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TYURINA COMPONENTS AND RATIONAL CYCLES

FOR RATIONAL SINGULARITIES

Meral Tosun

Abstract

In this paper, we give a geometric proof of Pinkham’s theorem on the positive

cycles supported on the exceptional divisor of a rational singularity. In order to do

this, we give several properties of the Tyurina components of the exceptional divisor

and of the points of blowing-up surface of a rational singularity.

Introduction

An isolated singularity of a complex surface S is rational if the stalk at the singularity

of the coherent sheave R1π∗OX is equal to zero where π : X → S is a resolution of S at the

singularity. The numerical characterization of a rational singularity, given by M. Artin

in [1] (see theorem 2.4 below), permits us to study these singularities by the exceptional

divisor of a resolution of the singularity (see [15] or [17]). Here we are interested in the

positive cycles supported on the exceptional divisor of a resolution divisor of a rational

singularity. In [1] and [11], it has been shown that these cycles correspond to some special

functions on S. In section 4, we use this correspondance to prove Pinkham’s theorem

given in [12] (see theorem 4.4 below).

We start our paper by introducing some notations. In section 3, following the general

case of a theorem of M. Artin [1] (see theorem 2.4 below), we give a proof on the nature

of the exceptional divisor of a resoution of a rational singularity (see corollary 3.2 below).

After giving some properties on the blowing up surface of a rational singularity, we finish

the section by giving a bound on the non-Tyurina components of the exceptional divisor
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of a resolution of a rational singularity.

Recall

Let (S, ξ) be a germ of a normal analytic surface embedded in CN . Denote by S

a sufficiently small representative of the germ (S, ξ). A resolution of S is a complex

analytic surface X and a proper holomorphic map π : X → S such that its restriction

to X − π−1(ξ) is a biholomorphic map and X − π−1(ξ) is dense in X. By the Main

Theorem of Zariski, the exceptional divisor E := π−1(ξ) is connected and of dimension

1. Let E1, . . . , En denote its irreducible components.

We call positive cycle a formal sum of the irreducible components Ei of E with non-

negative integral coefficients and with at least one non-zero coefficient. We denote by

E+ the set of the positive cycles Y such that (Y.Ei) ≤ 0 for all i (see [11],
∮
18). The

existence of such cycles is due to O. Zariski (see [19]). We define a partial ordering on

E+ as following : For Y, Y ′ ∈ E+ with Y =
∑n

i=1 m′iEi, we have Y ≥ Y ′ if mi ≥ m′i for

all i, (i = 1, . . . , n). Since E is connected, we have:

Remark 2.1. For a positive cycle Y =
∑n

i=1 miEi, if (Y.Ei) ≤ 0 for all i, then we

have mi ≥ 1 for all i, (i = 1, . . . , n).

Definition 2.2 Let A be a set of positive cycles Y =
∑n

i=1 miEi. We define lnfA as

Z0 =
∑n

i=1 aiEi with

ai = infY ∈A{mi | mi = multY Ei}

where multYEi is the coefficient of Ei in Y . The cycle Z0 is a positive cycle since mi ∈ N∗

for all i.

Theorem 2.3 For all subset A of E+, we have lnfA ∈ E+.

Proof. Let Z0 =
∑n

i=1 aiEi = lnfA. We will show that (Z0.Ei) ≤ 0 for all i:

(Z0.Ej) = aj(Ej.Ej) +
∑
i 6=j

aj(Ei.Ej)

Let Y 0 =
∑n

i=1 m0
iEi be a positive cycle in A such that m0

j = aj . We have then
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(Z0.Ej) = m0
j (Ej .Ej) +

∑
i 6=j

ai(Ei.Ej)

(Z0.Ej) ≤ m0
j (Ej .Ej) +

∑
i 6=j

m0
i (Ei.Ej) = (Y 0.Ej) ≤ 0.

Hence we have Z0 ∈ E+.

Theorem 2.4 For a resolution of S, the arithmetic genus of lnfE+ is greater than or

equal to zero. In particular, the singularity E of S is rational if and only if the arithmetic

genus of lnfE+ is zero.

By [1] and [19], the cycle Z = lnfE+ =
∑n

i=1 aiEi is called the fundamental cycle of

the resolution π and it can be computed by Laufer algorithm (see [8], proposition 4.1).

Tyurina Components

The purpose of this section is to understand the nature of the exceptional divisor of a

resolution of a rational singularity and the points of the blowing-up surface of a rational

singularity. We will finish this section by giving a bound on the non-Tyurina components

of the exceptional divisor of a resolution of a rational singularity.

