Birds of Nallıhan Bird Paradise (Central Anatolia, Turkey)*

Utku PERKTAŞ, Zafer AYAŞ
Hacettepe University, Faculty of Science, Department of Biology (Zoology Section), 06532 Beytepe, Ankara - TURKEY

Received: 02.03.2003

Abstract

This study was conducted in Nallihan Bird Paradise (Nallıhan, Ankara), which displays seasonal wetland characteristics. Within the scope of this study, a 12 month field study between August 2000 and July 2001 was carried out in order to determine the avifauna of Nallihan Bird Paradise. One hundred and thirty bird species belonging to 14 orders and 41 families were recorded in the study area. It was concluded that this area was probably used by a total of 41 actual and/or possible bird species for breeding purposes.

Key Words: Avifauna, Bird, Nallihan Bird Paradise, Ankara, Central Anatolia, Turkey

Nallıhan Kuş Cenneti (İç Anadolu, Türkiye)'nin Kuşları

Özet: Bu çalışma mevsimsel sulakalan özelliği gösteren Nallıhan Kuş Cenneti (Nallıhan-Ankara)'nde gerçekleştirilmiştir. Çalışmanın amacı, Ağustos 2000-Temmuz 2001 tarihleri arasındaki 12 aylık arazi çalışmalarıyla Nallıhan Kuş Cenneti'nin avifaunasının saptanmasıdır. Sonuç olarak, 14 takım ve 41 familya içinde yer alan 130 kuş türü çalışma alanında kaydedilmiştir. Bununla beraber, çalışma alanı üreme amacıyla, aktif ve/veya muhtemel üreme özelliğine sahip toplam 41 kuş türü tarafından kullanılmıştır.

Anahtar Sözcükler: Avifauna, Kuş, Nallıhan Kuş Cenneti, Ankara, İç Anadolu, Türkiye

Introduction

The bird fauna of Turkey is relatively well known when compared with other groups (Bilgin, 1994). First observations on birds in Anatolia were in the 1830s (Kumerloeve, 1986). Especially during the last 50 years, several checklists have been published, starting with Ergene (1945) and followed by Kasparyan (1956), Kumerloeve (1961), Beaman (1978), Kiziroğlu (1989), Bilgin and Akçakaya (1990), Turan (1990), Kasparek (1992), and Kasparek and Bilgin (1996). Finally, Kirwan et al. (1998) listed a total of 453 bird species.

Of these 453 bird species, 376 occur regularly at different times of the year, and of the remaining, 56 are vagrants whose origins are Western Palaearctic, Eastern Palaearctic, Afrotropical, Holoarctic, Southern Asian, and Nearctic and a few species are semi-cosmopolitan (Bilgin, 1994).

Turkey has one of the richest bird faunas in the Western Palaearctic, because it is located on important migration routes for birds, and includes different kinds of
habitats. Central Anatolia is an important region for bird species in Turkey; there are 32 important bird areas (Magnin et al., 2000). Studies on birds in Central Anatolia have been carried out recently (Kasparek, 1992; Kıraç and Kıraç, 1996; Pleasance, 1997; Ayaş and Turan, 2001; Perktaş et al., 2004), but studies including Ankara and its environs have been limited (Görgün, 1995; Albayrak, 2002; Perktaş, 2002).

Nallıhan Bird Paradise (NBP) located near the city of Ankara has not been previously studied in terms of its bird species. Therefore, the goal of this paper is to show the birds present in NBP and its ornithological importance.

Study Area

The study area includes NBP and north of Sarıyar Dam Lake. NBP ($40^{\circ} 06^{\prime} \mathrm{N}, 31^{\circ} 36^{\prime} \mathrm{E}$) is situated on the north side of the Sarıyar Dam Lake in the north-west of Central Anatolia (Figure 1). It covers approximately 900 ha and is characterized by seasonal wetlands.

[^0]

Figure 1. Location of Nallihan Bird Paradise, Central Anatolia, Turkey.

The study area has a semi-arid cold Mediterranean climate (Akman, 1999). Detailed climate data are only available for Nallihan, approximately 30 km to the northwest of NBP. During the study period (August 2000 to July 2001), the total annual rainfall was 305.4 mm at Nallihan, and the annual mean temperature $13.5^{\circ} \mathrm{C}$. According to the average climate data of 25 years (19762000) for Nallıhan, the total annual rainfall is 277.1 mm , and the annual mean temperature $12.2{ }^{\circ} \mathrm{C}$. Thus, approximately 6 months of the year are determined to be an arid period in Nallihan and its environs (Figure 2).

