)

, (39)

and has a large T solution,

An(t) = exp(i
√
2n+ 1T ) = exp(iEnt), En(t) =

2
√
2n+ 1

2 + s
|t|s/2. (40)

The picture is then the following: asymptotically (large T ), all the harmonic oscillator modes
decouple from each other and as one approaches the singularity they start interacting. If
one starts with the ground state as the incoming vacuum, then higher order modes become
excited in order to resolve the singularity, and one ends up with a tower of states as the
outgoing state in the far future, when again the interaction of harmonic oscillator modes
stops and we can use this basis to describe the resulting state. Furthermore, since the An-
equation (35) is a “double-step” recursive equation, if one starts with the ground state in
the far past, then only even n-levels will be excited across the singularity.

4.1.2 Solution near the singularity

If we consider the vacuum positive energy mode (38) as the incoming state for t → −t0
(with t0 >> 1), then we can evolve numerically the solution to the full equation (30). The
numerical solution behaves regularly everywhere, particularly at t = 0. In order to picture
the evolution of the wave function across the singularity, we can use the integrated wave
equation

Ψ(t) =

∫ +∞

−∞

Ψ(t, R)dR. (41)

The numerical solution of such an integrated function is shown in Figure 4, and notice in
particular that around t = 0 the solution is simply given by a straight line, as we shall
shortly describe. This result provides a simple explanation of how the modes evolve in terms
of the absolute value function. The fact that the wave function (41) is well approximated
by Ψ(t) = at + b around t = 0, can be understood as follows: assume Ψ behaves like
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Figure 4: Evolution of the integrated wave function Ψ(t) in time for the Kasner exponent
combination pφ = 0.793521 and p = 0.4. The positive frequency mode in (38), with C1 = 1
and C2 = 0, at t = −20 was chosen. Different initial times do not change the behavior
but the overall scale. Around t = 0 the wave function evolution follows a straight line, and
after the singularity, higher order modes contribute to the overall wave function, leading to
a non-periodic and complicated structure.

Ψ(t, R) = e−|t|sR2/2f(t) near the singularity3. After substituting it into the Hamiltonian
equation (23), and assuming a simple polynomial function for f(t) of the form f(t) = atm+c,
then the only solution with a well-defined limit as t → 0 has c = 0 and m = s/2, (2 + s)/2.
Therefore, the solution near t = 0, which is valid on both sides of the singularity, is

Ψ(t, R) = e−|t|sR2/2(at + b)|t|s/2/
√
2π, (42)

which after integrating over R implies Ψ(t) = at + b. If we think of the harmonic oscillator
basis, the functions An should all behave as (ant+ bn)|t|s/2 for small times on either side of
the singularity. However, it doesn’t mean we can simply solve for the individual coefficients
an and bn, because from (33) and (41) we require knowledge of all the modes that cross
the singularity, thus no individual mode can be evolved across using this description for the
integrated wave function around the singularity. Fortunately, from the numerical solution, we
can always calculate the An coefficients using the orthogonally property (34) of the Hermite
polynomials. Therefore, we can show the agreement between the numerical solution and
the expected behavior ((ant+ bn)|t|s/2). For example, Figure 5 shows the case of the zeroth
mode A0 before the singularity.

3If one plots the wave function near t = 0 as a function of R, one finds a good fit using the Gaussian
profile exp(−|t|R2/2), which justifies our assumption.

16



-7 -6 -5 -4 -3 -2 -1 0
t

-1

-0.5

0

0.5

1

R
e
A
0

Numerical

Asymptotic

Small t

Figure 5: Using the orthogonality property (34) one can extract the coefficients of the
harmonic oscillator modes An from the numerical solution of the wave function (see equation
(33)). Here, we plot Re(A0) for pφ = 1 and p = 0. The dashed line represents the analytic
solution (37) which follows the numerical solution (solid line) up to the place where the
t = 0 behavior, given by solution (42) becomes more accurate (dotted line). We normalize
the wave function so A0 ∼ 1 initially.

