8×8 单元 CsI(TI)探测阵列研制

姚向武^{1,2},杨彦云^{1,2},王建松¹,黄美容^{1,2},高 启^{1,2},郭忠言¹, 肖国青¹,徐翊珊¹,胡正国¹,余玉洪^{1,2},仇 浩^{1,2},严鑫帅^{1,2} (1.中国科学院近代物理研究所,甘肃 兰州 730000; 2.中国科学院研究生院,北京 100049)

摘要:描述了1个8×8单元 CsI(Tl)探测阵列的结构和工作原理。探测阵列的每个单元是由1块前表面21mm×21mm、后表面23.1mm×23.1mm、高50mm的CsI(Tl)棱台、1块光导和光电倍增管组成。在兰州放射性次级束流线(RIBLL)上对探测阵列进行测试,得到探测阵列对30MeV质子的能量分辨可达2.7%,对170MeV⁷Be可达1.5%,可很好地用于放射性束物理实验中带电粒子的鉴别。 关键词:能量分辨;脉冲形状甄别;带电粒子;粒子鉴别 中图分类号:O571 文献标志码:A 文章编号:1000-6931(2010)03-0358-04

Development of 8×8 CsI(Tl) Array Detector

YAO Xiang-wu^{1,2}, YANG Yan-yun^{1,2}, WANG Jian-song¹, HUANG Mei-rong^{1,2}, GAO Qi^{1,2}, GUO Zhong-yan¹, XIAO Guo-qing¹, XU Hu-shan¹, HU Zheng-guo¹, YU Yu-hong^{1,2}, QIU Hao^{1,2}, YAN Xin-shuai^{1,2}

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
 Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The principle and structure of a 8×8 CsI(Tl) array detector were described in this paper. For each unit, there are a CsI(Tl) crystal, an optical conductor and a photoelectric multiplier tube. The length of CsI(Tl) crystal is about 50 mm with a 21 mm \times 21 mm front surface and a 23.1 mm \times 23.1 mm back surface. The energy resolution is 2.7% for 30 MeV proton and 1.5% for 170 MeV ⁷Be, which was tested on the RIBLL (Radioactive Ion Beam Line in Lanzhou). It can be used to identify the charged particles in the nuclear experiments induced by the radioactive beam.

Key words: energy resolution; pulse shape discrimination; charged particle; particle identification

随着放射性束物理的发展,很多新的物理现象被发现,如质子晕、中子晕、新幻数的发现

收稿日期:2009-01-06;修回日期:2009-04-16

基金项目:中国科学院"百人计划"资助项目(O501080BR0);国家自然科学基金资助项目(10221003,10605033,10635080);国家 "973"计划资助项目(2007CB815000)

作者简介:姚向武(1982一),男,甘肃庆阳人,硕士研究生,实验核物理专业

等。这些现象的出现对传统的核理论提出了挑 战,理论上使得一些原来描述稳定核的模型不 再适用,促使人们建立新的、更普适的模型。 RIBLL^[1](兰州放射性次级束流线)为弹核碎裂 型(PF型)放射性束流线,可提供寿命短至 us 量级的放射性束流。但 PF 型放射性束流线提 供的束流品质相比重离子加速器所提供的稳定 核束流差很多,这就对实验设备提出了更高的 要求,例如:覆盖较大的立体角,目具有相互独 立的探测单元;好的位置分辨;好的能量分辨; 好的时间性能等。在放射性束物理实验中,有 些反应道的截面很小,反应产物的角分布也较 广,为了有高的探测效率以满足实验的统计量, 同时也为了探测反应的空间关联,探测器必须 覆盖较大的立体角,并由相互独立的探测单元 组成^[2-3]。好的位置分辨和能量分辨是对反应 产物完全运动学测量以及在碎裂反应中重构不 变质量谱的基础。同时, △E-E 及磁场偏转等 鉴别粒子的方法亦需探测器具有好的位置分辨 和空间分辨;在实验中如需进行飞行时间法鉴 别粒子,则探测器必须具有良好的时间性能。 CsI(Tl)、BGO、GSO等闪烁体由于其阻止本领 高、动态范围大、可塑性好、能量响应基本线性、 性价比高等优点,能很好地满足上述探测装置 的要求。