The important habitats of the area include seasonal mudflats, standing ponds, streams, grasslands, wet grasslands, rocky areas, farmlands and settlements.

Vegetation cover is defined as steppe and salt marsh (Doğan, 2000). However, some parts of NBP were almost devoid of vegetation cover during the study period.

Plants of the important habitats in the area were also recorded. Along the entirety of Aladağ Stream, there was a riparian zone. Typha latifolia, Typha angustifolia,

Figure 2. Ombrothermic climate diagram of Nallihan.

Phragmites australis (reed), Populus tremula (white poplar) and Salix sp. (willow) were found at intervals in this zone. At the edge of standing freshwater was seen deciduous shrubland and we found short shrubs in this area: Atraphaxis billardieri, Salsola gradis and Tamarix parviflora. In wet grassland, some grass plants were found: Lythrum salicaria (red sally), Crypsis schoenoides, Alopecurus myosuroides and Plantago major (large plantain). In grassland, short shrubs were also found: Salsola incenescens and Atraphaxis billardieri.

Farming is practised in the study area. In particular, the flood area in NBP is farmed during the spring seasonally. Between August 2000 and July 2001, vegetables (e.g., spinach, cabbage, and corn) were grown densely in the study area. Furthermore, fruit gardens and poplar plantations were also seen in the study area.

Conservation of the Study Area

NBP was declared an important bird area (IBA number TR 045), and in 1994 it was also declared a permanent wildlife reserve (Magnin et al., 2000).

The primary problem that affects the natural ecosystem is the pollution in the Sakarya River, which is a source of Sarıyar Dam Lake. The dam lake is heavily polluted, especially by untreated sewage from Ankara (Magnin et al., 2000). Furthermore, the pollution in Sarıyar Dam Lake also included organochlorine compounds and heavy metals (Ekmekçi, 1990).

Materials and Methods

Observation surveys were performed between August 2000 and July 2001. The area was visited once a month and during the breeding season twice a month. The counting methods suggested by Bibby et al. (1992) were applied for different bird groups. Counting was started at sunrise and continued until sunset. Telescopes (40×60) and binoculars (16×24) were used during the counting period.

The possible status of recorded species for the study area is given: resident (R) -virtually always present in NBP, winter visitor (WV) present from November to March (individuals from some species in this category are also given as passage migrants), summer visitor (S) regularly observed in spring (individuals from some species in this category are also given as passage migrants), passage migrant (PM) - only present in spring
and/or autumn migration periods, vagrant (V) - a category used for migratory species that swerved from normal migratory routes, and some species are given as unknown (?).

Results

In NBP, 130 bird species were recorded between August 2000 and July 2001. They belong to 41 families (Appendix 1). The highest numbers of species were recorded in September 2000 (45 species) in autumn and May 2001 (63 species) in spring. The smallest numbers of species were recorded in autumn (29 in November 2000) and winter (30 in December 2000) (Figure 3).

The possible status of all bird species was determined during the study period (Appendix 1).

During spring 2001, actual and/or possible breeding bird species were recorded in the study area and represented $32 \%(n=41)$ of the total bird species recorded. Of 41 breeding bird species, 16 were resident breeders (RB) (Appendix 1).

Discussion

In Turkey, 4 dam lakes (Demirköprü, Sarıyar, Hirfanlı and Yedikir) have been declared important bird areas so far. NBP, located at the Sarıyar Dam, includes species with an unfavourable conservation status in Europe (Magnin et al., 2000). Because of this characteristic, NBP and the Sarıyar Dam were determined as distinct place from the others.

Turkey has 2 important migration routes and 3 migration gates, namely the Bosphorus in the north-west, Artvin-Borçka pass in the north-east and Hatay-Belen pass in the south (Sutherland and Brooks, 1981; Van der Have et al., 1989; Kok and Ongeane, 1995; Mrlik et al., 1995; Kaya et al., 1999). During the autumn and the spring migration periods, some wetlands in Central Anatolia have been used by different bird species that are passage migrants (Perktas et al. 2004).