From the proof of proposition 1 in [1], we deduce following theorem:

Theorem 3.1 Let S be a sufficiently small representation of a germ (S, ξ) of a complex

analytic normal surface having rational singularity at ξ. Let S′ be a normal surface and

let ρ : S′ → S be a bimeromorphic proper map which is not the identity map. Let Y be a

positive cycle supported on the divisor ρ−1(ξ). Then we have H1(| Y |,OY ) = 0.

Proof. The Main Theorem of Zariski says that the divisor ρ−1(ξ) is connected

and of dimension 1. Let E1, . . . , En be the irreducible components of ρ−1(ξ) and let

Y(r) =
∑

rjEj with (r) = (r1, . . . , rk) be a positive cycle supported on ρ−1(ξ). By the

analytic comparison theorem of H. Grauert ([2], p.15-02), we have:

(R1ρ∗OS′)ξ
∧

=
lim

(r)← (∞)
H1(| Y(r) |,OY(r))
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where (R1ρ∗OS′)ξ
∧ is the completion of the module of finite type (R1ρ∗OS′ ) on OS,ξ for

the M-adic topology where M is the maximal ideal of the local ring OS,ξ. Since the

spaces | Y(r) | have dimension 1, the map

H1(| Y(r) |,OY(r))→ H1(| Y(r′) |,OY(r′))

is surjective when rj ≥ r′j for all j. This gives H1(| Y(r) |,OY(r)) = 0 for all (r).

Since for all positive cycles Y supported on the divisor ρ−1(ξ), there exists (r) such

that Y ⊂ Y(r), we have H1(Y,OY ) = 0.

Corollary 3.2 With the same hypothesis as in the theorem 3.1, all irreducible compo-

nents of the divisor ρ−1(ξ) are non-singular rational curves.

Proof. We have to prove that Ei is non-singular and p(Ei) = 0 where p(Ei) is

the arithmetic genus of Ei. By the theorem 3.1, we have H1(Ei,OEi) = 0, and since

Ei is a reduced irreducible curve, H0(Ei,OEi) = 1 (see [6], theorem I.3.4). Since 1-

p(Ei) = χ(OEi ) = dimH0(Ei,OEi) − dimH1(Ei,OEi) = 1 where X(OEi ) is the Euler

characteristic of OEi , we obtain p(Ei) = 0.

Let n : Ēi → Ei be the normalization of Ei. Since Ēi is non-singular, we have the

following exact sequence of coherent sheaves on Ei (see [6], exercise IV.1.8):

0→ OEi → n∗OEi →
∑
p∈Ei

Ōp/Op → 0

where Ōp is the integral closure sheaf of Op is a coherent sheave concentrated on the

singular points of Ei. Moreover we have X(n∗OEi) = X(OEi ) (see [6], exercise III.4.1).

Then

X(OEi ) = −dimH1(Ēi,OĒi)

Let δp=length (Ōp/Op). We have :

X(
∑
p∈E1

Ōp/Op) = dimCH0(Ei,
∑
p∈Ei

Ōp/Op) =
∑
p∈Ei

δp
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Hence p(Ei) = p(Ēi) +
∑

p∈Ei δp. Here p(Ei) ≥ 0 (see [6], p.181) and δp ≥ 0 for all

p ∈ Ei. Since p(Ei) = 0 we have p(Ēi) = 0 and
∑

p∈Ei δp = 0. Then Ei is a non-singular

curve.

By the theorem 3.1 and corallary 3.2, we obtain:

Corollary 3.3 With the same notations above, we have:

(i) (Ei.Ej) = 0 or 1 if i 6= j,

(ii) Ei ∩ Ej ∩ Ek = θ if, i, j and k are three integres pairwise distincts,

(iii) E = ∪Ei, (1 ≤ i ≤ n) doesn’t contain any cycle.

Proof. (i) If (Ei ∩ Ej) = θ we have (Ei.Ej) = 0. If (Ei ∩ Ej) 6= θ we have:

H0(| Ei + Ej |,OEi+Ej ) ∼= C

and, by theorem 3.1, H1(Ei + Ej,OEi+Ej ) = 0. So p(Ei + Ej) = 0. Moreover, by

Riemann Roch theorem, we have:

p(Ei + Ej) = p(Ei) + p(Ej) + (Ei.Ej)− 1

Then we obtain (Ei.Ej) = 1.

(ii) Let Ei, Ej and Ek be three components of ρ−1(ξ) which are pairwise distincts.

