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[1] In the past seventeen or so years since the publication of pioneering work by 

David Lewin (Lewin 1990) and Henry Klumpenhouwer (Klumpenhouwer 1991), the 

theory of Klumpenhouwer networks (hereafter referred to as K-nets) has established 

itself as an important topic in music theory, but it seems that it is still in its youth. 

Michael Buchler’s recent critical examination of K-net theory (Buchler 2007) is 

indicative of both its standing in the discipline of music theory and the need for 

ongoing evaluation of its premises. In this essay I respond to one of the four central 

issues in Buchler’s thoughtful article: K-nets and their association with dual 

transformation. The juxtaposition of K-nets and dual transformation leads to a broader 

engagement with some fundamentals and phenomenological and metaphorical 

considerations of mathematical models in music theory. Remodeling K-nets as dual 

transformations, as Buchler advocates (Buchler 2007, 7), indeed elucidates 

transformational voice leading, but dual transformations also dispense with the 

network organization of K-nets, and thus evince fundamentally different structures 

than K-net isographies.  

K-nets, set theory, and graph theory  

[2] K-nets are typically employed to model sets of pitch classes through internal 

transformational pairings of pitch classes by the canonical operations of transposition 

(Tn) and inversion (In).
(1) While a relatively large number of K-net representations can 

be constructed for any set, the number of well-formed K-net representations that can 

be constructed is considerably smaller.(2) Selecting one K-net representation from the 



(well-formed) alternatives is an interpretive act; when employed in analysis, the 

selection is based on musical context, usually in consideration of the relationship of 

one K-net to its successor(s) or predecessor(s). We turn now to theoretical aspects of 

K-nets.  

[3] K-nets call upon the mathematical models of set theory and graph theory, models 

of different conceptual origins, as Jeffrey Johnson describes:  

Graph-theoretical constructs are not dependent on Cartesian coordinates, but only on 

the abstract relationship between dots and connecting lines. Graph theory had its 

origin in solutions to puzzles and games rather than more intense desires to describe 

motion, quantify measurement, and, bring order to scientific inquiry that impelled 

other branches of mathematics (Johnson 1997, 12).  

A graph models relations between pairs of elements, and consists of two sets: a set of 

vertices and a set of edges. The vertex set in a K-net consists of pitch classes, while 

the edge set consists of ordered pairs of vertices, each representing the 

transformational relation between a pair of pitch classes. K-nets are directed graphs 

(also called digraphs), because each edge has a specific direction or orientation.(3) 

(The double-headed arrow representing the inversion operation on pitch classes, 

identifying the operation as an involution, stands for edges with dual orientations 

between a single pair of vertices.) Strictly speaking, a graph is comprised simply of 

dots or points without content (the vertices) and connecting lines (the edges); it is an 

abstract construction independent of the elements that motivate and occupy the 

vertices. A network is a graph whose vertices have assigned values.(4) A network is 

thus, in a sense, an applied graph.  

[4] K-net theory adopts the terms node for vertex and arrow for edge, following 

David Lewin’s definition of node/arrow system,(5) which corresponds to digraph, as 

described above. The distinction between graph and network likewise follows 

Lewin’s distinction between transformation graph and transformation network (Lewin 

1987), and is nicely summarized by Julian Hook: “The graph is...the more abstract of 



the two structures; a network adds information to a graph, bringing it to life in a real 

musical setting via the node labels” (Hook 2007, 7).  

[5] As graphs, K-nets consist of two sets: a set of labeled (or occupied) nodes and a 

set of transformations relating pairs of nodes. Well-formed K-nets are path-consistent; 

that is, they reflect what Julian Hook calls the path consistency condition, by which, 

when multiple paths in a network between two nodes are possible, each must produce 

the same result by combining different transformations (Hook 2007, 3–4; Lewin 1987, 

195). The path consistency condition applies to the set of transformations, not the 

node contents, and falls out of the group-theoretic properties of the T/I group of 

transformations.  