In NBP, the number of bird species changed in autumn 2000 and spring 2001 (Figure 3). This was related to the study area including suitable settling areas for passage migrants, which entered from both of Turkey's north and south migration gates. Especially in spring 2001, summer visitors and passage migrants arrived in the study area during the same period. Therefore, the number of bird

Figure 3. Numbers of bird species (a) and numbers of individuals (b) during the study period (August 2000-July 2001) in the study area. (Observations were performed twice in April 2001 and May 2001. I and II indicate observations in these months).
species reached a maximum in May 2001. In consideration of this situation, increasing bird species and bird numbers in autumn 2000 were related only to passage migrants, because summer visitor species left the study area during this term.

NBP was determined to be an important area for passage migrants (26\%) and summer visitors (24\%). In terms of passage migrants, 2 important non-passeres bird species (Pelecanus onocrotalus and Platalea leucorodia), which have been declared strongly declined in Turkey (Tucker and Heath, 1994), were observed in the study area. Moreover, previous observations in NBP showed that the teal (Anas crecca) and common crane (Grus grus) reached huge numbers as passage migrants in November 2000 (Demirci, 2000; Kiliç, 2000).

Many bird species that were summer visitors in the study period appeared for possible breeding in the study area. In terms of the summer visitors, 5 important nonpasserine bird species (Nycticorax nycticorax, Ardeola ralloides, Ciconia ciconia, Milvus migrans and Neophron percnopterus) that have been declared to they have declined in Turkey (Tucker and Heath, 1994) bred in the study area and its environs. However, especially the Egyptian Vulture (Neophron percnopterus), which has decreased sharply in the Western Palearctic (Donazar et
al., 2002), used the study area and its environs for breeding and feeding. Furthermore, Ciconia nigra, which has been determined to be rare in Europe and data on its population sizes or trends in Turkey are limited (Tucker and Heath, 1994), bred in the study area. Thus, NBP was a settling, feeding and breeding area for some species mentioned above during the study period.

Throughout the study period, however, the grey heron (Ardea cinerea), ruddy shelduck (Tadorna ferruginea), and black-headed gull (Larus ridibundus) were regularly observed in large numbers each month. Therefore, they were declared characteristic bird species for NBP.

Different wetlands in Central Anatolia are used by waterfowls and waders (Bariş, 1989). NBP as a wintering area was also determined as an important area for Podicipedidae, Phalacrocoracidae, Ardeidae and Anatidae in the study period.

Although NBP has been defined as a temporary wetland (Magnin et al., 2000), this was not observed during the study period. Since good rainfall did not fall in the study area throughout the year (August 2000-July 2001), aridity was seen and the vegetation structure did not develop well in the same period.

NBP has good potential as a breeding, settling and feeding area for bird species (Magnin et al., 2000), but this potential was not apparent during the study period. Thus, the decreased preference for NBP by these birds during the study period may have been due to the aridity and poor vegetation structure related to the climatic conditions. Finally, according to the climatic data, NBP suffered an extreme year between August 2000 and July 2001.

References

Akman, Y. 1999. İklim ve Biyoiklim (Biyoiklim Metotları ve Türkiye İklimleri), Kariyer Matbaacılık Ltd. Şti., Ankara.

Albayrak, A.B. 2002. Balıkdamı, Sivrihisar (Eskişehir) Avifaunası Üzerine Araştırmalar, MSc thesis, Hacettepe University, Ankara, 124pp.

