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Abstract

The boundary energy - momentum tensors for a static observer in the

conformally flat Rindler geometry are considered. We found the surface

energy is positive far form the Planck world but the transversal pressures

are negative.

The kinematical parameters associated to a nongeodesic congruence

of static observers are computed. The entropy S corresponding to the

degrees of freedom on the two surface of constant ρ and t equals the

horizon entropy of a black hole with a time dependent mass and the

Padmanabhan expression E = 2ST is obeyed.

The two surface shear tensor is vanishing but the coefficient of the bulk

viscosity ζ is 1/16π and therefore the negative pressure due to it acts as

a surface tension.

Keywords : surface energy, conformal Rindler geometry, horizon en-

tropy, equipartition law.

1 Introduction

There has been renewed interest in recent years in boundary matter. General
Relativity, like Newtonian gravitation, indicate that matter is the source for
gravity. Khoury and Parikh [1] asked the question whether the acceleration
could be attributed to matter. But the matter distribution is encoded in the
stress tensor. Therefore, where the energy and stresses are localized as we could
accelerated even in Minkowski space (inertial frames exist even in the total
absence of matter) ? Usually the boundary conditions for the metric are in the
form of an induced metric and extrinsic curvature for some hypersurface.

The boundary matter concept appears, for example, in the so-called ”mem-
brane paradigm” for the black hole [2] [3] [4] stretched horizon, viewed as an
inner boundary (it is worth to note that the Gibbons - Hawking term in the
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Einstein - Hilbert action is a surface integral over the outer boundary of space-
time).

As Khoury and Parikh have conjectured, ”matter refers to both bulk and
boundary stress tensors”. They uniquely specify the geometry of spacetime.
This may be recognized from the fact that the bulk stress tensor does not fully
determine the Riemann tensor which, besides the Ricci tensor, contains the
Weyl tensor (its free of trace part). In addition, the Weyl tensor is independent
of matter. Therefore, the authors of [1] emphasized that , to determine the
solutions of Einstein’s equations, one needs to add boundary conditions.

Other contexts where boundary matter arises are the brane-world scenar-
ios , AdS - CFT correspondence [5], and the Brown - York construction of a
gravitational boundary stress tensor [6].

The purpose of this paper is to compute the boundary stress tensors for a
uniformly accelerating distribution of conformal Rindler observers [7] [8]. Our
”boundary sources” are located on any ρ = const. hypersurface , where ρ is
the radial coordinate. As Padmanabhan [9] has observed, one can associate to
the area A of a spherical surface around a massive body the degrees of freedom
corresponding to the entropy S = A/4 because observers at rest on the surface
will have an acceleration produced by the body. We have in our situation local
Rindler observers who will perceive any timelike surface as a stretched horizon.
In addition, for accelerated observers one can in principle locate holographic
screens (equipotential surfaces) anywhere in space [10].

We further analyze the spacelike two-section of the ρ = const. hypersurface
(stretched horizon). The corresponding surface stress tensor is proportional
to the induced metric tensor. The shear tensor is zero but the bulk viscosity
coefficient ζ = 1/16π.

Throughout the paper we use geometrical units : G = c = ~ = 1 .

2 The conformally flat Rindler metric

Let us consider the 4 - dimensional subspace of the Witten bubble spacetime
[12]

ds2 = −g2r2dt2 + (1 − 4b2

r2
)−1dr2 + r2cosh2gt dΩ2 (2.1)

with b and g - constants and dΩ2 = dθ2 + sin2θdφ2 is the metric on the unit
two sphere .