On the other hand, after t = 0 the R-integrated wave equation Ψ(t) no longer looks
periodic (see Figure 4). However, all of this complicated structure can be decomposed as a
tower of higher harmonic oscillator modes, which were excited during the transition through
t = 0 and converge as we increase the mode number (see Figure 6). The choice of Kasner
exponents has an effect on the tower of excited states, as will be shown later when calculating
the particle production.

Furthermore, if we follow the whole evolution of the vacuum state, the adiabatic regime
is well approximated by the analytical solution (37), even as we approach the singularity.
However, such an agreement inevitably breaks down very close to the singularity, as the
expansion in terms of uncoupled harmonic oscillator states breaks down. That is, all higher
modes begin to get excited in order to solve through the singularity, hence, we can not
neglect the A2 or A4 terms in the A0 equation near t = 0. However, notice that these higher
order terms never dominate, as can be seen in Figure 6. As the adiabatic approach fails, the
above mentioned polynomial behavior near t = 0 takes over and the solution can be followed
all the way to and across the singularity. Some time after t = 0, the story repeats and
we can use the adiabatic description again, leading to a decomposition of higher oscillation
state, which can be described in terms of Bogoliubov transformations, as we will show in the
following section.
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Figure 6: Using the orthogonality property (34) we plot the An’s for different mode numbers
n. One can see how higher modes get excited after t = 0, and the amplitude of higher states
decrease with n as expected. We use pφ = 0.793521 and p = 0.4.

4.1.3 Particle production

One has to be careful when constructing the Hilbert space, since a C∞ and globally hyper-
bolic manifold is needed. In our case the string metric is not well defined at t = 0, therefore
we can split the space of solutions into two sections: for t < 0 and t > 0. Based on the reg-
ularity of the classical and quantum solutions around t = 0 it is natural to assume unitarity
at t = 0, which allows us to use the Bogoliubov transformations to relate the two sections of
the Hilbert space and calculate particle production. Our numerical results will act to justify
this assumption. Moreover, a natural inner product in this Hilbert space is defined by [18]

(Ψ1,Ψ2) ≡ −i

∫ ∞

∞

dR

[

Ψ1
∂Ψ∗

2

∂t
−
(

∂Ψ1

∂t

)

Ψ∗
2

]

. (43)

One can expand the wave function Ψ(R, t) in terms of two basis sets, one for asymptoti-
cally negative times and one for the corresponding positive times, namely

Ψ(R, t) =
∑

n

a(in)n U (in)
n + (a(in)n )†(U (in)

n )∗ t → −∞

=
∑

n

a(out)n U (out)
n + (a(out)n )†(U (out)

n )∗ t → +∞ (44)

where a†n and an are the creation and annihilation operators associated with the harmonic
oscillator expansion, and which obey the usual commutation relationships (i.e. [an, a

†
m] =
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δmn, etc.). We would expect the negative time vacuum (a
(in)
n |0〉in = 0) to be different from

that of positive times (a
(out)
n |0〉out = 0), leading to particle production. The functions U

(in)
n

and U
(out)
n are the positive frequency modes

U (in)
n = Nn exp(+iEnt) exp(−|t|sR2/2)Hn(|t|s/2R) t < 0,

U (out)
n = Nn exp(−iEnt) exp(−|t|sR2/2)Hn(|t|s/2R) t > 0, (45)

with the normalization factor Nn given by

Nn = (2n+1n!
√

(2n + 1)π)−1/2, (46)

in such a way that (Ψn,Ψm) = δnm.
Actually, since we are interested in having the vacuum as our incoming state, the wave

function for t → −∞ takes the form

Ψ = N0

[(

a
(in)
0 + (a

(in)
0 )†

)

cos(E0|t|)− i
(

a
(in)
0 − (a

(in)
0 )†

)

sin(E0|t|)
]

exp(−|t|sR2/2), (47)

where N0 =
1

(4π)1/4
. Now, we can write explicitly the wave function for t → +∞ as

Ψ =
∑

n

Nn

[

(

a(out)n + (a(out)n )†
)

cos(Ent)− i
(

a(out)n − (a(out)n )†
)

sin(Ent)