Ayaş, Z. and Turan, L. 2001. Ornithological observation of Seyfe Lake, Kırşehir. Hacettepe Bulletin of Natural Sciences and Engineering Series B. 30: 7-16.
Barış, Y.S. 1989. Turkey's Bird Habitats and Ornithological Importance. Sandgrouse. 11: 42-51.
Beaman, M. 1978. Bird report 1974-1975, The Ornithological Society of Turkey, UK.
Bibby, C.J., Burgess, N.D. and Hill, D.A. 1992. Bird Census Techniques. Academic Press Ltd., London.
Bilgin, C. 1994. A new biodiversity information management system and its application to the avifauna of Turkey, PhD thesis, METU, Ankara, 134 pp.
Bilgin, C. and Akçakaya, R. 1990. Kuşlar. In: Türkiye'nin biyolojik zenginlikleri (ed. A. Kence), Türkiye Çevre Sorunları Vakfı Yayınları, Ankara, pp.183-202.
Demirci, B. 2000. Nallihan Kuş Cenneti Gözlemleri. http://groups. yahoo.com/group/toygar/messages/989
Doğan, E. 2000. Nallıhan Kuş Cenneti Florası (Ankara), MSc Thesis, Gazi University, Ankara, 123pp.
Donazar, J.A., Cesar. J.P., Gangoso, L., Ceballos, O., Gonzles, M.J. and Hiraldo, F. 2002. Conservation Status and Limiting Factors in the Endangered Population of Egyptian Vulture (Neophron percnopterus) in the Canary Islands. Biological Conservation. 107: 89-97.
Ekmekçi, F.G. 1990. Sarıyar Baraj Gölünde (Ankara) Yaşayan Barbus plebejus escherichi (Steindachner, 1897)'nin Bazı Büyüme ve Üreme Özellikleri. Hacettepe Bulletin of Natural Sciences and Engineering Series B. 11: 145-167.
Ergene, S. 1945. Türkiye Kuşları, İstanbul Üniversitesi Fen Fakültesi Monografileri, Sayı 4, İstanbul.
Görgün, E.O. 1995. Mogan Gölü Avi-faunası, MSc Thesis, Gazi University, Ankara, 87pp.

Acknowledgements

We are especially grateful to the Hacettepe University Research Foundation for their support (Project Number: 00.01.601.001). We also thank Atıl Barış ALBAYRAK for his help during the study, and Çağatay TAVŞANOĞLU and Kadir Yiğit US for checking the English of the manuscript.

Kaya, M., Yurtsever, S. and Kurtonur, C. 1999. Trakya ornito-faunası üzerine araştrrmalar I. Turk. J. Zool. 23 (Supplement): 781-790.
Kasparek, M. 1992. Die Vögel der Türkei. Eine Übersicht, Max Kasparek Verlag, Heidelberg.
Kasparek, M. and Bilgin, C. 1996. Türkiye Kuşları Tür Listesi. In: Türkiye Omurgallar Tür Listesi. (ed. A. Kence and C. Bilgin). DPT/TÜBiTAK, Ankara, pp.25-88.
Kasparyan, A. 1956. A preliminary systematic list of birds of Turkey. İstanbul Üniversitesi Fen Fakültesi Mecmuası. 21(1-2): 27-48.

Kılıç, T. 2000. Nallıhan Kuş Cenneti Gözlemleri. http://groups. yahoo.com/group/toygar/messages/986
Kıraç, S. and Kıraç, C. 1996. A Short Breeding Bird Survey of Kulu Gölü, Central Anatolia, Turkey in May 1995. Sandgrouse. 18: 5861.

Kirwan, G.M., Martins, R.P., Eken, G. and Davidson P. 1998. A Checklist of the Birds of Turkey. Sandgrouse. Supplement 1: 129.

Kiziroğlu, ì. 1989. Türkiye Kuşlaaıı, O.G.M. Basımevi, Ankara.
Kok, M. and Ongeane, P. 1995. Raptor Migration in the North-East of Turkey, September 1990. Sandgrouse. 34: 8-11.
Kumerloeve, H. 1986. Bibliographie der säugetiere und vögel der Türkei (Rezente Fauna), Bonner Zoologisch Monographien, Nr. 21, Bonn.

Kumerloeve, H. 1961. Zur kenntnis der avifuna kleinasiens. Bonner Zoologische Beiträge. 12: 1-318.
Magnin, G., Eken, G. and Yarar, M. 2000. Turkey. In: Important Bird Areas in Europe: Priority sites for conservation. 2: Southern Europe (ed. M.F. Heath and M. I. Evans), BirdLife Conservation Series No. 8, Cambridge, pp. 651-689.
Mrlik, V., Bobek, M., Pojer, F., Skopek, J. and Formanek, J. 1995. Raptor migration in north-east Turkey, autumn 1994. Sandgrouse. 35: 41-45.
Perktaş, U. 2002. Nallıhan Kuş Cenneti, Nallıhan (Ankara) Avifaunası Üzerine Araştırmalar, MSc thesis, Hacettepe University, Ankara, 130pp.

Perktaş, U., Albayrak, A.B. and Ayaş, Z. 2004. The evaluation of some key wetlands for waterfowls in Central Anatolia, Turkey. [ABSTRACT]. In: Waterbirds around the World. A global review of the conservation, management and research of the world's major flyways, Wetlands International, Wageningen, pp. 256.
Pleasance, B. 1997. Pallid Harrier Circus macrourus Breeding in Central Turkey. Sandgrouse. 19: 144-145.