We have :

p(Ei + Ej + Ek) = p(Ei) + p(Ej + Ek) + (Ei.(Ej + Ek))− 1

Assume Ei ∩ Ej ∩ Ek 6= θ. This implies (Ei.Ej) 6= 0 and (Ei, Ek) 6= 0, which means,

by (i) above, (Ei.Ej) = (Ei.Ek) = 1. Since p(Ei) = 0, and Ei + Ej + Ek and Ej + Ek

are connected, by the proof of the corollary 3.2, we obtain:

p(Ei + Ej + Ek) = p(Ei) = p(Ej + Ek) = 0

Hence (Ei.Ej) + (Ei.Ek) − 1 = 0. This contradicts (Ei.Ej) = 1 and (Ei.Ek) = 1. So

we have Ei ∩ Ej ∩ Ek = θ.
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(iii) Let Ei1 , . . . , Eip the irreducible components of ρ−1(ξ) pairwise distincts. Assume

(Eij .Eij+1) 6= 0 and (Ei1 .Eip) 6= 0. By (i) above, (Eij .Eij+1) = (Ei1.Eip) = 1. Now

consider

p(Ei1 + . . . + Eip) = p(Ei1) + p(Ei2 + . . . + Eip) + (Ei1 .(Ei2 + . . . + Eip)) − 1

Since Ei1 + . . .+Eip and Ei2 + . . .+Eip are connected, we obtain p(Ei1 + . . .+Eip) =

p(Ei1 = p(Ei2 + . . . + Eip) = 0. Hence (Ei1.Ei2 + . . . + Eip) − 1 = 0

Since (Ei1 .Ei2) = (Ei1 .Eip) = 1 and (Ei1 .Eij) ≥ 0 for 2 ≤ j ≤ p, this is a contradic-

tion.

3.4 Let S be a normal surface having a singularity at ξ (not necessarily rational). Let

J be the ideal of C{x1, . . . , xN} which defines the surface S in a neighbourhood U in CN .

Let f ∈ J . We call initial form of f at ξ, noted by lnξf , the homogeneous polynomial

of lowest degree in the Taylor expansion of f at ξ. Let J be the ideal of C{x1, . . . , xN}
generated by the set {lnξf | f ∈ J }. The tangent cone CS,ξ of S at ξ is the 2-dimensional

algebraic subvariety of CN defined by the homogeneous ideal L. We denote by ProjCS,ξ

the projectivized curve in PN−1 associated with CS,ξ. The set Proj | CS,ξ |=| ProjCS,ξ

is the set of lines of the tangent cone CS,ξ. If σ : S̄ → S denotes the blowing up of S at

ξ then we have σ−1(ξ) ∼= ProjCS,ξ ⊂ PN−1 (see [18], theorem 5.8).

In what follows, we assume that S has a rational singularity at ξ. Then MOX is

locally principal (see [1], theorem 4). Let σ : S̄ → S be the blowing up of S at ξ. The

surface S̄ is normal (see [16], theorem 1). If π : X → S denotes a resolution of S, by the

universal property of blowing up, there exists a map π̄ : X → S̄ such that σ ◦ π̄ = π. Let

us denote by E = ∪Ei and by Z =
∑n
i=1 aiEi the fundamental cycle of π.

Definition 3.5 A Tyurina component of E is a maximal connected set B of irreducible

components of E such that (Z.Ei) = 0 for all irreducible components Ei in B.

By [15] and [16], the Tyurina components have the following geometric interpretation:

Consider the non-Tyurina components of E, i.e. the irreducible components Ei of E such

that (Z.Ei) < 0. Suppose that the number of these components is equal to s. We have

s ≤ n. We may assume that (Z.Ei) < 0 for all 1 ≤ i ≤ s. Now we consider the closure
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of the curve E \ (Ei ∪ . . .∪Es); it is not necessarily connected. Denote by B1 , . . . , Bk its

connected components. So each Bj , (1 ≤ j ≤ k), is a Tyurina component of E. As in [15]

(remark 3.2), we have:

Proposition 3.6 An irreducible component Ei of E is contained in a Tyurina compo-

nent of E if and only if π̄(Ei) is a point of S̄.

Proof. Let Z1 be the positive cycle defined byMOS̄ whereM is the maximal ideal of

the local ring OS,ξ. We haveMOX = π̄∗(MOS̄). Since π̄ is a proper map, the projection

formula (see [3], paragraph 2.6) says that:

(Z.Ei) = (Z1.π̄(Ei)).