]

Hn(t
s/2R)e−tsR2/2

=
∑

n

N0

[

(

a
(in)
0 + (a

(in)
0 )†

)

Dn cos(E0|t|+ ϕn)

−i
(

a
(in)
0 − (a

(in)
0 )†

)

D̄n sin(E0|t|+ ϕ̄n)

]

Hn(t
s/2R)e−tsR2/2, (48)

where Dn and ϕn (D̄n and ϕ̄n) are the amplitude and phase — with respect to t = 0 —
of the outgoing mode n after sending an incoming cosine (sine) piece of the incoming wave
function (47). Since the two lines in the previous equation are equal, the coefficients should
be related in the following way

a(out)n = α∗
n0a

(in)
0 + β∗

n0(a
(in)
0 )†, (49)

where the Bogoliubov coefficients are defined as

αn0 =
N0

2Nn

(

Dne
iϕn + D̄ne

iϕ̄n
)

, βn0 =
N0

2Nn

(

Dne
iϕn − D̄ne

iϕ̄n
)

. (50)

Particle production at a given energy level can then be understood in terms of the expectation
value of the particle number operator N̂n = (a

(in)
n )†a

(in)
n over the out-vacuum |0〉out, which

simplifies to the following

〈0|N̂n|0〉out = βn0β
∗
n0 = 2n−2n!

√
2n + 1

(

D2
n + D̄2

n −DnD̄n cos(ϕn − ϕ̄n)
)

. (51)

19



0

0.2

0.4

0.6

0.8

1

α

p =+0.4

p = 0.0 (Milne)

p =-0.37

0 2 4 6 8 10 12
n

0

0.1

0.2

0.3

β

p =+0.4
p = 0.0 (Milne)
p =-0.37

no2

no2

Figure 7: Bogoliubov coefficients α2
n0 and β2

n0 as functions of the mode number n for three
Kasner exponent combinations: p = 0.4, p = 0.0 (Milne) and p = −0.37, with pφ obtained
using (20) for m = 7. In the last case, the effective (3+1)-metric where the string oscillates is
almost flat, thus the particle production |β|2 is negligible. A fit shows that both Bogoliubov
coefficients decay as C1 exp(−C2n

3/4), where C1 and C2 are positive constants that depend
on the Kasner exponents only.

Figure 7 shows the particle production for different Kasner exponents. A fit of this plot
shows that the particle production decays exponentially with mode number, n, satisfying
a fit of the form β2

00 exp(−C1n
3/4), where β00 and C1 depend on the particular choice of

Kasner exponents. Of particular note is that for large n where the energy per mode, En

satisfies E2
n ∼ n, (see equation (40)), we then obtain an exponential decay of the form

β2
00 exp(−C1E

3/2
n ), a result that agrees with the semiclassical instanton calculation in [10] for

the Milne universe, but remains to be compared for other Kasner exponents.

4.2 Non-zero center of mass momentum

If one starts with a non-vanishing center of mass momentum, πz, at t = −t0, and if the
orbifold rapidity θ0 is not negligible with respect to πz, then one cannot drop its contribution
in the Hamiltonian (25). The Wheeler-de Witt equation associated with the Hamiltonian
(25) can be solved numerically, again yielding a regular solution, in particular at t = 0,
which is very similar to the π0 = 0 case shown in Fig. 4. Furthermore, to describe the
t > 0 behavior, we can once again use the harmonic oscillator basis as an ansatz, but with
a frequency which now depends on both time and π0; details are given in Appendix A. Here
we only summarize our findings. Asymptotically, the wave function can again be described
in terms of decoupled harmonic oscillator modes, while near the singularity the straight-line
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behavior (after integrating over R) remains as a characteristic feature. Thus, we can send in
the vacuum state and read off the harmonic oscillator components in the outgoing solution,
to find the Bogoliubov coefficients for such a transition.