Sutherland, W.J. and Brooks, D.J. 1981. Autumn Migration of Raptors, Storks, Pelicans and Spoonbills at Belen Pass, Southern Turkey. Sandgrouse. 2: 1-13.

Tucker, G.M. and Heath, M.F. 1994. Birds in Europe: their conservation status, BirdLife International (BirdLife Conservation Series no.3), Cambridge.

Turan, N. 1990. Kuşlar, O.G.M. Basımevi, Ankara.
Van der Have, T.M., van der Berg, V.M., Cronau, J.P. and Langeveld, M.J. 1989. Importance of Çukurova Deltas, southern Turkey, for migrating waders and other waterbirds in spring. Sandgrouse. 11: 76-88.
Appendix 1．Numbers and status of bird species recorded in Nallihan Bird Paradise．

	Euring Code and Species Name	2000					2001									Status
		$\begin{aligned} & \text { 苟 } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { 七} \\ & \text { O} \\ & \text { B } \end{aligned}$	$\begin{aligned} & \grave{0} \\ & \stackrel{0}{6} \\ & 00 \\ & 00 \end{aligned}$		$\begin{aligned} & \text { त } \\ & \text { N } \\ & \text { त } \end{aligned}$	$\begin{gathered} \text { 금 } \\ \text { 20 } \\ \text { © } \end{gathered}$				I	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\mathbf{0}}{\mathbf{\leftrightharpoons}}$	こ	
00070	Tachybaptus ruficollis（PALLAS，1764）	500	2625	431		98		41								WV，PM
00090	Podiceps cristatus（LINNE，1758）			20		31	20			6					17	WV，PM
00720	Phalacrocorax carbo（LINNE，1758）					421	662	266								WV
00880	Pelecanus onocratalus LINNE， 1758		12													PM
01040	Nycticorax nycticorax（LINNE，1758）	69	5								1	6	24	76	21	S
01080	Ardeola ralloides（SCOPOLI，1769）	16	4										5	9	4	S
01190	Egretta garzetta（LINNE，1766）	168	3								11	31	55	61	62	S，PM
01210	Egretta alba（LINNE，1758）			48	79	237	6	23	18	2	13	3		1		WV
01220	Ardea cinerea LINNE， 1758	227	414	289	391	307	58	89	105	74	262	14	112	216	163	R，RB
01240	Ardea purpurea LINNE， 1766										1					V
01310	Ciconia nigra（LINNE，1758）	18	21		1				4	16	47	28	62	3	4	S，PM
01340	Ciconia ciconia（LINNE，1758）	48	2	1					2	28	22	11	159	61	24	S，PM
01440	Platalea leucorodia（LINNE，1758）									14						PM
01710	Tadorna ferruginea（PALLAS，1764）	194	653	2500	600	269	598	462	31	51	21	8	43	175	223	R，PM，RB
01790	Anas penelope LINNE， 1758						2	15								WV
01820	Anas strepera LINNE， 1758				1											？

1 and 2：Because of the breeding season， 2 field surveys were performed in Nallihan Bird Paradise in April and May 2001．Actual and／or possible breeding bird species are in bold．

