Guy Capuzzo*

Maximally Alpha-Like Operations

KEYWORDS: Maximally alpha-like operations, alpha, Z-relation, Z-pair, M-relation, TWOs, mappings, pcsets, transformational network

ABSTRACT: Any two Z-related set-classes will map onto one another under 1) $\mathrm{T}_{\mathrm{n}} \mathrm{M}$ or $\mathrm{T}_{\mathrm{n}} \mathrm{MI}$, or 2) $\mathrm{T}_{\mathrm{n}} \mathrm{M}$ or $\mathrm{T}_{\mathrm{n}} \mathrm{MI}$ in tandem with Morris's alpha operations, or 3) maximally alpha-like operations, the original contribution of the present paper. This brief "research notes" paper explores the theoretical formulation and analytical application of maximally alpha-like operations.

Received May 2008

Bibliography | Appendix: Definitions

[1] Example 1

shows an excerpt from a Dallapiccola song. ${ }^{(1)}$ The excerpt contains four chords, labeled X , $\mathrm{Y}, \mathrm{T}_{6}(\mathrm{Y})$, and $\mathrm{T}_{6}(\mathrm{X})$. The union of X and Y forms the pc aggregate, as does the union of $\mathrm{T}_{6}(\mathrm{Y})$ and $T_{6}(X)$. The passage resists an overarching

Example 1. Dallapiccola, Quattro Liriche de Antonio Machado, III (1948), mm. 80-85

$\underbrace{\mathrm{X} \quad \mathrm{Y}} \underbrace{\mathrm{T}_{0}(\mathrm{Y})} \mathrm{T}_{0}(\mathrm{X})$
aggregate aggregate

transformational
network such as that
at the bottom of
Example 1 because
there is no $\mathrm{T}_{\mathrm{n}}, \mathrm{T}_{\mathrm{n}} \mathrm{I}$,
$\mathrm{T}_{\mathrm{n}} \mathrm{M}$, or $\mathrm{T}_{\mathrm{n}} \mathrm{MI}$
operation that will
map the X and Y
forms onto each
other. The dashed
arrows in the
network represent
this limitation.
[2] The reason why
X and Y cannot map
onto one another is
that they are
Z-related. ${ }^{(2)}$
However, not all
Z-pairs (two
Z-related scs) work
this way. To
explain, I shall
divide the
twenty-three Z-pairs
(under the
traditional
equivalence
operations T_{n} and
$\mathrm{T}_{\mathrm{n}} \mathrm{I}$) into three
categories. Example

2 shows the first category,

Z-related/M-related.
Here each sc maps
under $\mathrm{T}_{\mathrm{n}} \mathrm{M}$ or $\mathrm{T}_{\mathrm{n}} \mathrm{MI}$ onto the other sc in the same Z-pair; the two scs are thus

Z-related and
M-related. ${ }^{(3)}$
Example 3 shows the second category, Z-related/M-variant.

Here each sc maps under $\mathrm{T}_{\mathrm{n}} \mathrm{M}$ or $\mathrm{T}_{\mathrm{n}} \mathrm{MI}$ onto a sc in a
different Z-pair
(thus the term
"variant"). Example
4 shows the third
category,
Z-related/M-invaria
$n t$. Here each sc in the Z-pair maps onto itself under $\mathrm{T}_{\mathrm{n}} \mathrm{M}$ or $\mathrm{T}_{\mathrm{n}} \mathrm{MI}$ (thus the term "invariant"). This is perhaps the most restrictive of the three categories, in that each sc can only
map onto itself. The
Z-pair in Example 1,
6-Z28/6-Z49,
belongs to this
category. ${ }^{(4)}$

Example 2.

Z-related/M-related scs

(click to enlarge)

Example 3.
Z-related/M-variant scs

Solid line: Z-relation

Dashed line: M-relation

Example 4.