From the definition in equation (27), we know that the orbifold rapidity should play a role

in the physical observables, via the combination πo = θ
(2∆p+s)/(s+2)
0 πz. Thus, if as mentioned

above we assume ∆p > −s/2, increasing the orbifold rapidity is equivalent to increasing the
center of mass momentum. Now the question is: how do the Bogoliubov coefficients change
due to π0? On the one hand, we know that classically the presence of a singularity forces the
loop to increase its velocity until it reaches the speed of light at t = 0. As we have already
seen, this speeding up is achieved by exciting higher order oscillation modes. Therefore,
one would naively expect that a larger π0 should help the loop to reach the speed of light
at t = 0 without exciting higher order modes. On the other hand, one should expect that
increasing the orbifold rapidity makes the orbifold collision more violent, thus increasing
particle production. These two effects compete against each other and indeed, we see both
of them at different scales. For small π0, particle production is suppressed exponentially
as exp(−c1π

2
0 − c2n

3/4), where c1 > 0 and c2 > 0 depend on the Kasner exponents, and
c2 has a mild dependence on π0. However, for larger π0 particle production grows as a
powerlaw of π0, while exponentially decreases with n. This powerlaw growth is in agreement
with the instanton calculation of [10], where it was found that 〈0|N̂0|0〉out ∝ θ

(d−1)/3
0 for

a (d + 1)-dimensional spacetime. In agreement, we find for the case d = 4; three spatial
dimensions corresponding to the effective space in which the loop oscillates plus the M-
theory dimension. Figure Fig. 8 shows how particle production decays with n, and Fig. 9
depicts how the particle number of the ground level, 〈0|N̂0|0〉out, changes with π0. At first
sight, it may be worrying to think that the particle production diverges for large π0, but
actually one should have in mind that the orbifold rapidity should be small, in order to have
modes created well inside the comoving Hubble horizon where the adiabatic regime can be
trusted [10, 13]. Furthermore, the transverse velocity of any loop cannot be the speed of
light, otherwise it could not oscillate in the xy plane.

For a gas of loops, the average velocity should be close to 1/
√
2, as shown in [19] for flat

space4. We can then imagine a single loop with such a velocity at t = −ts (see equation
(19)), and calculate the corresponding value of π0 using the first equation in (16) and (27).
Assuming the loop is initially static (Ṙ(−ts) = 0) and of unit size (R(−ts) = 1), one obtains

π0 =
vθ

(2∆p+2)/(s+2)
0√

1− v2
. (52)

If θ0 is small and the velocity dispersion around the mean value is not large, then the particle
production should be small. For example, for θ0 ∼ 1/5 and a velocity dispersion of around
±0.25 ([20]), the corresponding values of π0 lie on the range ǫ ∈ (0.3, 1.93) (at t = −ts = −5),
which maps to the exponentially decaying region of Fig. 9.

Finally, an important check of the quantum model is to verify unitarity, which implies
that the canonical commutation relationships should be preserved over time. This translates

4We can assume a flat background initially, since for a small θ0 the size of the loops is small compare to
the Hubble radius .
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Figure 8: Bogoliubov coefficients α2
n0 and β2

n0 as functions of the mode number n for four
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to a large orbifold rapidity, which increases the particle production due the more violent
brane-collision. The fitting curve has a form c2 exp(−c1π

2
0)+c3π

3
0 , where the ci’s are positive

constants.
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into the following property for the Bogoliubov coefficients

1 =
∑

n

αn0α
∗
n0 − βn0β

∗
n0. (53)

One would need to sum over all states to get unity, however, one can see that using the first
ten excited modes the number is close to unity (in Figure (10)).
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Figure 10: Plot of
∑

n =
∑n

i=0(α
2
i0 − β2

i0) as a function of the mode number n, for the same
three Kasner metrics of Fig. 7, and for two non-zero values of π0 at ts = 5. Unitarity is
preserved if

∑

n → 1 as n → ∞.