		3	$\begin{aligned} & 3 \\ & \underset{\sim}{3} \end{aligned}$	＞	$\begin{aligned} & 3 \\ & \sum \\ & \sum \end{aligned}$	3	3	\sim.	\backsim	\backsim	\sim.	＞	＞	\sim.	3	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \text { ¢ }}}$	\sim
$\overline{\mathrm{O}}$	Kjnr								ค	m						N	
	əun「		∞						－	－							
	${ }_{2} \mathrm{KeW}$		m							m					－	－	
	－		ค						－	－						－	
	$\text { I!!d } \forall$		\bigcirc							－		－	－			－	
	－		$\stackrel{\sim}{\sim}$						N	∇				－		m	
	पJJEW		\bullet	m		\cdots										N	
	Kınnıqə」	$\stackrel{\checkmark}{\sim}$	$\stackrel{\star}{\leftarrow}$			$\underset{\text { ৯ }}{\text { N }}$	$\stackrel{\circ}{\mathrm{N}}$								N		
	Kılenuer		$\begin{aligned} & \circ \\ & \text { ค月 } \end{aligned}$			N	$\stackrel{\bigcirc}{\text { 앙 }}$								－		
8	Јə૧Шəวəด	N	$\stackrel{\ominus}{\widehat{6}}$		m	$\stackrel{\ominus}{\mathrm{N}}$	\bigcirc	m								ค	
	JəquəлОN		$\stackrel{\oplus}{N}$													m	
	ЈəQOヤ0		－		∞	－	N						－		－	m	
	Jəqயə̨dəS		m		∞					∇	－				N	N	
	子snбn＊									\sim		－				N	－
				8GLI＇ヨNNIT ełnכe seuv	8SLI ‘ヨNNIT eInpənbıənb seu甘												
		아 $\stackrel{\infty}{\circ}$	\bigcirc $\bigcirc 0$ $\stackrel{\circ}{\circ}$	8 0 0	$\frac{\square}{\square}$	앙 $\stackrel{\circ}{\circ}$	\circ 0 0 0	ल O O	O \sim \sim \sim	$\xrightarrow[\text { ○ }]{\stackrel{\text { O}}{\sim}}$	0 0 N O	8 0 0 0	ㅇ， $\stackrel{1}{0}$ $\stackrel{1}{*}$	O O 0 0	O $\stackrel{0}{0}$ 0 0	\circ 0 0 0	O O N 0

Appendix 1．（Continued）

	$\begin{aligned} & \text { 喜 } \\ & \text { Hin } \end{aligned}$	\sim	$>$	$>$	$\begin{aligned} & \sum \\ & \vdots \\ & \vdots \end{aligned}$	$>$	\sum	\sum	n	\sum	\sum	\bigcirc.	\sum	$\begin{aligned} & \sum \\ & \vdots \\ & 3 \end{aligned}$	\sum	¢	$>$
$\underset{\sim}{\mathrm{O}}$	$\bar{K} \cap \Gamma$								๑				∇			응	
	əun「								으							$\underset{\sim}{\sim}$	
	$z^{K R W}$																
			－						～		$\stackrel{\sim}{N}$			m			
	I！I！d						－				은	－			\bullet		
							－									$\hat{¢}$	
	पJ．${ }^{\text {a }}$		\sim													人)	
	K．senıq̇」	－		\sim	$\stackrel{\infty}{\square}$									－		$\begin{aligned} & 8 \\ & \hline \end{aligned}$	
	Kıenuer				∞									\sim		$\stackrel{\infty}{\infty}$	
呬	」əqயəวəด				m											$\stackrel{\infty}{\Gamma}$	
	JəQuəлОN				N										－	$\begin{aligned} & 8 \\ & \stackrel{0}{n} \end{aligned}$	
	J29010				\bullet	－		¢								б্ত	\sim
	」əquə゙dəS						\wedge			m			－	－		இ	
	7sn¢nv				윽		m		－				$\underset{\sim}{\varphi}$	\wedge		$\stackrel{\square}{\text { ¢ }}$	
		$\begin{aligned} & \text { ơ } \\ & \text { on } \end{aligned}$	¢	군	O \＃ O	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & 0 \stackrel{0}{0} \\ & \underset{O}{2} \end{aligned}$	$$	$\begin{aligned} & \text { ò } \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	$\frac{8}{7}$	$\begin{aligned} & \text { B/ } \\ & \stackrel{6}{6} \end{aligned}$	$\begin{aligned} & \stackrel{8}{6} \\ & \stackrel{6}{0} \end{aligned}$	$\begin{aligned} & \text { N్N } \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 오 } \\ & \text { مٌ } \end{aligned}$	

