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[1] This response addresses two topics in Michael Buchler’s article “Reconsidering 

Klumpenhouwer Networks,” namely relational abundance and the issue of hierarchy 

and recursion. In the abstract preceding his essay Buchler states that “K-nets also 

enable us to relate sets and networks that are neither transpositionally nor 

inversionally equivalent, but this is another double-edged sword: as nice as it is to 

associate similar sets that are not simple canonical transforms of one another, the 

manner in which K-nets accomplish this arguably lifts the lid off a Pandora’s Box of 

relational permissiveness.” I will confine my remarks to K-nets and their applicability 

to George Perle’s compositional theory of twelve-tone tonality. In so doing, I hope to 

demonstrate that not only are K-nets “nice” to use in associating similar sets, they are 

highly efficient tools in a Perlean context.  

K-nets and Cyclic Sets  

[2] In order to establish the efficacy of K-nets in Perlean theory, we must first define 

cyclic sets, arrays, and axis-dyad chords. A cyclic set combines two inversionally 

related interval cycles, such as interval 7 and interval 5. When the members of the two 

cycles are placed in alternation, every pair of alternating pcs shows a consistent 

difference, representing the formative interval cycle. In Figure 1 the pcs in open 

noteheads show the cyclic interval 7, and the alternating pcs in closed noteheads show 

the inversionally related cycle 5.  



Figure 1. Cyclic set 2,9 generated by alternating inversionally related interval cycles 

7 and 5 

Additionally, every pair of adjacent pcs forms a sum. Three adjacent pcs form two 

so-called tonic sums, which repeat throughout the cyclic set. In Figure 1 the three 

bracketed pcs 0-2-7 yield the tonic sums 2 and 9, which repeat with every trichordal 

segment. The second bracketed pcs 9-5-4 also sum to 2 and 9. The recurring pair of 

tonic sums provides the cyclic set its name; the cyclic set in Figure 1 is thus identified 

as 2,9. Finally, the difference between the tonic sums provides the underlying interval 

cycle (9-2=7).  

[3] The trichordal segments in Figure 1 belong to two different set classes, 3-9 (027) 

and 3-4 (015). As such, they are neither transpositionally nor inversionally equivalent. 

Yet a declaration of non-equivalence seems counterintuitive, since both sets derive 

from the same symmetrical cyclic set and thus share the same internal structure. The 

K-nets in Figure 2a clearly display this relationship. These networks are strongly 

isographic; that is, they have identical arrow configurations and associated T and I 

transformations. Moreover, all trichords in the 2,9 cyclic set are strongly isographic 

since they arise from the same source, the 2,9 cyclic set. Any three adjacent pcs from 

this set can be fitted into the nodes of the more abstract K-graph in Figure 2b. This 

K-graph efficiently displays the recursion inherent in the 2,9 cyclic set.  

   

Figure 2a. Strongly isographic K-nets of 
trichordal segments of cyclic set 2,9  

           
    

Figure 2b. 
K-graph of any 
trichordal 
segment of cyclic 
set 2,9  



[4] A different alignment of the ascending and descending interval 7 cycles from 

Figure 1 produces a new pair of repeating tonic sums, as shown in the 0,7 cyclic set of 

Figure 3.  

Figure 3. Cyclic set 0,7 generated by rotating cyclic set 2,9 

Although all trichordal segments within this cyclic set will be strongly isographic, 

they will not share this relationship with trichordal segments from the 2,9 cyclic set of 

Figure 1. Instead, the bracketed segments drawn from the two cyclic sets are 

positively isographic; that is, they share identical T-values between corresponding 

nodes but a consistent difference between their I-values, as shown in Figure 4. In 

these two K-graphs the identical T-values represent the interval 7 cycle underlying 

both cyclic sets, while the difference of ten (t) in both of their corresponding I-values 

represents the difference between the tonic sums in the two cyclic sets. This 

difference results from rotating the upper interval cycle ten times clockwise (or two 

times counter-clockwise) from the original alignment in Figure 1, and is expressed as 

<Tt>.  