The metric (2.1) is the ordinary Minkowski space provided r >> 2b, but
written in spherical Rindler coordinates [13] (a spherical distribution of uni-
formly accelerated observers , with the rest - system acceleration g, uses this
type of hyperbolically expanding coordinates). The singularity at r = 2b is only
a coordinate singularity, as can be seen from the isotropical form of (2.1), with
the help of a new radial coordinate ρ

r = ρ+
b2

ρ
. (2.2)
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Therefore, the spacetime (2.1) appears now as

ds2 =

(

1 +
b2

ρ2

)2

(−g2ρ2dt2 + dρ2 + ρ2cosh2gt dΩ2). (2.3)

As Cho and Pak [14] have observed, the singularity at ρ = 0 is a coordinate
singularity since the curvature invariant RαβR

αβ and the Kretschmann scalar
RαβµνR

αβµν are finite there. Therefore, the conformally flat metric (2.3) can
be interpreted as an instanton - antiinstanton pair in conformal gravity [14].
We note that the coordinate transformation

x̄ = ρcoshgtsinθcosφ, ȳ = ρcoshgtsinθsinφ, z̄ = ρcoshgtcosθ, t̄ = ρsinhgt
(2.4)

changes the previous metric into

ds2 = (1 +
b2

x̄αx̄α
)2 ηµν dx̄µ dx̄ν , (2.5)

which is conformally flat ( ηµν = diag(−1,+1,+1,+1) , the Greek indices run
from 0 to 3) and ρ2 = x̄ix̄i − t̄2, i = 1, 2, 3. From now on we take the constant
b to be of the order of the Planck length.

Let us observe that the geometry (2.3) becomes flat provided ρ >> b (the
conformal factor tends to unity ) or ρ << b , when the first term in the conformal
factor may be neglected. Therefore, (2.3) represents the Lorentzian version of
the euclidean Hawking wormhole [15] [16].

It is interesting to treat the region ρ < b by means of the coordinate trans-
formation

ρ̄ =
b2

ρ
. (2.6)

Inserting (2.6) in (2.3), we conclude that the metric (2.3) is invariant under the
inversion (2.6). Therefore, we may say that the ρ < b region is the image of
ρ > b region obtained by inversion.

We know that the spacetime (2.3) is not a solution of the vacuum Einstein’s
equations. Therefore, a source was introduced on the r.h.s. of them [8] in order
that (2.3) to become an exact solution.

3 The three - surface stress tensor

From the surface source term in the gravitational action we know that the
following energy - momentum tensor emerges [3] [17]

T
(s)
αβ =

1

8π
(Kαβ − γαβK), (3.1)

where (s) refers to ”surface”,Kαβ is the extrinsic curvature tensor corresponding
to ρ = ρ0 = const. timelike hypersurface, K is its trace, γαβ is the induced
metric given by

γαβ = gαβ − nαnβ . (3.2)
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The normal 4 - vector to the surface has the components nα = (0, 1/ω, 0, 0),
where ω = 1 + (b2/ρ2). With the help of the well-known expression

Kαβ = γν
β∇νnα, (3.3)

one obtains

Kt
t = Kθ

θ = Kφ
φ =

ρ2 − b2

ω2ρ3
(3.4)

and the trace gives us

K ≡ γαβKαβ =
3(ρ2 − b2)

ω2ρ3
. (3.5)

The Eq. (3.1) yields now

T
(s)t
t = T

(s)θ
θ = T

(s)φ
φ = − (ρ2 − b2)

4πω2ρ3
. (3.6)

We see that the energy - momentum tensor is proportional to the metric tensor

T
(s)α
β = − (ρ2 − b2)

4πω2ρ3
γα
β . (3.7)

We have therefore

Σ ≡ −T
(s)t
t = −pθ = −pφ =

ρ2 − b2

4πω2ρ3
(3.8)

where Σ > 0 is the surface energy density and pθ < 0, pφ < 0 are the pressures
(in fact tensions) on the angular directions. Note that, far from the Planck
world (ρ >> b), Σ = 1/4πρ. As a function of ρ, Σ vanishes at ρ = 0 and ρ = b.
In Cartesian coordinates, these correspond to the light cones x̄ = ±t̄ or the
hyperbolic trajectories x̄ = ±

√
t̄2 + b2.

