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Abstract. In high-dimensional spaces classification methods could be more effective using various 
feature selection methods. The training procedure could be speeded up by decreasing the dimension of the 
feature space, and the classification method could be improved by removing noisy or irrelevant features. 
In this paper we present a new method which weights the features according to their importance instead 
of removing the negligible ones via kernel functions. It could be applied to a range of real-world 
problems. We tested it on several biological datasets like a small part of the UCI Learning Repository and 
SCOP and the Leukaemia AML-ALL databases, and obtained a significantly better classification 
performance than that using the usual unweighted method. 
Keywords: Support Vector Machines (SVMs), classification, kernel functions, feature ranking algorithms 
 
 
Introduction  

Biological databases like those generated by a DNA microarray consist of some 
thousands of features (i.e. components) that are not equally important. During 
classification, some features may be considered crucial while others can be safely 
ignored. It is obvious that the various features should have different weights in the 
classification procedure, i.e. the features should be weighted according to their 
importance. One such method is the Fisher Correlation Coefficients which assigns the 
following weighting value to the ith feature: 

22

2

)()(
)(
−+

−+

+
−

ii

ii

σσ
µµ

 

where +
iµ , −

iµ , +
iσ , −

iσ  are the mean and standard deviations of the ith feature value 
for the positive and negative examples, resepectively [4]. 

In this paper we give a feature weighting method that is based on feature ranking. To 
rank the features here several methods are used and the corresponding weight 
calculation is based on this rank. A sample vector which is weighted by the given  
weights is computed via a kernel function. We carried out several experiments on a 
DNA microarray database and a part of the Astral databases of the SCOP protein 
sequence databases. We employed Support Vector Machines (SVM) with kernel 
functions as the classification method to obtain the experimental results. 

The article is organised as follows. In Section 2 we discuss SVMs, feature 
weightings via kernels. In Section 3 we provide a summary of widely-used feature 
ranking methods. Section 4 describes the results of our method on  real-world databases 
then, in Section 5, we discuss these results and their implications. 
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SVM and kernels 
SVM is a supervised binary classifier first introduced by Vapnik et al [1]. Let 

{ }{ }1,1,:),( −∈ℜ∈= yxyxD n
, where x  is a n-dimensional training vector and y  is 

the class label of x . 
nℜ  is called the input space and D is referred to as the training 

database. Training an SVM amounts to solving an optimisation problem that determines 

a linear classification rule bxwxf += ,)( . A test example z  is classified as positive 
(or negative) if 0)( >zf  (or 0)( <zf ). Such a classification rule determines a linear 
hyperplane decision boundary with normal vector w  and bias term b that separates 
positive and negative classes. 

The key part of SVM is the inner product ji xx ,  of two vectors ji xx ,  over nℜ , 
which is used for the classification of samples. Given a feature map Φ  from an input 
space to a (possibly infinite dimensional) dot product space (referred to as the kernel 
feature space), we obtain a inner product )(),( yx ΦΦ . If a function ),( yxκ  is 
symmetric, continuous and positive definite, which is called the kernel function, then 
exist a Φ  mapping so that )(),(),( yxyx ΦΦ=κ . We can directly and efficiently 
compute the kernel values ),( yxκ  without explicitly representing the feature vectors. 
The inner product ji xx ,  in SVM when replaced by ),( yxκ  leads to a linear 
hyperplane in the kernel feature space and a nonlinear one in the original input space. 
This gives us a tremendous computational advantage for high-dimensional feature 
spaces. 

 Let )( nK ℜ  denote the class of kernel functions for the mapping nn ℜ×ℜ  to ℜ . 
This class is not empty, because yxyx T=),(κ  is a trivial kernel function. The 
following proposition provides a way for generating additional kernels from an existing 
kernel.  