Figure 4. Positively isographic K-graphs of trichordal segments of Perle cycles 2,9 

and 0,7 



 

[5] Buchler opines that “If two trichords ... share even a single interval class, they can 

be shaped into a pair of isographic networks, and that isography can (willy-nilly) be 

construed as either positive or negative” [paragraph 33]. I contend, however, that 

these K-graphs exhibit the specific and recursive relationships between the two cyclic 

sets and all their trichordal segments more succinctly and completely than any other 

analytical vehicle presently available.  

K-nets, Arrays, and Axis-dyad Chords  

[6] Any two cyclic sets in a vertical alignment create an array, which takes its name 

from the combined cyclic sets. Figure 5a shows the array 2,9/0,7 formed from the 

cyclic sets discussed above, with the array’s corresponding K-net in Figure 5b. Just as 

the interval cycles within a cyclic set may rotate in relation to one another, the cyclic 

sets within the larger array may also rotate, creating a variety of alignments. The 

K-net in Figure 5b demonstrates the types of relationships among tonic sums. The 

linear pairs comprise the tonic sums of the cyclic sets. The vertical pairs represent 

relationships between the tonic sums of the cyclic sets in a difference alignment 

(wherein cycles of like aspect, ascending or descending, are aligned). The diagonal 

pairs show relationships between the tonic sums of the cyclic sets in a sum alignment 

(wherein cycles of opposite aspect, ascending with descending, are aligned).  

   

Figure 5a. Array 2,9/0,7, formed from cyclic sets 2,9 
and 0,7  

     
     

Figure 5b. 
K-net of 
array 
2,9/0,7  

(TS = tonic 
sum)  



[7] The array in its various 

alignments provides the 

resources for melodic and 

harmonic material in a Perlean 

composition. A hexachordal 

collection known as an 

axis-dyad chord is the main unit 

segmented from an array, and is 

formed by combining trichords 

from each of the cyclic sets. 

Figure 5a displays one segment, 

comprised of trichords 7-7-2 

and 7-5-2. If the 0,7 cyclic set 

were rotated eight times 

clockwise (or four times 

counter-clockwise), the 

resulting axis-dyad chord would 

contain trichords 7-7-2 and 

9-3-4. Perle regards multiple 

appearances of a pc within a 

segment as independent 

elements. Since any collection 

may include pc duplication, 

          
Figure 6. K-graph of all axis-dyad 

chords from even rotations of the cyclic 

sets in array 2,9/0,7  

 



therefore, the hexachordal 

axis-dyad chord may contain 

less than six distinct elements.  

[8] All axis-dyad chords 

segmented from the same array 

are isomorphic. Due to the 

symmetrical nature of the array, 

chords generated from an 

even-numbered rotation of the 

cyclic sets within the array 

(where the aspect of the aligned 

cyclic sets is retained) are also 

isomorphic. In the axis-dyad 

chord’s K-graph in Figure 6 the 

dotted lines connecting the 

nodes in the upper and lower 

trichords indicate the variable 

status of the two cyclic sets of 

the array in relation to one 

another.  

K-nets and Array Equivalence 

[9] Arrays share equivalence relationships through transposition and inversion. 

Transposing an array entails adding a constant even or odd integer x to each pc in 

both cyclic sets, thereby resulting in a constant even integer, 2x, added to each of the 

array’s tonic sums. (Adding a constant odd integer to each tonic sum constitutes 

semi-transposition, since the pcs themselves could not be transposed by the same 

constant value.) For example, transposing each pc in the cyclic sets of array 2,9/0,7 by 

T3 results in the array 8,3/6,1, whose tonic sums relate to the first array by T6. 

Although this relationship can be expressed in a single line as T6 (2,9/0,7) = 8,3/6,1, 

an approach favored by Buchler, this equation in its simplicity omits important 



information. First, it is not obvious in this equation that the integers being transposed 

are not pcs, but sums of pcs. In addition, other facts must be gleaned from the 

equation: the cyclic sets’ intervals remain constant, as do the relationships among the 

corresponding tonic sums between the cyclic sets. This consistency of relationships 

produces a strong isography among transposed arrays. Transposing an array affects 

multiple relationships of pcs, sums, and intervals, which to my mind are represented 

much more accurately, clearly, and completely through K-nets, as shown in Figure 7a. 