At ρ01 = b(
√
2− 1) we have

Σmin = −2−
√
2

8πb
< 0 (3.9)

and at ρ02 = b(
√
2 + 1) one obtains

Σmax =
2 +

√
2

8πb
> 0. (3.10)

Σ is positive for ρ > b and negative for 0 < ρ < b. The region around ρ = b acts
as a domain wall of thickness ρ02 − ρ01 = 2b. The fluctuations of the surface
energy are completely negligible far from Planck’s world.
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4 The nongeodesic congruence of the static ob-

server

Let us consider now ”static” observers in the spacetime (2.3). Their 4 - velocity
field is given by

uα = (−gρω, 0, 0, 0) (4.1)

The scalar expansion Θ associated to uα appears as

Θ ≡ ∇αu
α =

2 tanh gt

ωρ
(4.2)

It is always finite and varies between −2/ωρ and 2/ωρ, when t → ±∞.
The acceleration vector of the fluid world lines is given by

aα = (0,
ρ2 − b2

ω3ρ3
, 0, 0), (4.3)

with
√
aαaα ≡ a(ρ) =

|ρ2 − b2|
ω2ρ3

. (4.4)

It is worth to note that the relation

a(ρ) = 4π|Σ(ρ)| (4.5)

is obeyed, in accordance with the Gauss law. A similar expression has been
obtained in [18], for the Rindler horizon, in Cartesian coordinates. For exam-
ple, with ρ0 = 1cm (ρ0 >> b), we obtain Σ ≈ 1/4πρ = 1048ergs/cm2. One
means our hyperbolic observer , located at ρ0 = 1cm from the origin , perceives
an enormous surface energy density. However, we must remind that the accel-
eration is also very large. On the contrary, we have Σ = 1028 ergs/cm2 for
a = 10 cm/s2 (with ρ0 ≈ 1020cm).

One can associate to the ρ = ρ0 observer in the accelerated system a temper-
ature T (ρ0) which is given by T (ρ0) = a(ρ0)/2π, according to Unruh’s formula.
Even though the ρ = 0 hypersurface is no longer a horizon - with respect to the
b = 0 case - (the geometry (2.3) is time dependent and there is no a timelike
Killing vector) , we might formally construct a ”surface gravity”

√
aαaα

√−gtt|ρ=0 = g. (4.6)

Our uniformly accelerating system is not static. However, for ρ >> b or ρ << b
, the ”proper” temperature T (ρ) observes the Tolman relation [19]

T (ρ)
√−gtt =

g

2π

|ρ2 − b2|
ρ2 + b2

≈ g

2π
= const., (4.7)

where T (ρ) is measured by a local observer. The temperature gradient is neces-
sary to prevent the heat flow from regions with different gravitational potential.
We have, indeed [20]

Qα = −κhν
α(T,ν + Taν) = 0, (4.8)
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where aν is given by (4.3) , κ is the coefficient of thermal conductivity and Qα

is the spacelike heat flux.
The shear tensor of the flow

σµν =
1

2
(hα

ν∇αuµ + hα
µ∇αuν)−

1

3
Θhµν +

1

2
(aµuν + aνuµ) (4.9)

has the nonzero components

σρ
ρ = −2 tanh gt

3ρω
, σθ

θ = σφ
φ =

tanh gt

3ρω
, (4.10)

where hµν = gµν + uµuν is the projection tensor in the direction perpendicular
to uα. However, the rotation tensor ωµν is vanishing.

The time - evolution of the scalar expansion is given by the Raychaudhuri
equation

dΘ

dλ
−∇αa

α + σαβσαβ − ωαβωαβ +
1

3
Θ2 = −Rαβu

αuβ (4.11)

where λ is the parameter along the worldlines, the Ricci tensor is defined by
Rαβ = gµνRαµβν and

dΘ

dλ
≡ Θ̇ = uα∇αΘ =

2

ω2ρ2cosh2gt
(4.12)

Keeping in mind that

σαβσαβ =
2 tanh gt

3ωρ
(4.13)

and

∇αa
α =

2

ω4ρ2
(1 +

b4

ρ4
) (4.14)

one obtains for the l. h. s. of (4.11) the expression − 4b2/(ω4ρ4). But Rtt

for the metric (2.3) is given by −4b2/(ω2ρ2) [8]. Using (4.1) we find that the
Raychaudhuri equation is satisfied.