本工作研究 8×8 单元 CsI(Tl)探测阵列 的结构和性能等相关问题,并通过用 α 源和在 束测试结果对该探测器系统性能进行评价。

1 探测阵列结构

研制的 8×8 单元探测阵列的整体结构如 图 1 所示,它由 64 块 CsI(Tl)晶体组成,每块 晶体使用光电倍增管单独读出。为减少电磁干 扰,每只光电倍增管外套 1 个铁制屏蔽筒,整个 阵列探测器由 1 个可拆分为 8 部分的铝支架固 定。使用的 CsI(Tl)晶体由中国科学院近代物 理研究所研制生长,晶体为前表面 21 mm× 21 mm、后表面 23.1 mm×23.1 mm、高 50 mm 的棱台。

由于 CsI(Tl)晶体的后表面为 23.1 mm× 23.1 mm 的正方形,而光电倍增管的光阴极为 \$\phi19 mm 的圆面,为了使晶体与光电倍增管之 间有较好的匹配,使用航空有机玻璃制作了光

图 1 CsI 阵列结构图 Fig. 1 Structure scheme of CsI array

导,光导侧面同样使用 Teflon 带包裹。光导的 使用一般会导致闪烁光损失,从而导致能量分 辨变差。对闪烁体与光电倍增管之间直接使用 硅脂耦合(中间无光导)和加上光导两种情况进 行测试发现,加光导后探测单元的能量分辨并 未明显变差(未加光导时,闪烁体的分辨率为 7.4%,加光导后为 7.7%),因此,使用的光导 有很好的光传输效果。

晶体与光导使用 BICRON 公司生产的 BC-600 光学胶粘接,起到固定和光学耦合的作 用。对光导与光电倍增管之间,考虑使用硅脂 耦合和使用光学胶粘接两种备选方法,经测试 发现,两种耦合方式对探测单元能量分辨的影 响基本相当。考虑到方便安装以及光电倍增管 的再次利用,光导和光电倍增管间直接使用 BICRON公司生产的 BC-630 硅脂进行耦合。

光导前表面与晶体后表面的尺寸完全匹配,而光导的后表面为 \$16 mm 的圆面,小于光 电倍增管的光阴极面,因光电倍增管只有中间 \$16 mm 的区域为有效面积。为了保持光导始 终在光电倍增管的有效区域,用聚四氟乙烯制 作套筒,以固定光导与光电倍增管。

该探测器使用的光电倍增管为 Hamamatsu 生产的 R1213 型^[4],光响应波长为 300 ~ 650 nm,敏感波长的峰值为 420 nm,与闪烁晶 体有较好匹配。光电倍增管的上升时间为 1.9 ns,渡越时间为 21 ns,打拿极级数为 10,增 益为 6.7×10⁵,光阴极灵敏度为 105 mA/lm, 阳极灵敏度为 60 A/lm。

探测器覆盖的立体角和位置分辨能力由其 结构所决定。如果探测器放置在距靶心 50 cm 的位置,覆盖的θ角为-11°~11°,4角为0°~ 360°,覆盖的总的立体角为147 msr。由于该探 测器用于测量放射性束流打靶反应后的碎裂产 物,反应产物基本聚集于前角区,因此,这个立 体角基本可满足实验需要。每1块晶体覆盖 1.76 msr,这也是所能达到的位置分辨。

2 探测器测试性能

闪烁体的性能对整个探测器性能至关重 要,因此,对每块闪烁晶体使用三组分α源进行 测试。测试的每块闪烁体使用 Teflon 包裹前 表面和侧面,其中,前表面的包裹层留有一小 孔,三组分α源贴在小孔处。闪烁体的后表面 使用硅脂直接与光电倍增管耦合,并使用 Teflon固定闪烁体和光电倍增管以及包裹闪烁 体后表面大于光电倍增管的部分。然后,对每 块闪烁体进行能量测试,从中选择 64 块能量分 辨较好的闪烁体为探测器所用。最终选择的 64 块闪烁体各单元能量分辨示于图 2。