Appendix 1. (Continued)																
		2000					2001									Status
			$\begin{aligned} & \overleftarrow{\Phi} \\ & \stackrel{0}{6} \\ & \mathbf{M} \\ & \mathbf{0} \\ & \dot{\sim} \end{aligned}$	¢ O 0 0 0	$\begin{aligned} & \overleftarrow{\Phi} \\ & \stackrel{0}{\boldsymbol{E}} \\ & \mathbf{0} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \mathbf{o} \\ & \mathbf{0} \\ & \underline{U} \\ & \mathbf{0} \\ & 0 \end{aligned}$	第		드N	I	$\begin{aligned} & \overline{\bar{c}} \\ & \text { II } \\ & \text { II } \end{aligned}$	I		$\stackrel{\text { ¢ }}{\sim}$	\geqslant	
06650	Columba livia GMELIN, 1789	32	65	5			25	12	9	5	10	10	10	9	22	R, RB
06840	Streptopelia decaocto (FRIVALDSKY, 1838)	3	4	4	11	5	8	4		10	10	4	2	1	1	R, RB
06870	Streptopelia turtur (LINNE, 1758)												1		3	S
07240	Cuculus canorus LINNE, 1758									1	1	1	1			PM
07950	Apus apus (LINNE, 1758)														10	V
08400	Merops apiaster LINNE, 1758	1	6										12			S
08410	Coracias garrulus LINNE, 1758	5										3	1	2	5	S
08460	Upupa epops (LINNE, 1758)		4							1	6	1	1	5	2	S
08480	Jynx torquilla LINNE, 1758									1						$?$
08760	Dendrocopos major (LINNE, 1758)				2											$?$
08780	Dendrocopos syriacus (EHRENBERG, 1833)						2	3	4			1	1		5	R
08870	Dendrocopus minor (LINNE, 1758)						1									$?$
09720	Galerida cristata (LINNE, 1758)	9	12	3	1	2	7	42	9	20	2	2	2	4	45	R, RB
09760	Alauda arvensis LINNE, 1758			1		10	2					1		18		R
09780	Eremophila alpestris (LINNE, 1758)						15		2							WV
09910	Ptyonoprone rupestris SCOPOLI, 1769	10								10					1	S

Appendix 1. (Continued)

		2000					2001									Status
		苟	$\begin{aligned} & \stackrel{(}{0} \\ & \stackrel{0}{6} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$	© O U			$\begin{aligned} & \text { 니N} \\ & \stackrel{\rightharpoonup}{\mathbf{N}} \end{aligned}$		$\begin{aligned} & \text { 드N } \\ & \text { D } \end{aligned}$	I	$\begin{gathered} \overline{\bar{b}} \\ \text { II } \end{gathered}$	I	$\begin{gathered} \sqrt[3]{\sqrt{3}} \\ \mathrm{II}^{2} \\ \hline \end{gathered}$	$\stackrel{0}{\square}$	分	
09920	Hirunda rustica LINNE, 1758	2	5										5		10	S
10010	Delichon urbica (LINNE, 1758)	10								30		7	31	50	30	S
10110	Anthus pratensis (LINNE, 1758)										1					V
10140	Anthus spinoletta (LINNE, 1758)					100										PM
10170	Motacilla flava LINNE, 1758			4	2			4	1		1	4				PM
10190	Motacilla cinerea TUNSTALL, 1771		6		1											PM
10200	Motacilla alba LINNE, 1758	2	5	5					4	1	100	1		2		PM
10990	Erithacus rubecula (LINNE, 1758)						3	2	1			1				WV
11040	Luscinia megarhynchos (BREHM, 1831)										26	17	4	9	2	S
11170	Irania gutturalis (GUERIN, 1843)												1			V
11210	Phoenicurus ochruros (GMELIN, 1774)				1			3								WV
11370	Saxicola rubetra (LINNE, 1758)										14					PM
11390	Saxicola torquata (LINNE, 1766)			2	2			1				4				PM
11440	Oenanthe isabellina (TEMMINCK, 1829)	6	13	2					1	2	1			2	10	S
11460	Oenanthe oenanthe (LINNE, 1758)	9	2							2	1	1			2	S
11470	Oenanthe pleschanka (LEPECHIN, 1770)								2	1	1	1	4		1	S

Appendix 1. (Continued)