Let us find now the energy E enclosed by the 2 - surface H : ρ = ρ0, t = t0 .
The metric tensor on H is

sαβ = gαβ − nαnβ + uαuβ (4.15)

The energy is obtained from

E =

∫

H

Σ(ρ)
√
s dθ dφ (4.16)

With
√
s = ω2ρ2cosh2gt and Σ(ρ) from (3.8), Eq. (4.16) yields

E = ρ(1− b2

ρ2
)cosh2 gt, (4.17)
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taken at ρ = ρ0, t = t0.
By means of the Padmanabhan formula E = 2ST [9] one obtains for the

entropy S corresponding to the degrees of freedom on H (or, adopting the
Holographic Principle, in the space enclosed by H)

S =
E

2T
= πω2ρ2cosh2 gt. (4.18)

Hence, S = A/4, where A is the area of H . This expression corresponds exactly
to the horizon entropy of a black hole. That is not surprising since the ρ =
const. observer is at rest in the accelerated system, which is equivalent to a
gravitational field. As Padmanabhan has noticed, one can construct a local
Rindler observer who will perceive ρ = ρ0 surface as a stretched horizon. In
addition, we can check that the expression (4.17) is in accordance with the
equipartition law [9]

E =
1

2
nT, (4.19)

where n is the number of elementary cells of area l2P ( lP - the Planck length).
(4.17) and (4.18) are, of course, valid for ρ > b , otherwise E becomes negative.

The metric tensor sαβ of the spacelike 2 - section H of the constant ρ hy-
persurfaces, to which the velocity vector uα is normal, is given by

sαβ = (0, 0, ω2ρ2cosh2gt, ω2ρ2cosh2gt sin2θ). (4.20)

We may decompose the extrinsic curvature tensor kαβ = sνβ∇νu
α of H into a

traceless part and a trace [3]

kαβ = σ
(2)
αβ +

1

2
sαβΘ

(2) (4.21)

where σ
(2)
αβ and Θ(2) are, respectively, the shear tensor and the expansion of

the surface elements. Using the space (4.20) we immediately find that σ
(2)
αβ is

vanishing and Θ(2) appears as

Θ(2) = sνα∇νu
α =

2 tanh gt

ωρ
(4.22)

Therefore, the surface stress tensor

tHαβ =
1

8π
(kαβ − ksαβ) = − 1

16π
Θsαβ (4.23)

has two nonzero components

t
(H)θ
θ = t

(H)φ
φ = − tanh gt

16πωρ
(4.24)

A comparison with a viscous Newtonian fluid leads to ζ = 1/16π , where ζ
stands for the bulk viscosity coefficient. In other words, on the 2 - surface H
the pressure (−ζΘ(2)) < 0 and , therefore, it acts as a surface tension. In spite
of the fact that the authors of [1] [3] [11] reached a negative value for ζ, our
result is different because the 2 - surface H is not lightlike.
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5 Conclusions

We consider in this paper a uniformly accelerated distribution of conformal
Rindler observers and compute the stress tensors on 3 - and 2 - surfaces viewed
as boundary of the spacetime. To any ρ = ρ0 static observer in the accelerated
system we may associate a temperature proportional to its acceleration since the
local Rindler observers will perceive the timelike surface as a stretched horizon.

We have calculated the energy enclosed by a 2 - surface H of constant ρ
and t and found that it obeys the equipartition law E = (1/2)nT . In addition,
we established that entropy obtained from Padmanabhan’s formula S = E/2T
corresponds to the horizon of a black hole. That supports our view that ρ = ρ0
observers are equivalent to those located near the black hole horizon.

The stress tensor on H corresponds to a Newtonian viscous fluid with a
bulk viscosity ζ = 1/16π leading to a negative pressure which acts as a surface
tension.
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