Z-related/M-invariant scs

Solid line: Z-relation
Dashed line: M-relation

$6-\mathrm{Z} 12=\quad$ 6-ZA1

$6-\mathrm{Z} 23 \longrightarrow \quad$ 6-Z45

(click to enlarge)
(click to enlarge)
[3] Robert Morris has noted that the Z-relation may appear or disappear depending on the canon of operations in use. ${ }^{(5)}$ This is evident in Example 2, where scs in Z-pairs that do not relate by T_{n} or $\mathrm{T}_{\mathrm{n}} \mathrm{I}$ do relate by $\mathrm{T}_{\mathrm{n}} \mathrm{M}$ or $\mathrm{T}_{\mathrm{n}} \mathrm{MI}$. To this end, Morris develops a number of operations designed to erase the Z-relation. The most often cited of these operations is alpha (α), whose mappings are

$$
\begin{gathered}
\alpha 1=(01)(23)(45)(67)(89)(\mathrm{AB}) \\
\text { or } \\
\alpha 2=(12)(34)(56)(78)(9 \mathrm{~A})(\mathrm{B} 0) \cdot{ }^{(6)}
\end{gathered}
$$

For $\alpha 1$, Ian Quinn notes, "each pc in the even whole-tone collection gets transposed up a semitone, and each pc in the odd whole-tone collection down a semitone., ${ }^{(7)}$ For $\alpha 2$, each pc in the even whole-tone collection is transposed down a semitone, and each pc in the odd whole-tone collection is transposed up a semitone. Applying $\alpha 1$ to a pcset X may yield quite different results than applying $\alpha 2$ to X . For instance, if $\mathrm{X}=$ $\{012478\}$, a member of 6-Z17[012478], applying $\alpha 1$ to X yields $\{013569\}$, a member of sc $6-\mathrm{Z} 28[013569]$. However, applying $\alpha 2$ to X yields $\{12378 \mathrm{~B}\}$, another member of 6-Z17. The fact that 6-Z17 and 6-Z28 belong to the same category of Z-pairs (cf. Example 4) suggests that α may be of use in creating mappings for the Z-pairs in Examples 3 and 4.
[4] To test this hypothesis, Example 5 applies α to the scs in Example 3. The result is clear: α maps (the pcsets of) four of the eight Z-pairs onto their Z partners, thus erasing the Z-relation for these scs (6-Z3/6-Z36, 6-Z25/6-Z47, 6-Z13/6-Z42, 6-Z50/6-Z29). The four Z-pairs at the bottom of Example 5 do not map onto their Z-partners under α (6-Z4/6-Z37, 6-Z26/6-Z48, 6-Z24/6-Z46, 6-Z39/6-Z10). In like fashion, Example 6 applies α to the scs in Example 4. On the one hand, α resolves the Z-relations between 5-Z12/5-Z36, and between their abstract complements, 7-Z12/7-Z36. On the other hand, α turns the Z-related/M-invariant hexachords into a new set of Z-related/M-variant hexachords (the set is new because the variances differ from those in Examples 3 and 5). The upshot is that the Z-related/M-invariant hexachords are still unable to map onto their Z-partners.

Example 5. Adding α to the Z-related/M-variant scs
Example 6. Adding α
to the
Z-related/M-variant

Solid line: Z-relation Dashed line: M-relation
Dotted line: α

Dashed line: M-relation Dotted line: α

(click to enlarge)