基于该探测器的研制目标,探测器的能量 分辨对探测器至关重要。使用三组分 ~ 源对探 测器单元在靶室中抽真空进行测试。最初的测 试表明,探测器的能量分辨很差,大于 10%,能 量分辨差的原因是三组分 ~ 源本身的能量分别 仅为 5.785、5.468 和 5.157 MeV,而放射源有 一部分是斜入射穿过铝膜进入探测器的,导致 能量发散。在实验中,入射粒子能量较高,且探 测器距靶心较远,斜入射的影响相对较小,且实 验中可通过确定粒子的轨迹来修正铝膜上的能 损。因此,用放射源对前表面未包裹任何物品 的探测器单元再进行 1 次测试。测试结果(图 3)显示,探测器对 α 的能量分辨约为 7% ~ 8%。在实验中,射线的能量远大于放射源的能量,而闪烁体探测器的能量分辨在能量高的情况下会有所改善。另外,在测试中,探测器前表 面未包裹任何物品而会影响光的收集;放射源 在 CsI (T1)闪烁体高 50 mm,远大于放射源的射 程,光在如此长的距离传输,势必会有所发散, 从而影响能量分辨。为了验证此分析,在同种 条件下对 10 mm×10 mm×10 mm 的 CsI(T1) 闪烁体进行测试,能量分辨可达5.3%。

Fig. 3 Measured α -energy spectrum by array unit

本工作研制的探测器已在"⁹C 碎裂反应的 完全运动学测量"实验中得到应用。该实验利 用兰州重离子加速器(HIRFL)提供的¹²C 束流 轰击 RIBLL 初级靶室的 Be 靶,通过 RIBLL 选 择传输,得到⁹C次级束流。用次级束分别轰击 薄靶(0.1 mm C 靶和 0.1 mm Pb 靶)和厚靶 (0.5 mm Pb 靶),并探测出射粒子来实现反应 产物完全运动学测量。图4示出实验中测得的 ΔE -E 谱。由图 4 可见,该探测器结合薄的硅 探测器(ΔE)可很好地探测到各反应道出射的 ⁸B、7Be 等重离子,再结合硅微条探测器对质子 进行测量,可推出各反应道截面、对应碎片动量 分布等信息,通过重构不变质量谱,得出对应 的°C 共振激发态能级及两个质子的关联函数, 从而达到实验设计的目的。实验数据显示,探 测器对 15、30 MeV 质子的能量分辨可达3.3% 和2.7%,对于 110 MeV ⁷Li 和 170 MeV ⁷Be, 能量分辨可达 1.8% 和 1.5%,达到了实验对探 测器的性能要求。

3 结论

基于放射性束核物理的发展需求,结合 RIBLL的实际情况,研制了8×8单元CsI(Tl) 阵列探测器。探测器覆盖的立体角可满足实验 需求。通过使用放射源测试和实验数据显示, 探测器有很好的能量分辨,达到了实验的要求。

由于CsI(Tl)晶体具有良好的脉冲形状甄

别性能,希望以后结合探测器研制 1 套脉冲形 状甄别系统。对于较轻的粒子(Z≪3),因在硅 探测器中的能损较小,可用 CsI 脉冲形状甄别 方法进行粒子鉴别,对于较重的碎片,则用 ΔE-E 方法实现粒子鉴别,这样更易实现轻、重碎片 的关联测量。

参考文献:

- [1] ZHAN Wenlong, GUO Zhongyan, LIU Guanhua, et al. Radioactive ion beam line in Lanzhou
 [J]. Science in China: Series A, 1999, 42(5): 528-536.
- XI Hongfei, ZHAN Wenlong, GUO Zhongyan, et al. The use of CsI(Tl) scintillators with photodiode readout in heavy ion experiments [J]. Nucl Instrum Methods A, 1992, 320: 504-507.
- [3] MERCHEZ F, KOX S, PERRIN C, et al. A new setup for very small angle correlation measurements[J]. Nucl Instrum Methods A, 1989, 275: 133-141.
- [4] 李加兴, 郭忠言, 詹文龙, 等. 5×5 阵列
 PHOSWICH 闪烁探测器望远镜[J]. 核电子学
 与探测技术,2000,20(5):321-325.
 LI Jiaxing, GUO Zhongyan, ZHAN Wenlong, et

al. A 5 × 5 PHOSWICH telescope detectors array [J]. Nuclear Electronics & Detection Technology, 2000, 20(5): 321-325(in Chinese).