It is clear that if π̄(Ei) is a point in S̄ then we have (Z.Ei) = 0.

If π̄(Ei) is not a point, then it is an irreducible component of | Z1 | where | Z1 | is

the reduced curve associated with Z1. Let Ch be a generic hyperplane section of S at ξ

defined by the equation (h = 0) with h ∈ M/M2 such that its strict transform h′ by σ

intersects | Z1 | transversely. Let h′′ be the strict transform by π of Ch. The divisor of

h in X can be written as (π∗h) = Z + h′′. Since ((π∗h).Ei) = 0 for all i, the projection

formula gives:

(h′′.Ei) = (h′.π̄(Ei)).

Since (h′′.π̄(Ei)) > 0, we deduce (Z.Ei) < 0. This implies that Ei is a non-Tyurina

component of E.

Then the normal surface S̄ has k singularities each of which is obtained by the con-

traction of a Tyurina component Bj , (1 ≤ j ≤ k), of E by π̄ to a point of S̄. Let us

denote by ξ1, . . . , ξk these singularities. Let Vj be a small neighbourhood of ξj in S̄. We

have:

Corollary 3.7 With the preceding notations, we have:

(1) The restriction map π̄ |π̄−1(Vj) is a resolution of the germ (S̄, ξj).
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(2) If X is the minimal resolution of S then X is the minimal resolution of S̄, and a

Tyurina component Bj of E is the exceptional divisor π̄−1(ξj) of the minimal resolution

of S̄ at ξj.

(3) A point of S̄ which is not the contraction of a Tyurian component is a non-singular

point of S̄.

(4) The singular points of | σ−1(ξ) | are necessarily the intersection points of irre-

ducible components of | σ−1(ξ) | (see corollary 3.2).

Moreover we have:

Proposition 3.8 The singularities ξ1, . . . , ξk of S̄ are all rational.

Proof. The contraction of each Bj gives a normal surface singularity (see [7], lemma

5.11 and [5], theorem 1). By the theorem 2.4, we have p(ZBj ) ≥ 0 where ZBj is the

fundamental cycle associated with Bj . Moreover, theorem 3.1 implies p(ZBj ) ≤ 0. This

gives the proposition.

Proposition 3.9 Suppose that ξ is a rational singularity and the multiplicity of S at ξ

is m. Let E be the exceptional divisor of a resolution π : X → S of S. Then the number

of the non-Tyurina components of E is less than or equal to m.

Proof. Let E1, . . . , En be the irreducible components of E. Assume that (Z.Ei) < 0

if and only if i ∈ {1, . . . , s}. It is well known that (Z.Z) = −m (see [1], corollary 6). If

we denote (Z.Ei) = −di where di is a positive integer for all i, (1 ≤ i ≤ s), we obtain :

(Z.Z) =
n∑
i=1

ai(Z.Ei) = −
s∑
i=1

diai = −m

By definition, we have ai ≥ 1 and di ≥ 1; so aidi ≥ 1. Then
∑s

i=1 aidi ≥ s.

The non-Tyurina components of the exceptional divisor of a resolution of S corre-

spond exactly to the strict transform by π̄ of the components of Proj | CS,ξ |. We will

use this fact in the next section to associate the Tyurina components with the functions

on S.
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Rational cycles

We will call rational cycle an element of E+. In this section, we will construct the

elements of E+ by using the fundamental cycle Z (see [16] or [12]), and some special

functions on S which correspond to these rational cycles. In order to do this, we will

prove theorem 4.2 that we call Pinkham’s theorem.

Let π : X → S be a resolution of S having a rational singularity at ξ. By [11], there is

a one-to-one correspondence between the M-primary complete ideals I in the local ring

OS,ξ such that IOX is invertible and the rational cycles. In other words, there exists a

rational cycle D on X and a M-primary ideal I in OS,ξ such that IOX = O(−D). In

particular, we haveMOX = O(−Z) where Z is the smallest rational cycle of π.

Here we will speak on the functions on S rather than on the M-primary complete

ideals. In fact, the rational cycles correspond to the elements of these ideals in OS,ξ . By

[1], a positive cycle D supported on E is an element of E+ if and onl if there exists a

function f inM on S such that the compact part of the divisor in X corresponding to f is

D i.e.(π∗f) = D+f ′′, where f ′′ is the strict transform by π of f . Since (π∗f).Ei = 0 for all

irreducible components Ei of the exceptional divisor E of π, we obtain (f ′′.Ei) = −(D.Ei).

