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Abstract

Call a commutative Banach algebra A a γ-algebra if it contains a bounded group

Γ such that aco(Γ) contains a multiple of the unit ball of A. In this paper, first by

exhibiting several concrete examples, we show that the class of γ-algebras is quite

rich. Then, for a γ-algebra A, we prove that A? has the Schur property iff the

Gelfand spectrum
∑

of A is scattered iff A? = ap(A) iff A? = Span(
∑

).
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1. Introduction

Let A be a commutative Banach algebra. We call A, for want of a better name, a

γ-algebra if A contains a bounded group Γ (for multiplication) such that aco(Γ) ⊇ cA1,

for some constant c > 0. Here aco(Γ) is the absolute convex hull of Γ and A1 is the closed

unit ball of A. The example that motivated us to introduce this class of Banach algebras

is the algebra A = C(K) of the continuous complex valued functions on a compact

(Hausdorff) space K. For this algebra, the set Γ = {eig : gεCR(K)} is a bounded group

for the multiplication and, by Russo-Day-Palmer Theorem [B − D; p.208], aco(Γ) = A1.

In section 2 we give several examples of γ-algebras and study stability properties of these

algebras under some Banach algebras construction procedures. In particular we show
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that the quotient algebras of Segal algebras [Re] by closed ideals with compact hulls are

γ-algebras, and that the projective tensor product A⊗̂B of two γ-algebras A and B is

again a γ-algebra. In section 3 we study structural and geometric properties of γ-algebras.

The main results are the following. We first prove that, in spite of the diversity of the

examples, the only γ-algebras are the quotient algebras of the group algebra `1(Γ) for a

discrete abelian group Γ. This result reduces the study of the γ-algebras to that of the

quotient algebras of the discrete group algebra `1(Γ). The second main result establishes

the following equivalences for a γ-algebra A with the spectrum
∑

: The space A? has

the Schur property (i.e. weakly convergent sequences in A? are norm convergent) iff

A? = ap(A) iff Span(
∑

) = A? iff
∑

is scattered (i.e. it has no nonempty perfect subset).

These results generalize and unify several known results or parts of them e.g. [P-S; Main

Theorem], [D-Ü; Proposition 3.5], [L-P1;Theorem 1]. The main ingredients of the proofs

are a result of Loomis [Lo; Theorem 4.] stating that a continuous function on an locally

compact abelian group with scattered spectrum is almost periodic, and Theorem 2.14 of

Lust-Piquard [L-P 2].

Notation and Preliminaries.

Our rotation and terminologies are quite standard. If X is a Banach space, we denote

by X? its dual and by X1 its closed unit ball. For x in X and f in X?, we denote by

< x, f > the natural duality between X and X?. We always consider X as naturally

embedded into its second dual X??. For any subset E of X?, we denote by Span(E) and

Span(E)?, respectively, the norm and weak? closures of Span(E) in X?.

Now let A be a Banach algebra. For f in A? and a in A, we denote by f.a the

functional defined on A by < f.a, x >=< f, ax >. The functional f is said to be almost

periodic on A if the set H(f) = {f.a : a ∈ A1} is relatively compact in A?. By ap(A)

we denote the space of the almost periodic functionals on A. This is a closed subspace of

A?. Now let Γ be a discrete abelian group, G be its dual group, and `1(Γ) be its group

algebra. For a in `1(Γ), we denote by â the Fourier transform of a. We consider each

element f of G as a multiplicative linear functional on `1(Γ) acting through the formula

< a, f >= â(f). For a subset E of G, we denote by Span(E) the norm closed subspace of

`∞(Γ) generated by E. By AP (Γ) we denote the space of the almost periodic functions
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on Γ. As is well known, AP (Γ) = Span(G) = ap(`1(Γ)). For ϕ in `1(Γ), the spectrum of

ϕ is denoted by σ(ϕ). This is the set

σ(ϕ) = G ∩ {ϕ.a : a ∈ l1(Γ)}?. [K; p.170]

For a closed subset E of G, by k(E) we denote the kernel of E. This is largest closed

ideal of `1(Γ) whose hull is E. Finally, by k(E)⊥, we denote the annihilator of k(E) in

`∞(Γ).

