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ABSTRACT: Using Julian Hook’s theory of Uniform Triadic Transformations as a 

point of departure, I construct a network in which the “distances” between major and 

minor triads may be measured and progressions may be compared. From there, the 

network is used to analyze a portion of the 1992 composition “A Man in a Room, 

Gambling,” by contemporary British composer Gavin Bryars, revealing harmonic 

relationships that may otherwise go unnoticed. 
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[1] Transformational theory enables listeners to conceive of specific musical elements, 

such as pitches or chords, within a structured “space” of possibilities, such that the 

transformation of one element into another of the same type may be imagined as 

motion along a pathway within that space. To a certain extent, the type of object 

suggests the nature of the space and its pathways. For example, it is comfortable to 

think of pitch-class space as a twelve-node network whose pathways correspond to 

transposition or inversion, or of triadic space in which the transformations represent 

the discharge of harmonic functions. However, much creative work has been done to 

define less familiar transformations for which we do not have such intuitions. 

Examples include Lewin on Babbitt’s lists, Gollin on Bartók, Callendar on Ligeti; 

many others could be cited (Lewin 1995; Gollin 1998; Callendar 2007). In these cases 

the special transformational family is suggested by processes specific to a particular 

composition—that is, the recurrence of certain changes may suggest that they are 

structurally integral to a musical space. 



[2] For example, consider the work “A Man in a Room, Gambling” (1992) by the 

contemporary British composer Gavin Bryars.(1) Its final section (or “programme”) is 

composed for pre-recorded voice, clarinet, and a string quartet that mostly plays a 

series of arpeggiating triads. The chord progression of mm. 1–14 is isolated from the 

rest of the work by a break in texture that ends it, suggesting that it is of some formal 

significance. Indeed, we shall see that it serves as a harmonic “model” for four other 

progressions that follow, listed in Example 1. I will therefore refer to these later 

progressions as “variants” of this model. 

[3] Inspecting these progressions, we may notice certain recurring changes of root and 

quality. Both the model and Variant 1 begin by changing A major into C  minor, 

transposing the root by four semitones and reversing the mode, and the same change 

transforms the first triad in Variant 3 (E major) to the second (G  minor). A different 

transformation changes the third to the fourth triad in each of these same progressions: 

transpose the root by three semitones and reverse the mode. These two changes thus 

seem characteristic of the piece. However, the progressions are not otherwise 

transpositions of each other, raising the question of how these characteristic 

transformations befit the progressions as a whole. Since many of the triadic 

successions do not conform to harmonic-functional intuitions, it would seem necessary 

to approach this question with a broad and flexible theoretical framework. 

        

“A Man in a Room, Gambling,” final programme

[4] Just such a framework is the simple algebraic structure that Julian Hook proposed 

to model the entire range of triadic progressions (Hook 2002). He defines a “uniform 

triadic transformation” (henceforth UTT) as an operation that acts on the collection of 

major and minor triads. Each UTT affects all major triads the same way and all minor 

triads the same way (but possibly in a different way than major triads). They are 

expressed in the form <+, m, n> or <−, m, n>: the + or − indicates that the operation 

preserves or reverses the mode of the triad, respectively, and the integers m and n 

indicate how the root is transposed depending on whether the triad is major or minor, 

respectively. For example, the UTT <−, 3, 4> transforms E  major to G  minor and 



G  minor to B  major; <+, 7, 7> transforms C major to G major and C minor to G 

minor, that is, it simply transposes a triad by seven semitones. 

[5] The UTT from any given triad to another is not uniquely determined. For 

example, the transformation from C major to E minor could be <−, 4, 8> 

(the same transformation as the neo-Riemannian Leittonwechsel), but it 

could also be <−, 4, n>, where n is any pc-interval. Hook addresses this 

profligacy by drawing attention to those subgroups of UTTs that are simply 

transitive, and which he calls K(a, b).(2) Example 2 focuses on the K(1,1) 

subgroup, listing the UTTs it contains. (In this and subsequent examples, I 

will use T and E to denote 10 and 11, respectively.) The mode-preserving 

members are simply the twelve transpositions, while each of the 

mode-reversing members transposes the roots of all major triads by n and 

the roots of all minor triads by n + 1. For instance, <−, T, E> transforms D 

major to C minor, and C minor to B major. 