[6] The duality of objects and transformations lies at the core of K-net theory. The 

essential independence of transformations from objects is reflected in the multiple 

possible K-net representations of a single pitch-class set. Graphic representation 

brings into relief the transformational relations, and sets them apart from the objects 

or nodes with which they are associated.  

Isography and dual transformations  

[7] Transformational relations between pairs of (well-formed) K-nets are described in 

terms of isomorphic transformational graphs or isography; isography is an algebraic 

relation between the sets of transformations within a pair of graphs, and is 

independent of the pitch classes that occupy the nodes. K-net theory customarily 

admits three types of isography: strong isography, in which the transformations within 

each K-net are strictly identical; positive isography, in which the subscripts of the T 

operators in the two K-nets are identical and the corresponding subscripts of the I 

operators differ by a constant value (mod 12); and negative isography, in which the 

subscripts of the T operators in the two K-nets are complementary (mod 12) and the 

corresponding subscripts of the I operators sum to a constant value (mod 12).(6) These 

isographies are, in turn, isomorphic to the T/I group itself (Lewin 1990), and are 

labeled accordingly. The relation of positive isography is indicated by a label in the 

form <Tn>, where the subscript n refers to the difference (mod 12) between the 



subscripts of the corresponding I operators in the K-net; the relation of strong 

isography is labeled <T0> since the difference between the values of the (identical) 

subscripts of the corresponding I operators is 0. The relation of negative isography is 

indicated by a label in the form <In>, where the subscript n refers to the sum (mod 12) 

of the subscripts of the I corresponding operators in the K-net.  

[8] Philip Stoecker has proposed a seemingly logical addition to the small range of 

isographies through a new isography he has called axial isography (Stoecker 2002). In 

the relation of positive axial isography, two 3-node (trichordal) K-nets share an 

identical In transformation, and the differences between the subscripts of the 

remaining In and Tn transformations are complementary (mod 12). In the relation of 

negative axial isography, two 3-node K-nets share complementary In transformations, 

and the sums of the subscripts of the remaining In and Tn transformations are 

complementary (mod 12). Jerry Ianni and Lawrence Shuster recently described an 

extension of Stoecker’s axial isography to 4-node (tetrachordal) K-nets in which the 

K-nets share two identical In transformations, and have named this transformation 

double axial isography (Ianni and Shuster 2007).(7)  

[9] In a (well-formed) 3-node K-net, three transformations, one Tn and two In 

transformations, between node pairs are displayed, and in a 4-node K-net, four 

transformations, two Tn and two In transformations, are (generally) displayed.(8) A 

single hyper-transformation—<Tn> or <In> (or <Tn/12-n> or <In/12-n> if axial isography 

is included)—subsumes all the local transformational actions between pitch-class 

pairs, and signifies a multifaceted action upon the network as a whole. The 

assimilation of transpositional and inversional transformations within individual 

K-nets associates K-nets with the model of dual transformations, by which “some of 

the notes in a [pitch-class set] are transformed in one way while the other notes are 

transformed in some other way” (Buchler 2007, 5). Shaugn O’Donnell, who first 

wrote about dual transformations, points out that the K-net model “disguises the 

parsing [of a pitch-class set into subsets] with its unified graphic appearance” 

(O’Donnell 1997, 48). Similarly, Buchler remarks that “as unified networks of nodes 

and arrows, this dual transformational basis might not be so evident.” (Buchler 2007, 



5). Buchler’s Figure 5 clearly illustrates how the <Tn> relation of positive isography 

between K-nets can be remodeled as a parsing of each pitch-class set into two subsets 

related by different transposition operators, Tx and Ty, such that the subscripts x + y = 

n mod 12 (the same value as in <Tn>). Likewise, Buchler’s Figure 6 illustrates how 

the <In> relation of negative isography between K-nets can be remodeled as a parsing 

of each pitch-class set into two subsets related by different inversion operators, Ix and 

Iy, such that the subscripts x + y = n, mod 12 (the same value as in <In>).  