(click to enlarge)
[5] The success of α in resolving every Z-relation save for four Z-pairs in Example 5 and four Z-pairs in Example 6 prompts me to create maximally α-like operations for those Z-pairs. ${ }^{(8)}$ By "maximally α-like," I am imagining operations whose cycles contain as many interval-class 1 s (ic 1s) as possible, since the cycles of α consist of six ic 1s. The ic 1 cycles result in a "small" voice-leading distance between two α-related hexachords-no more than six ics of "work" are required to "move between" them. ${ }^{(9)}$ As a result, maximally α-like operations will come as close as possible to six ics of work in relating hexachords. Ideally, a maximally α-like operation will contain 5 ic 1s, but we shall see that certain cases permit only 4 or even 3 ic 1s. The following sections explore maximally α-like operations in detail.
[6] Let us return to Example 1. There, $\mathrm{X}=\{02458 \mathrm{~B}\}$ and $\mathrm{Y}=\{13679 \mathrm{~A}\}$. The maximally α-like operation

$$
28 \leftrightarrow 49.1=(01)(23)(\underline{47})(56)(89)(\mathrm{AB})
$$

maps X onto Y and vice versa. The label " $28 \leftrightarrow 49.1$ " indicates that this operation maps the $6-\mathrm{Z} 28$ member X onto the $6-\mathrm{Z} 49$ member Y and vice versa. ". 1 " indicates that this is the first of two operations that will map X onto Y and vice versa. $28 \leftrightarrow$ 49.1 is maximally α-like because its cycles contain five ic $1 \mathrm{~s}-(01)$, (23), (56), (89), (AB)—and one ic 3-(47). Underlines indicate the non-ic 1 cycles.
[7] Example 7 lists a second maximally α-like operation

Example 7. Two maximally α-like operations

$$
28 \leftrightarrow 49.2=(\underline{09})(12)(34)
$$

$$
(56)(78)(\mathrm{AB})
$$

(click to enlarge)
that also maps X onto Y and vice versa. $28 \leftrightarrow 49.2$ also contains five ic $1 \mathrm{~s}-$ (12), (34), (56), (78), (AB)—and one ic3-(09)—and is thus as α-like as $28 \leftrightarrow 49.1$. In the abstract, the choice between $28 \leftrightarrow 49.1$ and 28 $\leftrightarrow 49.2$ is essentially arbitrary, but in a specific musical context, factors such as instrumentation, register, and voicing may suggest one operation over another.
[8] Example 8 renotates the transformational network of Example 1,

Example 8. Redo of the transformational network in Example 1 using $28 \leftrightarrow 49$

Diagonal arrows:
$\mathrm{X} \rightarrow \mathrm{T}_{6}(\mathrm{Y})=\mathrm{T}_{6} 28 \leftrightarrow 49$ (right-to-left orthography: first $28 \leftrightarrow 49$, then T_{6})
$\mathrm{T}_{4}(\mathrm{Y}) \rightarrow \mathrm{X}=28 \leftrightarrow 49 \mathrm{~T}_{6}$
$\mathrm{Y} \rightarrow \mathrm{T}_{6}(\mathrm{X})=\mathrm{T}_{6} 28 \leftrightarrow 49$
$\mathrm{T}_{6}(\mathrm{X}) \rightarrow \mathrm{Y}=28 \leftrightarrow 49 \mathrm{~T}_{6}$
(click to enlarge)
using $28 \leftrightarrow 49$. Because
the registral spacing of the piano chords does not correspond to either of the $28 \leftrightarrow 49$ operations, I use
the generic label $28 \leftrightarrow 49$
as opposed to the more
specific $28 \leftrightarrow 49.1$ or 49.2 .
The $28 \leftrightarrow 49$ operation
allows us to assert the
relations that were not
possible in Example 1's
network. By reading the
network clockwise
beginning from X , we
follow the chronological procession of the hexachords in Example 1,
<X, Y, $\mathrm{T}_{6} \mathrm{Y}, \mathrm{T}_{6} \mathrm{X}>$, and
their respective
transformations $<28 \leftrightarrow 49$,
$\mathrm{T}_{6}, \mathrm{~T}_{6} 28 \leftrightarrow 49 \mathrm{~T}_{6}>$.
[9] A contextual factor in the definition of maximally $\quad \alpha$-like operations involves the two pcsets that will map onto one another. Up to this point, the $28 \leftrightarrow 49$ operations have mapped X $=\{02458 B\}$ onto its literal
complement, $\mathrm{Y}=$ \{13679A\}. However, to map X onto T 1 of $\mathrm{Y}=$ \{2478AB \}, for example, it will not be possible to define a maximally α-like operation (1-to-1 and onto) since X and T 1 of Y share common tones. A simple workaround involves retaining the already-defined $28 \leftrightarrow 49$ operations, then transposing or inverting the resulting pcset. Because maximally α-like operations do not commute with T_{n} or $\mathrm{T}_{\mathrm{n}} \mathrm{I}$, the initial choice of orthography must be adhered to. Throughout this paper, I use right-to-left orthography. For example, the compound operation T1 $28 \leftrightarrow 49$ maps X onto T1 of Y first through the application of $28 \leftrightarrow 49$ to X (which maps X onto Y), and second through the application of T 1 to Y .
[10] Having defined maximally α-like operations for 6-Z28/6-Z49, I now proceed to the Z-pair 6-Z17/6-Z43. Example 9 grounds the discussion with a passage from Carter's Retrouvailles. Like the Dallapiccola excerpt in Example 1, Retrouvailles features an opening chord X with its literal complement Y , followed by transformations of X and Y that form a second aggregate. Here $\mathrm{X}=\{03489 \mathrm{~A}\}$ and Y $=\{12567 \mathrm{~B}\}$, and the lone maximally α-like operation that maps X onto Y (and vice versa) is