5 Conclusions

The nature of the big bang is one of the biggest problems facing cosmology. No one fully
understands the physics that occurred in this crucial period. One of the more interesting
recent proposals for the origin of the big bang, is through the collision and re-emergence of
two orbifold planes in eleven dimensions [1, 2, 10]. As the two planes approach each other,
the light states of the theory consist of winding M2-branes, which are described in terms of
fundamental strings in a ten dimensional background. Near the brane collision region, the
full eleven-dimensional metric considered is that of Euclidean space times a compactified
1+1-dimensional Milne universe. In [13], two of us considered the the classical evolution of
winding membranes in such a background, showing that they suffered no blue-shift as the
M theory dimension collapses, and their equations of motion remained regular across the
transition from big crunch to big bang. However, one may expect there to really be small
perturbations to the background metric, leading to a more general Kasner background for
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the light membranes to evolve in. If this is the case, an obvious question is what happens
to collapsing light M2-branes as they pass through the singularity? In this paper we have
gone beyond to original classical analysis of winding membranes in [13] to include general
Kasner backgrounds. By considering the corresponding Hamiltonian equations, we have
been able to solve for the wave function of loops with circular symmetry and demonstrate
the sensitivity of the solutions to the values of the Kasner exponents p around the Milne
solution (p = 0 and pφ = 1). As is evident from Figures 2 and 3, although the general
behavior remains similar, in particular the loop solutions remain perfectly finite, there is
clear evidence that the amplitude and periodicity of the outgoing modes depend strongly
on the precise value of the Kasner exponents. In the regime p ∼ −pφ/2, the energy density
has a mild dependence on |t|, and the modes do not feel the contraction or expansion of the
universe, leading to no classical energy production. On the other hand, for large positive
values of p, the string does feels the effects of the evolving scale factor, which produces a large
effect around t = 0, and a greater classical production of energy. To confirm the particle
interpretation of this classical result, we adopt the Wheeler-de Witt formalism to quantize
the system of the evolving circular loop in the Kasner background. Circular symmetry of
the loop is crucial in order to help us solve the system of equations as it allows us to assume
∂σt = 0, implying the time coordinate of the loop is a function of τ only. Remarkably we
are able to solve the Wheeler-de Witt equation both far from and close to the singularity
t = 0. Asymptotically, the loop is well described through a WKB approximation, given by
Eqns. (33-38) in the case of very small orbifold rapidity compared to the center of mass
momentum, or by Eqns. (55)-(57) for the general case. Of particular note though is the
fact that near the singularity, the solution simplifies to such an extent that the integrated
wave function (41) is given by a straight line in t through the singularity which allows a
simple understanding of the solution on either side of t = 0, made evident through Figures
4 and 5. The complicated non-periodic evolution seen in Figure 4 just after the singularity
provides evidence that there could well be particle production as a loop evolves through a
singularity. This is confirmed in our analysis of the particle production, as seen in Figures 7
and 8 where we plot the particle production number for three separate values of the Kasner
parameter including the usual Milne case, and three different center of mass momenta. In
all cases, particle production is exponentially suppressed with the oscillation mode number
n, and in the case of zero-center of mass momentum πz it is independent of the orbifold
rapidity θ0. However, for a non-vanishing center of mass momentum, particle production
depends on the simple function π0 = π0(θ0, πz), defined in (27). Production of particles is
exponentially suppressed for small π0, but has a powerlaw growth for large π0. The two
effects are expected: the first one corresponds to the fact that a small initial velocity helps
the loop to reach the speed of light at the singularity without exciting higher order modes.
In contrast, the second effect corresponds to the fact that a large orbifold rapidity induces a
more violent big crunch/big bang, which results in more particles been produced.

As we have seen, as the loop passes through the singular point, higher order modes
become light and excited, the string reaches the speed of light everywhere along it, and the
effect is either an increase or decrease in the amplitude of the outgoing mode leading to
classical gain or loss in energy and the production of particles whilst maintaining Unitarity.
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There are of course caveats to what we have done in this paper. In reality the Kasner
metric is not flat away from the singularity and thus it can receive corrections when interact-
ing with the membrane. It is not clear how this would affect the background and subsequent
analysis? Assuming we are only slightly away from Milne case, we believe that the analysis
should be similar to what we have done here.