        

Example 2. The simply transitive subgroup K(1,1) of UTTs 

[6] Some formal features of the K(1,1) subgroup make it especially practical and 

intuitive for analysis. Its members, like transpositions, commute. Also, it can be 

generated (that is, every member can be derived) via the repeated application of at 

least one of its mode-reversing members. More specifically, any UTT of the form <−, 

m, m+1> where 2m + 1 is equal to 1, 5, 7, or E, can generate all the members of 

K(1,1).(3) Example 3a shows how the K(1,1) subgroup is completely generated by its 

mode-reversing member <−, 2, 3> (for which 2m + 1 = 5) while Example 3b shows 

how another mode-reversing member, <−, 4, 5> (for which 2m + 1 = 9), generates a 

cycle that does not include all of the members of the subgroup. Such properties make 

it possible to consider the UTTs of K(1,1) as members of a generalized interval 

system (henceforth GIS) that can be used to measure and compare “distances” 

between triads.(4) Restricting transformations to K(1,1) solves the problem of 

profligacy: there is only one possible way to analyze the succession of any two triads. 

For example, the chord progression from C major to B  minor can be described 

within K(1,1) only as <−, T, E>. Indeed, under this restriction <−, T, E> describes 



every succession from a major triad to a minor triad whose root is a major second 

lower, and so we may conceive of this transformation as the generalized-intervallic 

distance between the two triads. 

Example 3a. A cycle of <–,2,3> complete generates the K(1,1) subgroup,  

since 2 + 3 = 5  

   

 

(click to enlarge) 

   Example 3b

[7] This sense of “distance” that one may ascribe theoretically to simply 

transitive subgroups of UTTs is more apparent when one considers that 

certain mode-reversing members of the K(1,1) subgroup can generate all 

the members of that group. Example 4 fixes the cyclic graph of Example 

3a to specific major and minor triads, showing how all 24 are generated 

via the repeated application of <−, 2, 3>.(5) By comparing these two 

examples, we can see how powers of <−, 2, 3> act as intervals within the 

space of the 24 major and minor triads. For example, E  major resides 

six clockwise-steps from C major on Example 4. Therefore, the 

transformation <+, 3, 3> can be expressed, in consideration of our 

established GIS, as <−, 2, 3>6. Similarly, there are nine counterclockwise 

steps from G major to A  minor. This transformation is achieved by the 

        

Example 4



UTT <−, E, 0>, or <−, 2, 3>−9. The cycle in Example 4 may be regarded 

as a single-path network, in the sense that there is only one arrow 

entering and one arrow leaving (via its inverse) each node. Also, it has a 

single generator in the sense that each of these arrows is labeled with the 

UTT <−, 2, 3>n or its inverse, <−, 2, 3>−n, depending on the direction of 

the transformational path. Thus it seems sensible to refer to the distance 

from some triad x to another triad y in Example 4 as the number of steps 

by <−, 2, 3>n or <−, 2, 3>−n from x to y.(6)  

[8] Accepting this notion of distance opens the door to further analogies 

with well-known musical spaces: two-dimensional networks of pitch 

classes, in which each dimension is generated by a different interval.(7) It 

is possible to similarly structure the major and minor triads as a 

multi-path space, where each dimension is generated by a different UTT. 

Example 5 shows a generic model for creating such a graph. As a 

reference, the central point is labeled <+, 0, 0>. Nodes to its right and left 

are generated by the reiteration of a UTT, X and its inverse X−1, and 

nodes in the vertical dimension are generated by the reiteration of another 

UTT, Y and its inverse Y−1. Thus every node is labeled with some 

product of these four UTTs. For the graph to be well formed, X and Y 

must commute, that is, XY = YX,(8) and to make sure the graph is 

comprehensive, X or Y must generate all 24 triads. If X and Y belong to 

K(1,1), these two conditions are easily satisfied. 

        

Example 5. A generic model of a two

[9] Animation 1 illustrates the process of constructing this graph using 

the K(1,1) UTTs X = <−, 4, 5> and Y = <−, 2, 3> (the same that were 

used in Examples 3a and b). The resulting space is copied over onto 

Example 6. Each node is labeled with the UTT that is the product of the 

        



horizontal (X) and vertical (Y) moves that it takes to get there from the 

node labeled <+, 0, 0>. Any triad may be associated with the <+, 0, 0> 

position to produce a network including all 24 triads. Consider, for 

instance, Example 7, which places A major into the <+, 0, 0> position. 