$$
17 \leftrightarrow 43=(01)(23)(45)(\underline{69})(78)(\mathrm{AB})(5 \text { ic } 1 \mathrm{~s}, 1 \text { ic } 3)
$$

This operation permits the transformational network at the bottom of Example 9, which strongly recalls the network in Example 8. By reading the Example 9 network clockwise beginning from X , we follow the chronological procession of the hexachords, <X, Y, $\mathrm{T}_{\mathrm{B}} \mathrm{I}(\mathrm{X}), \mathrm{T}_{\mathrm{B}} \mathrm{I}(\mathrm{Y})>$.

Example 9. Carter, Retrouvailles (2000), mm. 5-10

Sc: \quad 6-Z17 6-Z43 \quad 6-Z17 \quad 6-Z43

Transformational network

Example 10. Webern, Op. 7, No. 2
(1910)
(Forte 1990, 249)

Chord $2 \rightarrow$ Chord 3: $12 \leftrightarrow 41 \mathrm{~T}_{5} \mathrm{I}$
Chord $3 \rightarrow$ Chord 2: TsI $12 \leftrightarrow 41$
(click to enlarge)
(click to enlarge)
[11] I now define the single maximally α-like operation for the Z-pair 6-Z12/6-Z41. Example 10 provides a musical context for the discussion, reproducing a passage that Allen Forte discusses in detail. ${ }^{(10)}$ Forte observes two transformational relations among the chords in Example 10: first, that chord 3 is T_{9} of chord 1, and second, that chord 3 is $\mathrm{T}_{5} \mathrm{I}$ of the literal complement of chord 2 . The following operation formalizes Forte's second observation:

$$
12 \leftrightarrow 41=(\underline{03})(12)(45)(67)(\underline{8 B})(9 \mathrm{~A})(4 \text { ic } 1 \mathrm{~s}, 2 \text { ic } 3 \mathrm{~s}) .
$$

Chord 2 is the $6-\mathrm{Z} 41$ member $\{04567 \mathrm{~A}\}$ and chord 3 is the $6-\mathrm{Z12}$ member $\{234689\}$. $12 \leftrightarrow 41$ maps $\{234689\}$ onto its literal complement $\{0157 \mathrm{AB}\}$ and vice versa. The arrows at the bottom of Example 10 indicate the T_{9} relation from chord 1 to chord 3, and the $\mathrm{T}_{5} \mathrm{I} / 12 \leftrightarrow 41$ relations between chords 2 and $3 .{ }^{(11)}$
[12] Example 11 grounds the discussion of the final pair of Z-related/M-invariant hexachords,