Proposition 1 )( nK ℜ  is closed under addition, multiplication, composition of a 
continuous function, and addition and multiplication with a positive scalar, i.e. if 

)(, 21
nK ℜ∈κκ , )(0

mK ℜ∈κ  and mn ℜ→ℜ:ϕ  is continuous, then the following five 
functions again belong to )( nK ℜ . 

i) ),(),(),( 21 yxyxyx κκκ += , 
ii) ),(),(),( 21 yxyxyx κκκ ⋅= , 

iii) δκκ += ),(),( 1 yxyx  for any positive +ℜ∈δ , 
iv) δκκ ⋅= ),(),( 1 yxyx  for any positive  +ℜ∈δ . 
v) ))(),((),( 0 yxyx ϕϕκκ = .■ 

For further reading and details of kernel function properties see [3]. 
Now, we will list the most well-known and useful kernels used in classification tasks 

in the following table. 
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Table 1. Some well-known kernels 
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Weighted kernel functions 

When the inner product is computed, one might weight the features such that more 
important features are given higher weightings than the less important ones. Let 

nℜ  be 

an n-dimensional feature space, and nwww ,,, 21 K  the weights where iw  corresponds to 

the ith feature. Afterwards the weighted inner product of two vectors 
nyx ℜ∈,  is 

evaluated in the following way. Let ),,( 21 nwwwdiagU K=  be a diagonal matrix 

constructed from weights nwww ,,, 21 K . Then UyxT
 is the weighted inner product of 

vectors x and y. 
This idea is also applicable to kernel functions. If κ  is a kernel, then ),( UyUxκ  will 

be a weighted kernel. The following proposition states this in a more general way. 

Proposition 2 Let U be a nm×  matrix and 
nyx ℜ∈,  be two vectors.  If  

)(0
nK ℜ∈κ  is a kernel, then ),(),( 0 UyUxkyxk =  is also a kernel function and belongs 

to )( mK ℜ . 

Proof.  Let the function 
mn ℜ→ℜ:ϕ  be defined by Uxx =)(ϕ . This function is 

continuous and, because )(0
nK ℜ∈κ , ),())(),((),( 00 UyUxyxyx κϕϕκκ ==  is again a 

valid kernel. This follows from v) of Proposition 1. 
 
 

Feature ranking methods 
Here we describe the feature ranking methods which are used in experiments to rank 

the features, so that if a feature is more important or less important in a classification 
then it is ranked accordingly. Most of these methods are traditionally known as feature 
selection methods because they retain only a small number of features from the top of 
the ranked list. With this trick, classification will hopefully be speeded up and be more 
accurate.  
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Table 2. Feature ranking methods used in experiments 
 
Method name Description 
Std. dev. The standard deviation method computes the deviation along the direction of 

the basis vectors. Then it ranks the features according to their values.  
Fisher The Fisher Correlation Coefficient [4] is described in the introduction of this 

article.   
R2W2 This method is based on a minimising generalisation bound through gradient 

descent and is feasible computationally via SVMs. This allows several new 
possibilities: one can speed up time-critical applications and one can perform 
feature selection. This method scales the input parameters with a real-valued 
vector σ , larger values of iσ  indicating more useful features [6]. For 
further details see [5]. 

RFE Recursive Feature Elimination (RFE) is a recently proposed feature selection 
method described in [7]. The method, given that one wishes to have only 

nr < input dimensions in the final decision rule, attempts to find the best 
subset r. The method seeks to choose the ‘best’ r features that lead to the 
largest margin of class separation using an SVM classifier. For each iteration 
of the training, this combinatorial problem is solved in a greedy fashion by 
removing those input features that decrease the margin the least until just r 
input features remain. This is known as backward selection [6].  