The nodes in the rightmost column correspond to the nodes in the 

leftmost column, because, as shown in Example 3b, <−, 4, 5> applied 

eight times is the same as <+, 0, 0>. In the other dimension, there is a 

similar identity of rows (which are not shown in the example) because 

<−, 2, 3>24 = <+, 0, 0>. Thus both dimensions curve back on themselves, 

making the whole network a torus.  

Example 6. An abstract UTT-space, generated by X=<–,4,5> and 

Y=<–,2,3>  

 

(click to enlarge)  

  

        Example 7

generated by X=<

[10] Within this space, any triadic relationship can be represented as a path made up 

of a series of horizontal and/or vertical steps. I will represent such a path as the 

ordered pair (a, b), where a and b respectively represent the number of horizontal and 

vertical steps that constitute it. Because <−, 2, 3> alone generates all 24 major and 

minor triads, this path could always be completely vertical. For example, the 



transformation of A major to D  minor can be expressed as <−, 2, 3>17 (recall 

Example 3a), totaling seventeen upward steps within the space; that is (0, +17). 

Similarly, a path of seven downward steps can be taken; that is, (0, −7), via <−, 2, 

3>−7. However, because every triad appears as a node in every vertical column, there 

are multiple paths from one triad to another. Therefore, Animation 2 shows how, by 

combining dimensions, this same transformation can follow a path of two steps to the 

right and one step down, (+2, −1), reducing the total number of steps to three. This 

path expresses the UTT identity <−, 6, 7> = <−, 4, 5>2<−, 2, 3>−1. The same series of 

moves also transforms G major to C  minor and C major to F  minor, as well as E 

minor to B major and D minor to A major. Therefore, we can see that (+2, −1) will 

always result in the same triadic transformation: when starting from any major triad, 

reverse the mode and transpose the root by T6; when starting from any minor triad, 

reverse the mode and transpose the root by T7. We can also see how an odd number of 

moves through our space results in a reversal of mode and, thus, corresponds with 

traditional inversion; an even number of moves results in a preservation of mode and, 

thus, corresponds with traditional transposition. In general, we may now 

conceptualize triadic distances in Example 7 in terms of the total number of vertical 

and horizontal steps from one point to another. In general, since each triad has 

multiple representations on the graph, there are many possible pathways between any 

two given triads. Sometimes the path involving the least number of steps may be of 

the greatest analytical interest, but not necessarily, for instance if a different path with 

more steps is reproduced between other triad pairs in the piece. We shall see that the 

latter situation obtains in this passage. 

 

Animation 2  

        Example 8. Harmonies and UTTs which define the harmonic 

in “A Man in a Room, Gambling,”



 

(click to view the animation) 

[11] Although any two commuting UTTs would serve equally well in creating such 

spaces, I have three specific reasons for choosing <−, 4, 5> and <−, 2, 3>. First, the 

consecutive application of these two UTTs results in a direct transposition by perfect 

fifth, a familiar functional progression. (In this regard, the resulting network also 

resembles the Tonnetz constructed from the intervals X = 3 and Y = 4, whose 

combination is also a perfect fifth.) Second, I have shown that the K(1,1) subgroup to 

which these UTTs belong can be used to analyze characteristic triadic transformations 

in two other works by Bryars, both of which were composed in the same year (Roeder 

and Cook 2006; Cook 2006).(9) My final reason is that <−, 4, 5> and <−, 2, 3> are the 

K(1,1) members that describe the two transformations that I identified above as 

characteristic in the final programme of “A Man in a Room, Gambling.” Indeed, 

while this programme exhibits a greater diversity of triadic transformations than the 

other passages I have analyzed, analyzing it in terms of pathways in a 

two-dimensional K(1,1) space reveals a surprising consistency to its progressions. 

[12] Example 8 copies over the model and four variants of Example 1, and identifies 

the progression from each chord to the next with a K(1,1) UTT. Every one of these 

chord progressions can be represented by a UTT-chain of the form: <−, 4, 5>, <+, m, 

m>, <−, 2, 3>, <−, n, n + 1>, <−, 2, 3> (as shown in the topmost part of the example). 

The unchanging UTTs involved in the chain are those characteristic ones that were 



used to generate the UTT-space of Example 6; that is, they are each a single step in 

one direction or the other. The UTTs in the second and fourth positions vary 

throughout the piece, but they can all be understood as members of K(1,1), and they 

always retain their respective mode-preserving or mode-reversing characteristics. 