This means that D is a rational cycle since (f ′′.Ei) ≥ 0. To understand the function on

S which corresponds to the smallest rational cycle Z, we define:

Definition 4.1 [9] A line of the tangent cone CS,ξ is called exceptional tangent of S at

ξ if it corresponds to a singular point of S̄ or a singular point of Proj | CS,ξ |.

Definition 4.2 [14] A function f on S is called generic if it is defined by a non-singular

function F defined in a neighbourhood of ξ in CN so that the tangent hyperplan at ξ to

he hypersurface (F = 0) is not tangent to the tangent cone CS,ξ and doesn’t contain any

exceptional tangent of S at ξ.

Let h be a function on S defined by a hyperplane H1. Assume that h is a generic

function on S. This implies that the zero locus of h ◦ σ intersects the components of

Proj | CS,ξ | transversely at the non-singular points of Proj | CS,ξ | and of S̄. By [4],

the compact part of the total transform of such a function h by a resolution π of S is

exactly the fundamental cycle of the resolution (i.e. we have (π∗h) = Z + h′′ where h′′ is

the strict transform by π of h).
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Now to costruct the elements of E+, choose a component Eio of E. Let Z0 = Z +Eio.

Consider the sequence of the positive cycles

Z0 = Z +Eio, . . . , Zi+1 = Zi +Em(i) if there exists m(i) such that (Zi.Em(i)) > 0 and

Zi+1 = Zi otherwise. This proces is finite (see [8] or [12], proposition 1.2).

Lemma 4.3 Let Y be a positive cycle supported on E such that there is a component

Ei in Y for which (Y.Ei) > 0. Then there exists a cycle Z1 > Y such that Z1 is in E+

and verify Z1 ≥ Y + Ei.

Proof. Let Z =
∑n

i=1 aiEi be the fundamental cycle and Y + Ei =
∑n
i=1 miEi a

positive cycle supported on E. For all i, there exists ni ∈ N∗ such that niai ≥ mi. Let

s = supi=1,...,nni. We have then sZ ≥ Y + Ei. Moreover sZ ∈ E+. So this gives the

existence of a positive cycle Z1 in E+ which verify Z1 ≥ Y + Ei.

Let us consider Ai = {Z1 ∈ E+ | Z1 ≥ Z + Ei}. Denote lnfAi = Z̄(Ei). By theorem

2.3, Z̄(Ei) ∈ E+. By [16], if Ei is contained in a Tyurina component Bi of E, then

Z̄(Ei) = Z +∆Zi where ∆Zi is a linear combination of the irreducible components of the

Tyurina component Bi. In that case, H. Pinkham ([12], proposition of section 14) gives

precisely ∆Zi. We give this result in the following theorem:

Theorem 4.4 (Pinkham’s theorem) Let Ej
i be an irreducible component of E which is

contained in a Tyurina component Bj of E. Then the smallest Z̄(Ej
i ) in E+ such that

Z̄(Ej
i ) ≥ Z + Ej

i is equal to Z + Z(Bj) where Z(Bj ) is the fundamental cycle associated

with Bj .

We shall speak later about ∆Zi in the case where Ei is a non-Tyurina component.

First we prove theorem 4.4. The aim of our proof is to see the relation between the

Tyurina components of the exceptional divisor and the functions on the surface S.

Proof. Let f be a function in the maximal idealM of OS,χ. Let (π∗f) = Y +f ′′ where

f ′′ is the strict transform by π of f where Y is the compact part of the divisor (π∗f). Let

us denote Ej
i an irreducible component Ei of E which belongs to a Tyurina component

Bj(1 ≤ j ≤ k). As in Section 2, let Ai = {D | D ≥ Z+Ej
i }. Assume that Y is an element

of Ai. Let us denote by Z1 (resp. Y1) the positive cycle supported on the ProjCS,ξ such
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that π̄∗(Z1) = Z (resp. π̄∗(Y1) = Y ) (see proof of proposition 3.6). W have Y1 ≥ Z1.

Since the case Y1 > Z1 will be an obvious consequence of the case Y1 = Z1, we assume

that Y1 = Z1. The total transform by π of f can be written in the form (π∗f) = (π̄∗Z1)

where f ′ is the strict transform by σ of f . This give (π∗f) = Z + F + f ′′ where F is a

positive cycle supported on the components of the divisor π̄−1(f ′ ∩ProjCS,ξ). We notice

that Y = Z + F .