[10] As Buchler shows, a <Tn> or <In> isography can be remodeled by means of dual 

transformations, that is, through parsing of the pitch-class sets into subsets related by 

distinct T or I subscripts. We see in Buchler’s Figure 12 and Figure 13 that a K-net’s 

internal arrows showing transformations between node pairs are no longer needed to 

illustrate the dual transformation from one set to the next. This is because the sets are 

no longer represented as networks, and their representation no longer adopts the 

graph-theoretical model. Dual transformations identify transformations of pitch 

classes, and are ontologically different than K-net isographies, which identify 

transformations of transformations. Dual transformations indeed effectively reveal 

transformational voice leading, as Buchler demonstrates, but they also suppress the 

integrity of the K-net, and, by extension, the pitch-class set being transformed. 

O’Donnell elegantly expresses the concern about the wholeness or integrity of sets:  

Although I feel that a successful voice-leading model must have an external or 

horizontal orientation, I also feel that the internal dynamism of the network model 

captures an invaluable dimension of musical structure that I think of as set identity... 

With its horizontal emphasis and explicit partitioning of sets, dual transformations do 

not satisfactorily model the cohesive quality of individual chords or sets... (O’Donnell 

1997, 60).  

[11] Dual transformations do have their own intrinsic theoretical and analytical 

interest, and can offer a contextual perspective on the abstraction of K-net isographies, 

as Buchler compellingly argues. O’Donnell surveys a wide range of transformational 

models in music theory which parse pitch-class sets into subsets that are transformed 

in different ways (O’Donnell 1997, 48–68). The article by Nancy Rogers and Michael 



Buchler on square dance moves and transformational operators also imaginatively 

reveals the explanatory power of dual transformations (Rogers and Buchler 2003).  

[12] Dual transformations and K-net isography stand on opposite sides of the 

object-relation divide. Dual transformations are not a simple substitute for K-nets, as 

each exploits different mathematical models and reveals different features of the 

objects and relations it seeks to elucidate.  

K-nets and dual transformations: contextual and phenomenological 
considerations  

[13] Buchler cites my K-net analysis of a passage from Webern’s Das Augenlicht, Op. 

26 (Nolan 2005), which shows a succession of four-note sonorities as K-nets related 

by positive, or in one case strong, isography (Buchler 2007, 53 and Figure 24).(9) He 

raises the question about “whether there is much that is T3-like about the <T3> (hyper) 

transformations that connect all but one pair of adjacent chords in this example,” and 

points out how the <T3> relation between sonorities 1 and 2 can only be described in 

very different terms than the <T3> relation between sonorities 2 and 3, taking into 

account the similar motion between the male and female voice-pairs in sonorities 1 

and 2 versus the contrary motion between the male and female voice-pairs in 

sonorities 2 and 3. The <T3> transformation, however, describes an isography, and as 

such, acts on operators and not on pitch classes or pitches; different instantiations of 

the same isography may well result in seemingly different behavior by pitch classes or 

pitches.  

[14] Buchler ably demonstrates how dual transformations are of great service in 

elucidating phenomenological aspects of K-net isography. He observes: “It would be 

difficult to imagine a situation in which dual transformation did not provide a more 

straightforward phenomenological account [of aurally salient aspects of K-net 

interpretations] than K-nets” (Buchler 2007, 58). Strong isography between two 

tetrachordal K-nets, as in the present context, can be characterized by wedge-like 

voice leading of two dyadic subsets in contrary motion by the same distance. Positive 

isography adds the further step that one of the dyadic subsets then moves again (by 

the value of n in <Tn>), skewing the voice-leading wedge.(10) In my analysis of the 



Webern passage (Buchler’s Figure 24), the strong isography (<T0>) between 

sonorities 3 and 4 is easily perceived as a symmetrical wedging of the dyads formed 

in the female voices and in the male voices around pitch C4. The female voices (in 

parallel motion to each other) descend and the male voices (in parallel motion to each 

other) ascend by the same interval, three semitones. The strong isography is rendered 

here in terms of the dual transformation T-3/T3, and because the transformations are 

realized in pitch space, they are quite readily perceptible. As Buchler points out 