Examples of γ-Algebras.

As introduced in the preceding section, by a γ-algebra we mean a commutative Banach

algebra A that contains a bounded group Γ such that aco(Γ) ⊇ cA1, for some constant

c > 0. Such an algebra necessarily has a unit element. Beside the commutative C?-

algebras, several well known Banach algebras are γ algebras. In this section we give

several examples of γ-algebras and study some stability properties of them.

a) Group Algebra. Let G be a locally compact abelian group and L1(G) be its

group algebra.

Proposition 2.1 The algebra L1(G) is a γ-algebra iff the group G is discrete.

Proof. Since a γ-algebra is unital, if L1(G) is a γ-algebra then G is discrete. Con-

versely, if G is dicrete then the Dirac measures δg(g ∈ G) are in L1(G) and Γ = {δg : g ∈
G} is a bounded group in L1(G)(δf ? δg = δf+g), and the closed absolute convex hull of

Γ is the closed unit ball of `1(G) = L1(G).

As an immediate corollary of this proposition we have following result.

Corollary 2.2. The Fourier algebra A(G) is a γ-algebra iff the group G is compact.

b) Segal Algebra. Let G be a locally compact abelian group. We recall that a Segal

algebra S(G) on G is a Banach algebra such that

i) S(G) is a translation invariant dense subalgebra of L1(G),

ii) For a ∈ S(G) and g ∈ G, ‖ ag ‖=‖ a ‖, where ag is defined by ag(f) = a(f + g),

and ‖ · ‖ is the norm of S(G),
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iii) For each a ∈ S(G), the mapping g 7→ ag is continuous from G into S(G) at the

unit element of G.

About Segal algebras, ample information can be found in Reiter’s book [Re]. We now

give some concrete examples of Segal algebras.

1) The algebra S(G) = L1(G) ∩ Lp(G)(1 ≤ p < ∞), equipped with the norm

‖ a ‖=‖ a ‖1 + ‖ a ‖p, is a Segal algebra.

2) The algebra S(G) = L1(G) ∩ Co(G), equipped with the norm ‖ a ‖=‖ a ‖1 +

‖ a ‖∞, is a Segal algebra.

A Segal algebra S(G) is a commutative semisimple regular Banach algebra whose

Gelfand spectrum is Ĝ, the dual group of G. For a ∈ S(G), the Gelfand transform

of a is just the Fourier transform of a ∈ L1(G). From these facts it follows that, for

a closed subset K of Ĝ, IK = {a ∈ S(G) : â(K) = 0} is the largest, and the set

JK = {a ∈ S(G) : Supp(â) ∩K = θ} is the smallest, closed ideals of S(G) whose hull

is K. We shall also need the following two facts about Segal algebras [Re; p.128]:

(?) There is a constant c > 0 such that, for a ∈ S(G), ‖ a ‖1≤ c ‖ a ‖.
(??) S(G) is an ideal in L1(G) and, for a ∈ S(G) and b ∈ L1(G), ‖ a ? b ‖≤

‖ a ‖ . ‖ b ‖1.

Proposition 2.3. Let I be a closed ideal of a Segal algebra S(G) with compact hull.

Then the quotient algebra S(G)/I is a γ-algebra.

Proof. Let K be the hull of I. Choose a function u ∈ S(G) such that û = 1 on

a neighborhood of K. Then, the element u + I is the unit element of the algebra

A = S(G)/I. Put Γ = {ug+I : g ∈ G}. As uf?ug = uf+g and ‖ ug+I ‖=‖ u+I ‖≤‖ u ‖, Γ
is a bounded group in A. To prove that aco(Γ) contains a multiple of A1, it is enough

to show that, for ϕ ∈ I⊥, ‖ ϕ ‖≤ cSupg∈G| < ϕ, ug > |, for some positive constant

c. To this end, observe that, since for each a ∈ S(G), a ? u − a ∈ JK ⊆ I, we have

< ϕ, a >=< ϕ, u ? a >. From this equality, by (??), we get that ϕ = ϕ ? u and that

| < ϕ, a > | ≤‖ ϕ ‖ · ‖ u ? a ‖≤‖ ϕ ‖ · ‖ u ‖ · ‖ a ‖1 .