Let ξj be the singular point of S̄ obtained by the contraction of the Tyurina component

Bj of E. If f ′ doesn’t passe through Ej in S̄ then Bj is not contained in F (see remark

3.7-(4)). So we exclude this case because Y is not contained in Ai If f ′ passe through

ξj in S̄ then Bj is contained in F . Then we can write Y ≥ Z + Z(Bj ). (Notice that, if

Y1 > Z1 above, we have Y ≥ Z + Z(Bj)). Now in order to prove lnfAi = Z +Z(Bj ), we

will show that Z +Z(Bj ) is an element of Ai. This is equivalent to show that Z +Z(Bj )

is a rational cycle. So it is sufficient to prove (Z + Z(Bj)).Ei ≤ 0 for all irreducible

components Ei of E, (1 ≤ i ≤ n)). We prove it in the following two cases:

(1) If Ei is contained in a Tyurina component of E, we have (Z.Ei) = 0 and

(Z(Bj ).Ei) ≤ 0, so (Z + Z(Bj)).Ei ≤ 0.

(2) If Ei is a non-Tyurina component of E we have two cases: If Ei ∩ Bj = θ, we

have (Z(Bj ).Ei) = 0; this gives (Z + Z(Bj )).Ei ≤ 0 since (Z.Ei) < 0. If Ei ∩ Bj 6= θ,

we have (Z(Bj).Ei) > 0. This gives (Z(Bj ).Ei) = ajm where aim is the multiplicity of the

component Ej
m in Z(Bj ) attached to Ei. By [10], theorem 4.6), this multiplicity is equal

to one. Then we obtain (Z + Z(Bj )).Ei ≤ 0.

Therefore Z + Z(Bj ) is a rational cycle. Since Z + Z(Bj) ≥ Z + Ej
i , it is an element

of Ai. By definition this gives lnfAi = (Z + Z(Bj )).

Hence a rational cycle D is an element of Ai if and only if there exists a function g

in M such that (π∗g) = D + g′′ where g′′ is the strict transform by π of g and the strict

transform g′ by σ in S̄ of g passe through the singular point ξj .

In particular, D is the smallest element of Ai if and only if the strict transform g′ by

σ of g intersects Proj | CS,ξ | at the nonsingular points of Proj | CS,ξ | and of S̄ except

ξ1 and the branch of g′ passing through ξj is a generic function on S̄.

Remark 4.5 If Ej
l and Ej

m are two irreducibles components in the Tyurina component
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Bj of E then we have Z̄(Ej
l ) = Z̄(Ej

m).

4.6 Now let us consider the set Ai = {Z1 ∈ E+ | Z1 ≥ Z + Ei} when Ei is a non-

Tyurina component of E. In order to give precisely the smallest cycle Z̄(Ei) = Z + ∆Zi

of this set, we introduce some notations:

Let us denote by B a Tyurina component of E and by E1 an irreducible component

of E which is contained in B. Let B0 = B and let Z(B0) be the fundamental cycle of B0.

If (Z(B0).E1) < 0 then we put Bl = B0 for l ≥ 1. If (Z(B0).E1) = 0 then we denote by

B1 the (Z(B0).E1) < 0 then we put Bl = B0 for Bl = B0 for l ≥ 1. If (Z(B0).E1) = 0

then we denote by B1 the Tyurina component of Z(B0) which contains E1. We have

B0 ⊃ B1. By induction, we define the sequence B0 = B, B1, . . . , Bp such that Bl is a

Tyurina component of Bl−1E1, is contained in Bl and E1 is a non-Tyurina component

of Z(Bp), 1 ≤ l ≤ p. As in [10], we define:

Definition 4.7 [10] We call B0 = B, B1, . . . , Bp desingularization sequence of E1 and

p desingularization depth of E1.

Theorem 4.8 Let E be a non-Tyurina component of E. Let us denote by B1, . . . , Bq

the Tyurina components of E attached to E and by F1, . . . , Fq the irreducible components

of B1, . . . , Bq respectively such that (Ft ∩E) 6= θ for all t, (1 ≤ t ≤ q). Then the smallest

cycle Z̄(E) in E+ which is greater than Z + E, is

Z̄(E) = Z + E +
q∑
t=1

(
p∑
t=0

Z(Bl
t))

Here l = 0, . . . , p is the desingularization depth of F+ in Bt, (1 ≤ t ≤ q).

In particular, if E is not attached to any Tyurina component then we have Z̄(E) =

Z + E.

This result has been proved during the proofs and it will appear in a forthcoming

paper.
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