6-Z23/6-Z45, with a second passage discussed by Forte. ${ }^{(12)}$ The passage contains an opening chord $\mathrm{X}=\{02359 \mathrm{~B}\}$ followed by T_{2} of X's literal complement, \{03689A\}. Because the chords share pcs, a 1-to-1 operation

Example 11. Stravinsky, "Sacrificial Dance"
from The Rite of Spring (1921 edition), R3

(click to enlarge)
from one to the other is not possible. For this reason, I shall list the two maximally $\quad \alpha$-like operations that map $X=\{02359 B\}$ onto its literal complement \{14678A\}:

$$
23 \leftrightarrow 45.1=(\underline{07})
$$

(12) (34) (56) (89)
(AB) (5 ic $1 \mathrm{~s}, 1$ ic 5) and
$23 \leftrightarrow 45.2=(01)$
(27) (34) (56) (89) $(A B)(5$ ic $1 \mathrm{~s}, 1$ ic 5$)$.

| Example 12 | lists |
| :--- | ---: | ---: |
| maximally | α-like |
| operations for | the |
| remaining | |
| hexachords | in | Example 5.

[13] In this brief "research notes" paper, I have explored ways of mapping any Z sc onto its Z partner. For Z-related/M-related scs (Example 2), this is accomplished by $T_{n} M$ or $T_{n} M I$. For four of the eight Z-related/M-variant Z-pairs (Examples 3 and 5) and two of the six Z-related/M-invariant Z-pairs (Examples 4 and 6), this is accomplished by a combination of $\alpha, T_{n} M$, and/or $T_{n} M I$. Finally, for the remaining Z-related/M-variant hexachords (Example 5) and Z-related/M-invariant hexachords (Example 6), this is accomplished by the primary contribution of this paper, maximally α-like operations.

Example 12. Maximally α-like operations
for the remaining Z-pairs in Example 5

Example 13. Maximally α-like operat in beat-class space

```
6-Z24/6-Z46
{012469} \in 6-Z46
{3578AB} \in6-Z24
24}\leftrightarrow46 (B0) (A1) (23) (45) (67) (89
```

6-Z26/6-Z48
$\{013578\} \in 6-\mathrm{Z} 26$
$\{2469 \mathrm{AB}\} \in 6-\mathrm{Z} 48$
$26 \leftrightarrow 48.1 \quad$ (B0) (12) (34) (56) (7A) (89)
$26 \leftrightarrow 48.2$ (B0) (A1) (23) (45) (67) (89)
N.B.: $24 \leftrightarrow 46$ and $26 \leftrightarrow 48.2$ are identical
6-Z10/6-Z39
$\{013457\} \in 6-\mathrm{Z} 10$
$\{2689 \mathrm{AB}\} \in 6-\mathrm{Z} 39$
$10 \leftrightarrow 39 \quad(\mathrm{BO})(\mathrm{A} 1)(23)(49)(56)(78)$
5 ic $1 \mathrm{~s}, 1$ ic3
5 ic $1 \mathrm{~s}, 1$ ic 3

5 ic 1s, 1 ic3

Diagonal arrows:
$\mathrm{X} \rightarrow \mathrm{T}_{4}(\mathrm{Y})=\mathrm{T}_{6} 28 \leftrightarrow 49$ (right-to-left orthography)
$\mathrm{T}_{\mathrm{s}}(\mathrm{Y}) \rightarrow \mathrm{X}=28 \leftrightarrow 49 \mathrm{~T}_{\mathrm{s}}$
$\mathrm{Y} \rightarrow \mathrm{T}_{4}(\mathrm{X})=\mathrm{T}_{6} 28 \leftrightarrow 49$
$\mathrm{T}_{4}(\mathrm{X}) \rightarrow \mathrm{Y}=28 \leftrightarrow 49 \mathrm{~T}$,