L0 Zero-Norm feature selection can be expressed as the following minimisation 
problem: 

rwbxwy

w

ii

pw n

≤≥+⋅
ℜ∈

0
and1)(:subject to

min
 

where { }2,1=p  and r is the desired number of features. This method can be 
approximated by minimizing the zero norm using the 2l -AROM or 1l -
AROM methods, halting the step-wise minimisation when the constraint 

rw ≤
0

 is met [6]. One can then re-train a p-norm classifier on those 
features corresponding to the nonzero elements of w. In this way one is free 
to choose the parameter r which dictates how many features the classifier 
will see. This method is based on SVM. 

FSV In the Feature Selection via the concaVe minimisation (FSV) [8] approach, a 
separating plane is generated by minimising the weighted sum of distances 
of misclassified points to two parallel planes that bound the set, and which 
determine the separating plane midway between them. The number of 
dimensions of the space is used to determine how the plane is minimised. 
SVM is used in this method. 

Entropy The basic concept of entropy in information theory, first introduced by 
Shannon, has to do with how much randomness there is in a signal or in a 
random event. Let )(log)(log)( 222121 ppppfH i −−=  be the entropy 
for the  ith feature, where 21 , pp  is the rate of the positive and negative 
examples in the ith feature, respectively. The feature ranking is based on 
these entropy values.  
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Experimental Results 
We tried out our feature weighting methods on three selected databases, namely two 

biological datasets of the UCI Machine Learning Repository, the AML/ALL leukaemia 
dataset at http://lara.enm.bris.ac.uk/colin and the Structural Classification of Proteins 
(SCOP) database.  

We made use of SVM Light as a classification algorithm, and most of the feature 
ranking methods which are part of SpiderSVM. These algorithms are also available at  
http://www.kernel-machines.org/software.html and http://www.kyb.tuebingen.mpg.de 
/bs/people/spider/index.html, respectively. The Standard Deviation and Entropy 
weighting methods were implemented by us. 

To weight the features, the features are first ranked by each ranking method 
mentioned in the previous section. Afterwards, the ranked features are weighted by the 

iig −= 2)(  monotonic decrease function, i.e. the ith feature of the ranked list is assigned 
a weight of i−2  except in the Fisher method. With the latter, it has its own feature 
weighting procedure. The given weights corresponding to features are stored in a 
diagonal matrix, and it is used for weighting the kernel in the way described above. 

In order to measure the performance of these weighted kernel methods we applied an 
accuracy analysis followed by a receiver operating characteristic (ROC) analysis [11]. 
The accuracy for a method is simply the fraction of the true predictions of the total 
number of predictions. The ROC score is the normalized area under a curve that plots 
sensitivity as a function of specificity for varying classification thresholds. A perfect 
classifier that puts all the positives at the top of the ranked list will receive an ROC 
score of 1, while a random classifier will receive an ROC score of 0.5. 

Ranking a lot of features naturally requires a lot of time. Hence we apply a 
dimensionality reduction method called Locally Linear Embedding (LLE) [15]. This is 
an unsupervised learning method that computes low dimensional, neighbourhood 
preserving embeddings of high dimensional data. We used this on high dimensional 
datasets like the leukaemia dataset and SCOP [14]. Details of this method and the 
Matlab code of the LLE are available at http://www.cs.toronto.edu/~roweis/lle/. 
Because the LLE preserves the neighbourhoods, the SVM classification does not 
change significantly because it is based on the inner product of two vectors.  

The methods were implemented in Matlab and were run on an IBM PC machine with 
a 3GHz Intel Pentium IV processor, 4Gbyte RAM  and a Windows XP operating 
system. 

 
Feature weighting and SVM parameters 

For the SVM classification we chose the Gaussian RBF kernel function with a σ  
parameter defined as the median Euclidean distance in the input space from any positive 
training example to the nearest negative example. The parameter c of SVM was set to 1, 
and a 2-norm with value 0.01 was used. 