In addition, the K-graph of Figure 7b captures the recursive structure of all arrays 

transpositionally related to 2,9/0,7 built on cycles of interval 7, as well as their 

component elements.  

   

Figure 7a. T6 relationship between two arrays 
represented in K-nets  

      
     

Figure 7b. 
K-graph of all 
transpositions  
of array 2,9/0,7 

   

[10] As with transposition, array inversion begins with the pcs of the cyclic sets, each 

of which is inverted by a constant even or odd value. Consequently, the corresponding 

tonic sums between the two arrays will sum to the same even value. (Those tonic 

sums that add up to an odd integer constitute semi-inversion, where the component 

pcs were not inverted by the same value.) Further, the inverted array’s cyclic intervals 

are not retained, but transform into complementary cycles.  



[11] An I2 inversion of an array could be represented simply as I2 (2,9/0,7) = 0,5/2,7. 

But as described above, additional significant relationships between the corresponding 

cyclic intervals and tonic sums are not apparent in this equation. These relationships 

are included as an integral part of the K-nets in Figure 8a, just as they are in the arrays 

themselves. These particular K-nets are negatively isographic, which means that the 

corresponding T-values are complementary while the I-values add up to the same sum. 

The “negative isography” designation troubles Buchler, yet, in this context, is in no 

way at odds with Perle’s original conception of inversionally-related arrays; rather, it 

faithfully expresses their manifold relationships. This particular type of relationship 

obtains for all such arrays inverted by a consistent value, as indicated in Figure 8b’s 

K-graph of recursive structure of I2-related arrays.  

   

Figure 8a. I2 relationship between two arrays 
represented in K-nets  

      
     

Figure 8b. 
K-graph of all 
inversions  

of array 2,9/0,7 

   

[12] All of the above notwithstanding, I do share several of Buchler’s concerns about 

K-nets, most especially the ease with which an analyst can manipulate K-nets to 

“show” whatever the analyst wishes, whether or not they are a true reflection of the 

musical surface. But in basing my work on Perle’s music on Perle’s own 



compositional theory, no other tools have proven to be more effective than K-nets in 

representing the myriad, contextual relationships.  

[13] Although I have confined my response to the most fundamental aspects of Perle’s 

method, it should be known that twelve-tone tonality itself is a hierarchical system, 

with arrays constituting the first “level” of structure.(1) Buchler rightly points out that 

K-net recursion shows relational structures rather pitch or pc recursion, in contrast to 

Schenkerian middleground and background levels, which do retain notes from 

foreground events. Nonetheless, I disagree with Buchler’s assertion that K-net 

hierarchies cannot yield the same degree of consistency. In a Schenkerian analysis, 

notes retained from surface levels may change in function at deeper levels, depending 

on the context. In the K-graphs generated for this article, it is true that notes were 

removed to show recursion, but the corresponding relationships remained constant. I 

contend that K-net hierarchies can indeed portray a high level of consistency. The 

crucial difference here is the entities retained at each level of hierarchy, notes versus 

relationships.  

[14] One final point to address concerns Buchler’s assertion: “And, of course, all 

chords need to contain the same number of notes or else some notes need to be 

duplicated within a surface K-net, since no one has yet suggested a way of relating 

different sizes of networks” [paragraph 65]. On the contrary, I addressed this very 

issue in a paper delivered at the 2005 meeting of the Society for Music Theory.(2) 

Using successions of K-nets with four and five nodes, I modeled tetrachordal and 

pentachordal segments naturally occurring throughout Perle’s song “There Came a 

Wind Like a Bugle” thereby relating unordered segments from the musical surface to 

the underlying, pre-compositional array. As a rejoinder to Buchler’s concluding 

statement that he “just wants to be certain that [his] analytical tools help [him] 

elucidate more complexities than they introduce” I can say with confidence that in the 

specific situation of Perlean analysis, K-nets are the most appropriate and efficient 

tools I’ve used to date.  

 