(Buchler 2007, 54–55), the positive isographic <T3> relation between sonorities 1 and 

2 in my analysis of this passage, when converted to the dual transformation T1/T2, is 

realized directly by the overt pairings of female and male voices, by the parallel 

motion within each voice pair, and by the similar motion of the pairs (one pair 

ascending by one semitone, the other by two). The recurrence of the <T3> relation 

between sonorities 2 and 3 by means of a different dual transformation, T4/T-1, also 

directly reflects the voice pairings, the contrary motion between the voice pairs, and 

the interval and direction by which each pair moves. (The same dual transformation 

T4/T-1 also describes the relation of sonorities 4 and 5.) The off-kilter wedge between 

positively isographic K-nets intensifies the challenge of perceiving them in 

comparison to the challenge of perceiving the symmetrical wedge between strongly 

isographic K-nets.(11)  

[15] Dual transformations, through their capacity for phenomenological feasibility, 

provide a narrative for how we can experience or hear the motion from one K-net to 

the next, but K-net isographies themselves need not be understood as narrative events. 

Isographies, as isomorphic network transformations, place those motions in a larger 

context of the mathematical group of transformations to which they belong. David 

Lewin, in reflecting on his transformational analysis of Dallapiccola’s Simbolo, writes: 

“The group [of transformations] is not a list of immediate aural intuitions or 

intentions” (Lewin 1993, 34). Lewin’s analysis of Simbolo does not involve K-nets 

specifically, but his reflections on phenomenology and musical transformations apply 

well to any approach to music analysis involving transformations. Lewin continues:  



Rather than trying to make our transformations denote phenomenological presences in 

a blow-by-blow narrative, we can more comfortably regard them as ways of 

structuring an abstract space...through which the piece moves (Lewin 1993, ibid).  

Final thoughts  

[16] In considering further the duality of object and relation that is central to K-net 

theory, an appeal to conceptual metaphor is illuminating.(12) We can conceive of a set 

metaphorically as a container or as an object. The set-as-container metaphor dwells 

on the contents of the set, the assemblage of objects into collections; the container 

possesses an interior, an exterior, and a boundary, and the familiar set-theoretic 

relations of union, intersection, and complementation ensue. The ubiquity of the Venn 

diagram attests to the longevity and pervasiveness of the set-as-container metaphor. 

The set-as-object metaphor dwells on the singularity of the set as an entity that can at 

the same time be a member of another set; inclusion is thus an abstract relation 

distinct from the container metaphor, and leads to the existence of the empty set as a 

subset of all sets and the set as a subset of itself. Via the object metaphor, relations, 

functions, and transformations can be defined in terms of sets.  

[17] As music theorists, we are accustomed to thinking of pitch-class sets using both 

metaphors in different situations without serious consequence, even though the 

metaphors are mutually inconsistent. When it comes to K-nets, however, we may be 

resistant to the set-as-object metaphor in reference to the set of arrows or 

transformations; that is, we may find it difficult to conceive of the collection of arrows 

or transformations as a singular entity. Indeed, the distinction between object and 

relation (or operation) begins to fade when relations, in particular the Tn and In 

operators that define relations between pitch-class pairs, are themselves objects. Yet 

we may also remain resistant to the set-as-container metaphor in reference to the set 

of arrows or transformations in a K-net because we have no straightforward 

container-like relations analogous to union, intersection, or complementation by 

which to manipulate the set’s contents.(13)  



[18] The coexistence in a K-net of two distinct, yet interrelated, sets—the set of nodes 

(pitch classes) and the set of arrows (transformations)—remains a challenge to our 

theoretical and analytical instincts. Through a deeper understanding of the interaction 

of the mathematical models of set theory and graph theory as they inform the theory 

of K-nets, and a stronger appreciation of the synergy of sets and graphs, we can 

enhance our theoretical explorations and analytical applications of K-nets and of other 

transformational approaches to music theory.  

 