 
Tests on the AML/ ALL database 

The challenge here is to distinguish acute myeloid leukaemia (AML) from acute 
lymphoblastic leukaemia (ALL). The databases consist of 47 and 25 bone marrow or 
peripherial blood samples taken from 72 patients of type ALL and AML respectively, 
with 7129 features per sample, also available at http://lara.enm.bris.ac.uk/colin [9]. 
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These samples were produced by AFFymetrix high-density oligonucleotid microarrays 
[10]. 

First of all, we reduced the features from 7129 to 10 using LLE. The training set and 
the test set contained 39 and 34 samples respectively. The results are given in the 
following table and figures. 

 
Table 3. Results for the Leukeamia AML-ALL database  
 

 Unweighted Std. dev. Fisher R2W2 RFE L0 FSV Entropy 
Accuracy 0.67 0.74 0.73 0.88 0.88 0.88 0.59 0.94 
ROC score 0.93 0.98 0.97 0.99 1.00 0.99 0.45 0.99 
Time(s) 0.06 0.03 0.04 0.08 0.03 0.08 0.05 0.05 

Result for leukeamia dataset grouped by methods

0.4

0.5

0.6

0.7

0.8

0.9

1

Unw
eig

hte
d

Std. d
ev

.

Fish
er

R2W
2

RFE L0 FSV

Entr
op

y

A
cc

ur
ac

y 
&

 R
O

C
 s

co
re

Accuracy

ROC score

Results for leukeamia grouped by Accuracy & ROC score

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy ROC score

A
cc

ur
ac

y 
&

 R
O

C
 s

co
re

Unw eighted

Std. dev.

Fisher

R2W2

RFE

L0

FSV

Entropy

 
 

In this database the feature weighting methods perform significantly better than the 
usual unweighted method. As can be seen, the best accuracy results are given by the 
feature weighting algorithm based on entropy. We also significantly improved the ROC 
scores by using a feature weighting method that achieved an ROC score of 1. 

 
Tests on the SCOP databases 

The SCOP databases designed by Jakkoola et al. [13] for the remote protein 
homology are simulated by retaining all members of a target SCOP family from a given 
superfamily [2]. The sequences were selected using the Astral databases 
(http://astral.stanford.edu) [14]. Here, positive training examples are chosen from the 
remaining families in the same superfamily, and negative test and training examples are 
chosen from disjoint sets of folds outside the target family’s fold [12]. Details of the 
datasets are available at http://www.soe.ucsc.edu/research/compbio/discriminative. The 
dataset can also be found at http://cs.columbia.edu/compbio/svm-pairvise. In the 
following Table 4 we summarise the main details of the dataset used. 
 

Table 4. Description of the SCOP datasets 
 

ID Family name 
Positiv 
train 

Negativ 
train 

Positiv 
test 

Negative 
test 

Dimension 
numbers 

SCOP 2.1.1.5 E set domains 94 194 27 39 270 
SCOP 2.44.1.2 Eukaryotic proteases 11 14 140 183 25 

SCOP 3.32.1.13 Extended AAA-ATPase  
domain 43 184 8 32 227 

SCOP 7.41.5.1 Rubredoxin 10 112 9 98 112 
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A numerical database was obtained from this protein sequence database in the 
following way. A protein sequence A is represented by a vector nA aaaF ,,, 21 K= , 
where n is the number of training proteins, and ia  is the similarity score of A and Ai 
proteins by Smith- Watermann algorithm, as implemented on the BioXLP hardware 
accelerator (www.cgen.com). 

Before we carried out the classification procedure, every high-dimensional dataset 
was reduced to an 8-dimensional input space, except for the SCOP 2.44.1.2 dataset 
because its dimensionality was low. 
 