(click to enlarge)
6-Z4/6-Z37
$\{012456\} \in 6-Z 4$
$\{3789 \mathrm{AB}\} \in 6-\mathrm{Z} 37$
$4 \leftrightarrow 37.1 \quad(\mathrm{BO})(91)(\mathrm{A} 2)(34)(58)(67) \quad 3 \mathrm{ic} 1 \mathrm{~s}, 2$ ic $4 \mathrm{~s}, 1$ ic 3
$4 \leftrightarrow 37.2 \quad(\mathrm{BO})(\mathrm{AD})(23)(48)(59)(67) \quad 3$ ic $1 \mathrm{~s}, 2$ ic $4 \mathrm{~s}, 1$ ic 3
(click to enlarge)
[14] There exist a number of avenues for future work with maximally α-like operations. I begin with spaces other than pc-space. First, maximally α-like operations can be defined for pitches in pitch-space, or beats in beat-class (bc) space. Bc-space is particularly fertile ground for the development of new operations since, to date, theorists have defined bcsets primarily in terms of T_{n} and T_{n} I. ${ }^{(13)}$ Example 13 illustrates one such application, modeled on the $28 \leftrightarrow 49$ operation (cf. §6 and Examples 7-8). The snare drum projects two mod-12 bc aggregates. First, $\mathrm{X}=$ $\{02458 \mathrm{~B}\}$ precedes its $28 \leftrightarrow 49$ transformation, $\mathrm{Y}=\{13679 \mathrm{~A}\}$. Second, T_{6} of $\mathrm{Y}=$ $\{790134\}$ precedes T_{6} of $\mathrm{X}=\{68 \mathrm{AB} 25\}$. The network in Example 13 is isographic with that in Example 8, and the passage in Example 13 is isographic in bc-space to the passage in Example 1 in pc-space.
[15] Returning to traditional pc-space, maximally α-like operations bear a number of similarities to models of fuzzy T_{n} and $\mathrm{T}_{\mathrm{n}} \mathrm{I} .{ }^{(14)}$ For the latter models, the benchmarks are the traditional "crisp" T_{n} and $\mathrm{T}_{\mathrm{n}} \mathrm{I}$ operations, and offset ("degrees of divergence") is measured from those cycles. In like fashion, maximally α-like operations measure offset from α by specifying the number and "size" of non-ic 1 ics. ${ }^{(15)}$

Return to beginning of article

Appendix: Definitions

DEF 1: Z-relation: Two pcsets or scs are Z-related if they share an ic vector but do not relate by T_{n} and/or $\mathrm{T}_{\mathrm{n}} \mathrm{I}$. The standard gauge of $\mathrm{T}_{\mathrm{n}} / \mathrm{T}_{\mathrm{n}} \mathrm{I}$ equivalence is assumed.

DEF 2: Z-pair: Two Z-related pcsets or scs ("Z-partners").

DEF 3: The two scs in a Z-pair are one of the following:
Z-related $/ M$-related (M maps each sc in the Z-pair onto the other sc in the same Z-pair);

Z-related/M-variant (M maps each sc in the Z-pair onto a sc in a different Z-pair); Z-related/M-invariant (M maps each sc in the Z-pair onto itself).

DEF 4: An operation is a mapping that is 1 -to- 1 and onto.

DEF 5: Alpha (α) is an operation whose cycles are $\alpha 1=(01)(23)(45)(67)(89)(A B)$ or $\alpha 2=(\mathrm{B} 0)(12)(34)(56)(78)(9 \mathrm{~A})($ Morris 1982).

DEF 6: A maximally α-like operation is an operation whose cycles mimic those of α as closely as possible by containing the maximal number of ic 1 cycles. An example is (01) (23)(47)(56)(89)(AB). Underlines indicate non-ic 1 cycles.