Note that the second and fourth variant progressions present the fixed UTTs of the 

chain in retrograde. That is, the <<−, 4, 5>, X, <−, 2, 3>, Y, <−, 2, 3>> series is 

retrograded to <<−, 2, 3>, W, <−, 2, 3>, Z, <−, 4, 5>>. Loosely speaking, the 

triad-chains of Variants 2 and 4 are RI-chains of that found in the model (they are 

labeled RICH on the example, and the transformational chain is shown in the top of 

the respective progressions). Although the repetitions of the characteristic <−, 4, 5> 

and <−, 2, 3> UTTs within each progression are striking, especially since variants 

begin with either major or minor triads, this analysis leaves open the question of how 

the changing UTTs—the second and fourth in each variant progression—function. 

[13] To begin answering this question, Animation 3 traces a transformational path for 

the model progression (PROG. 01, mm. 1–14) through the two-dimensional 

UTT-network constructed from <−, 4, 5> and <−, 2, 3>. Each chord in the progression 

appears as a colored node when it begins on the soundtrack. The five UTTs in the 

series are animated as five changes of location from one node to another, and each is 

identified (at the arrival of each new chord) in the box labeled “Resulting UTT.” Each 

change comprises motion along one or both directions, and is summarized at the 

bottom of the animation as an ordered pair that lists the number of unit steps in each 

dimension. As in previous examples, each <−, 4, 5>, or its inverse, corresponds to one 

step to the right or left on the horizontal axis, and each <−, 2, 3>, or its inverse, 

corresponds to one step up or down on the vertical axis. So the transformation <−, 4, 

5> of A major to C  minor is represented as (+1, 0), signifying one horizontal step to 

the right and no vertical steps. Similarly, the transformation <+, 4, 4> of C  minor to 

F minor is analyzed as (+3, +1), signifying three horizontal steps to the right and one 

vertical step up. (As is evident on Example 7, C  minor to F minor could also be 

analyzed as (+2, −2), but that would also involve four steps in total.) The entire 



progression involves eight horizontal steps and four vertical steps, totaling twelve 

steps in all. 

Animation 3  
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[14] Animation 4 similarly analyzes the remainder of the programme, starting from 

where Animation 3 left off (m.15). It traces paths for Variants 1 to 4 in the same space, 

tallying the total number of X- and Y-moves. The only difference between the 

UTT-network in Animation 3 and that of Animation 4 is the particular triad used to 

initiate the space (that which is input into the <+, 0, 0> node). In this analysis, the 

remark above ([9]) about alternative paths becomes pertinent. It is not the shortest 

distance between chords that interests us. Rather, we are interested in discovering to 

what extent each variant progression can be heard to repeat the structure of the model 

progression. By studying the variants in this way we are strengthening their ties to the 

model by limiting the number of possible paths between chords. In each case, the 

totals of the individual moves are 1 + n + 1 + m + 1. Of course, this structure reflects 

the structure of the UTT-chain that defines our harmonic model and variants, where 

the transformations in the first, third, and final positions are fixed and unchanging, 

and the transformation in the first position differs from those in the third and final, 

which are identical. However, it is very striking that, even though X- and Y-moves are 

not the same UTTs at all, the model and every variant can be analyzed into twelve 



total X- or Y-moves. In other words, even though the second and fourth UTTs in each 

variant differ from those in the other, and so the six-triad series varies considerably 

from variant to variant, the variants exhibit perfect consistency in this way. An even 

more striking consistency is that the second and fourth UTTs in each variant always 

involve four and five X- and Y-moves respectively, or vice versa, so that the twelve 

moves are always expressed as 1 + 4 + 1 + 5 + 1 or its retrograde. 

[15] This analysis has shown that Hook’s suggestion to treat a simply transitive UTT 

subgroup as a generalized interval system is indeed productive. Adhering to Lewin’s 

conditions for constructing a transformational space, I first generated a single-path 

UTT-network in which various triadic relationships may be explored. By then 

incorporating a second dimension to this space, while still restricting the UTTs to the 

simply transitive group, I offered a way of measuring a kind of “distance” between 

any two triads. My representation of the seemingly unrelated chord progressions in “A 

Man in a Room, Gambling” within this UTT-network revealed repetitions of the 

opening progression that could have otherwise gone unnoticed. Perhaps 

UTT-networks, similarly constructed from characteristic transformations, may be able 

to account for various other types of contemporary, unorthodox progressions in other 

musical genres that make extensive use of triads, including popular music and jazz. 
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