Table 5. Results for the SCOP datasets 
 

 Unweighted Std. dev. Fisher R2W2 RFE L0 FSV Entropy 
 SCOP 2.1.1.5 

Accuracy 0.66 0.68 0.75 0.67 0.67 0.67 0.68 0.67 
ROC score 0.79 0.89 0.88 0.85 0.84 0.84 0.86 0.85 
Time(s) 7.2 7.9 7.9 8.0 8.0 7.8 6.3 8.4 

 SCOP 2.44.1.2 
Accuracy 0.59 0.48 0.52 0.54 0.54 0.54 0.51 0.49 
ROC score 0.35 0.14 0.72 0.47 0.47 0.47 0.70 0.59 
Time(s) 0.13 0.13 0.13 0.14 0.13 0.14 014 0.13 
 SCOP 3.32.1.13 
Accuracy 0.86 0.86 0.81 0.89 0.89 0.89 0.86 0.86 
ROC score 0.85 0.92 0.85 0.93 0.93 0.93 0.87 0.81 
Time(s) 3.0 2.8 2.0 2.5 2.6 2.5 2.4 1.9 
 SCOP 7.41.5.1 
Accuracy 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 
ROC score 0.61 0.80 0.84 0.75 0.75 0.75 0.74 0.73 
Time(s) 0.53 0.64 0.64 0.66 0.66 0.64 0.58 0.43 

 
With these datasets better results were indeed obtained by applying feature weighting 
methods. The ROC scores achieved by using weighted feature methods were 
significantly better than those for the usual unweighted case. The accuracy scores using 
the weighted methods were also better than the baseline but no significant improvement 
was obtained. This may be because there were too many dimensions and too few 
training and test examples for a learning method to work effectively. 
 
Tests on the UCI Machine Learning Repository 

The UCI Machine Learning Repository is a database that contains millions of records 
and thousands of field types widely used in business, medicine, engineering, and the 
sciences. This datasets is available at http://www.ics.uci.edu/~mlearn. We chose the 
Heart and Hepatitis biological and medical databases, which are listed in Table 6. These 
databases were not divided into train and test sets originally, so we used 10-fold cross 
validation for testing.  
 

Table 6. Description of the heart and Hepatitis UCI datasets 
 

Dataset name # Features #Instances Class #1 name Class #2 name 

Heart 13 270 Absence of 
heart disease 

Presence of 
heart disease 

Hepatitis 19 155 Die Live 
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The performance of the feature weighting methods on each of these datasets is 
presented in the table below. In these experiments the baseline unweighted methods 
provided the best results. A reason for this might be because all of these features were 
equally important or that another weighting function should be applied here. 

 
Table 7. Results for the UCI datasets 
  

 Unweighted Std. dev. Fisher R2W2 RFE L0 FSV Entropy 
 HEART 

Accuracy 0.84 0.79 0.82 0.76 0.76 0.76 0.81 0.77 
ROC score 0.91 0.85 0.88 0.85 0.85 0.85 0.89 0.85 
Time(s) 23.0 6.7 7.5 8.5 8.0 8.0 8.9 6.7 

 HEPATITIS 
Accuracy 0.83 0.79 0.81 0.76 0.76 0.76 0.80 0.80 
ROC score 0.92 0.85 0.89 0.82 0.82 0.82 0.83 0.86 
Time(s) 4.9 1.6 1.2 3.3 3.2 3.3 2.0 3.1 

 
 
Conclusions and further work 

Here we introduced a feature weighting method for SVMs that is based on a feature 
ranking methodology. To enable us to do this, several feature ranking procedures were 
applied, and then the weights were assigned to these ranked features. In some real-world 
biological classification experiments we showed that we could obtain more accurate 
predictions using this method, and in a very short time. 

In this paper we focused on feature rankings using the weighting function iig −= 2)( . 
This, of course, is unsuitable in high dimensional features spaces which may be of order 
ten/hundred/thousand, because most of the features are assigned almost zero weights. 
On the other hand, the importance of certain features could not be represented exactly 
by this weighting function as the importance of ranked features did not, for instance, 
decrease in quite the same way as the weighting function. Further study is needed to 
learn the effect of our approach on special databases and to find out whether other good 
methods exist that allow us to determine the weights for each ranked feature. 
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