		2000					2001									Status
		$\begin{aligned} & \text { 苟 } \\ & \text { 霜 } \end{aligned}$		$\begin{aligned} & \dot{\$} \\ & \stackrel{\rightharpoonup}{U} \\ & 0 \end{aligned}$		$\begin{gathered} \overleftarrow{\Phi} \\ \stackrel{\theta}{\overleftarrow{O}} \\ \stackrel{0}{0} \end{gathered}$	$\begin{aligned} & \text { त } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & : ~ \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$		$\begin{gathered} \overline{\overline{0}} \mathbf{4} \\ \text { II } \end{gathered}$			$\begin{gathered} \text { N } \\ \sum_{2}^{\mathrm{a}} \\ \text { II } \end{gathered}$	윽	\geqslant	
11500	Oenanthe finschii (HEUGLIN, 1869)		1									2		5		S
11660	Monticola solitarius (LINNE, 1758)	3								2			3	4	1	S
11870	Turdus merula LINNE, 1758					1	4	1	4	4	4	4	4	6	1	R, RB
12020	Turdus viscivorus LINNE, 1758							4								PM
12200	Cettia cetti (TEMMINCK, 1820)	4							3	6	6	8	10	3		S
12430	Acrocephalus schoenobaenus (LINNE, 1758)								1							?
12550	Hippolais pallida (HEMPRICH \& EHRENBERG, 1833)									1		2	8		1	S
12670	Sylvia melanocephala (GMELIN, 1789)													1		V
12770	Sylvia atricapilla (LINNE, 1758)							4		2						PM
13110	Phylloscopus collybita (VIEILLOT, 1817)					1				20						PM
13120	Phylloscopus trochilus (LINNE, 1758)									10						PM
13150	Regulus ignicapillus (TEMMINCK, 1820)				1											V
13350	Muscicapa striata (PALLAS, 1764)		5									2				PM
13480	Ficedula albicollis (TEMMINCK, 1815)									8						PM
14620	Parus caeruleus LINNE, 1758							8								?
14640	Parus major LINNE, 1758			2	1		7	5	6	4	6	9	6		1	R, RB

Appendix 1. (Continued)

Appendix 1．（Continued）

		\cdots	Σ		n		3	\sim.	$>$	\sim.	$\begin{aligned} & \mathscr{\sim} \\ & \propto \underbrace{2} \end{aligned}$	$>$	3	3	3	$>$
	Kinc	¢		\mp	$\stackrel{N}{m}$	－					$\stackrel{\ominus}{\sim}$					\sim
	əun¢	\checkmark		\cdots	O	N					$\stackrel{\infty}{\sim}$					
	$z^{\text {KeW }}=$	－	ㅇ	은	아	m					$\bar{\sim}$					
	－	－		앙	$\stackrel{\text { 안 }}{ }$	に					ํㅏㄲ					\sim
	!!!dd			$\stackrel{\infty}{\sim}$	으	$\stackrel{\text { ¢ }}{ }$					$\stackrel{m}{\sim}$					
	－			은		$\stackrel{\infty}{m}$					¢		은			
	पJ．EW			\％		$\stackrel{\sim}{N}$					\pm		－			
	K．Jenıq̇」			¢		\bigcirc	∞				\bullet			－	∇	
	RIenuer			－		®	\bar{m}	\sim		－	음			－	\sim	$\stackrel{\square}{\sim}$
呬	Јəquəวəด			은									은			
	Јəquəə＾ON			8			\wedge				으		\sim			
	ЈəqоఖจО			$\stackrel{\infty}{\sim}$		\bigcirc			－		－	－				
	Jəquə゙dəS			ค	m	ํㅡㄴ							\sim			
	7sn¢n\％	\wedge		∞		으					∇					
					Passer hispaniolensis（TEMMINCK，1820）											
		$\begin{aligned} & \text { O} \\ & \text { on } \\ & \stackrel{n}{2} \end{aligned}$	O 0 \sim \sim	윾	¢ N \sim	$\begin{aligned} & \circ \\ & \circ \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ¢े } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { Oे } \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { Non } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & 6 \end{aligned}$	$\stackrel{\ominus}{\mathrm{N}}$	\circ 0 $\stackrel{\circ}{\circ}$ \sim	\circ 0 ∞ \sim

Appendix 1. (Continued)																
		2000					2001									Status
		$\begin{aligned} & \text { 苟 } \\ & \frac{3}{4} \end{aligned}$		$\begin{aligned} & \dot{\$} \\ & \stackrel{\rightharpoonup}{U} \\ & 0 \end{aligned}$		$\begin{aligned} & \grave{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{U}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 금 } \\ & \text { 芯 } \end{aligned}$	7 0 0 0	$\begin{aligned} & \text { 두N } \\ & \sum_{n}^{n} \end{aligned}$					$\stackrel{\text { O }}{\mathbf{n}}$	글	
18770	Emberiza schoeniclus (LINNE, 1758)							1	1							V
18810	Emberiza melanocephala SCOPOLI, 1769											4	17	3	2	S
18820	Milaria calandra LINNE, 1758		11				1	10	5	9	4	9	19	14	1	R, RB

[^0]: * This study was part of the requirements for the MSc degree submited to Hacettepe University on 21 January 2002.