It is very encouraging that we have seen how it is possible to have finite particle produc-
tion in through a singular region in a Kasner background. It is now worth seeing quite how
much reheating occurs in such a scenario. An obvious, if somewhat difficult calculation is to
extend this work beyond the case of a simple circular loop. Finally, it will be interesting to
see how these results can be interpreted from the conformal theory description of [9].
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A Non-vanishing π0 solution

To solve the Wheeler-de Witt equation derived from the Hamiltonian (25) for a non-vanishing
π0 term, one can use the same ideas as in the π0 = 0 case. First and to get a felling of the
solution, one could study the wave equation derived from (25) for a constant time t = t0,
namely

ĤΨ =
(

∂2
t − ∂2

R + t̃2∆p
0 π2

0 + t̃2s0 R2
)

Ψ = 0, (54)

where π0, ∆p and s are defined in (27) and (28). A solution to this equation is given
again by the harmonic oscillator solution (32), but with an energy E2

n = (2n+ 1)ts0 + π2
0t

∆p
0 .

Therefore, we can use the same ansatz (33) and the properties of the Hermite polynomials
to get a recursive differential equation for the function An(t), which is similar to (35) but
with extra terms containing π0. Actually, in the T -time variable, the An equation reads

0 =
d2An

dT 2
+ (1 + 2n)An + π2

0

(

s+ 2

2
|T | 2

s+2

)2∆p−s

An +O
(

1

T

)

, (55)

which does not have a simple analytical solution for a generic Kasner exponent combination,
unlike the π0 = 0 case. In the particular case of the Milne universe, the solution to this
equation is given in terms of Whittaker functions, which are related to the polylogarithm
functions. The appearance of these functions suggests a consistent description with the 1/α′-
series solution of classical evolution near t = 0, where polylogarithm functions were found
to second order in the string tension [13].

Since we are searching the asymptotic spectrum of states, it is enough to find a series

solution of equation (55). The expansion parameter isQ ≡ π2
0

(

s+2
2
|T | 2

s+2

)2∆p−s

= π2
0|t|2∆p−s,

and the solution becomes more accurate for large |T | because (14) implies −2∆p + s =
pφ + 2pz ≥ 0. This series solution can be constructed using the ansatz

An = exp(iEnT ), (56)
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where
En ≡ En(T ) =

√

β + αQ+ γQ2. (57)

The following constants

β = 2n + 1, α =
s + 2

2− s+ 2∆p
, γ = 2

s− 2∆p

2− s+ 2∆p
, (58)

solve equation (55), with an error of order T−(4∆p+s+2)/(s+2) ∼ t−(4∆p+s+2)/2. So, we can use
this approximate solution and calculate the particle production using the same expressions
as in section 4.1.3. We assume the two vacua are given by

Ψ(R, t) =
∑

n

a(in)n U (in)
n + (a(in)n )†(U (in)

n )∗ t → −∞

=
∑

n

a(out)n U (out)
n + (a(out)n )†(U (out)

n )∗ t → +∞ (59)

where

U (in)
n = Nn exp(+iEnt) exp(−|t|sR2/2)Hn(|t|s/2R) t < 0,

U (out)
n = Nn exp(−iEnt) exp(−|t|sR2/2)Hn(|t|s/2R) t > 0, (60)

and En = 2
s+2

En|t|s/2. The normalization factor Nn is given by

Nn =
[

2n+1n!
√
π (E ′

nT + En)
]−1/2

, (61)

with E ′
n ≡ d

dT
En(T ). Therefore, by writing the vacuum solution as

Ψ = N0

[(

a
(in)
0 + (a

(in)
0 )†

)

cos(E0|t|)− i
(

a
(in)
0 − (a

(in)
0 )†

)

sin(E0|t|)
]

exp(−|t|sR2/2), (62)

we can read off the outgoing solution in terms of the Bogoliubov coefficients (50), and
calculate the particle production in the same way we did for the π0 = 0 case. The results
are shown in Figure 8 and summarized in Section 4.2.
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