This inequality shows that ϕ is bounded on S(G) for the norm of L1(G). Hence, S(G)

being dense in L1(G), ϕ can be extended in a unique way to L1(G). We denote by ϕ
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this unique extension of ϕ. Since, by (?), l∞(G) embeds continuously into S(G)?, there

is a constant c > 0 such that ‖ ϕ ‖≤ c ‖ ϕ ‖∞. Now, since ϕ = ϕ ? u, ϕ is a continuous

function on G so that

‖ ϕ ‖∞=‖ ϕ ‖∞= Supg∈G|(ϕ ? u)(−g)| = Supg∈G| < ϕ, ug > |

From this we conclude that ‖ ϕ ‖≤ cSupg∈G| < ϕ, ug > |, and so aco(Γ) ⊇
cA1.

This proposition has several immediate corollaries.

Corollary 2.4. Let I be a closed ideal of L1(G) with compact hull. Then the algebra

L1(G)/I is a γ-algebra.

Corollary 2.5. Let A(G) be the Fourier algebra of G, K be a compact subset of G, and

IK be the largest closed ideal of A(G) whose hull is K. Then the algebra A(K) = A(G)/IK

is a γ-algebra.

c) Projective tensor products and quotients of γ-algebras.

If A and B are two commutative Banach algebras then their projective tensor product

A⊗̂B is a commutative Banach algebra for the multiplication which is the linear extension

of the multiplication a⊗ b.c⊗ d = ac⊗ bd on the simple tensors [B-D; Chapter VI].

Proposition 2.6 The projective tensor product A⊗̂B of two γ-algebras A and B is

also a γ-algebra.

Proof. Let Γ1 ⊆ A (Γ2 ⊆ B) be a bounded group such that aco(Γ1) ⊇ c1A1 (aco(Γ2) ⊇
c2B1) for some constant c1 > 0(c > 0). Then Γ = {a ⊗ b : a ∈ Γ1, b ∈ Γ2} is a bounded

group in A⊗̂B, and by the very definition of the projective tensor norm, aco(Γ) contains

c(A⊗̂B)1, where c = min{c1, c2}.

Proposition 2.7. Let A be a γ-algebra and B be an arbitrary Banach algebra. If

there is a continuous onto homomorphism h : A → B, then the algebra B is also a

γ-algebra.
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Proof. Let Γ1 be a bounded group in A such that aco(Γ1) ⊇ c1A1, for some con-

stant c1 > 0. As h is onto, by the Open Mapping Theorem, there is a constant c2 > 0

such that h(A1) ⊇ c2B1. Let Γ2 = h(Γ1). Then Γ2 is a bounded group in B and

aco(Γ2) ⊇ h(aco(Γ1)) ⊇ c1h(A1) ⊇ c1h(A1) ⊇ c1c2B1. This proves that B is also a

γ-algebra.

3. Structure of γ-Algebras.

The above results show that the class of γ-algebras is quite rich and the algebras

constituting it are quite various. The first main result of this chapter shows that, in spite

of the diversity of γ-algebras, γ-algebras are exactly the quotient algebras of the discrete

group algebra `1(Γ) for some discrete group Γ.

Theorem 3.1. A commutative Banach algebra A is a γ-algebras iff it is isomorphic

to a quotient algebra of the group algebra `1(Γ) for some discrete group Γ.

Proof. Let Γ be a bounded group in A such that aco(Γ) ⊇ cA1, for some constant

c > 0. Consider the mapping ω : `1(Γ)→ A, defined by ω(a) =
∑

γεΓ a(γ)γ−1. This is not

really the Fourier transform but exactly as in the case of the Fourier transform one can

easily see that ω is an algebra homomorphism. The group Γ being bounded, ω is bounded.

Moreover, for a = δγ−1 (Dirac measure at γ−1), ω(a) = γ so that ω(`1(Γ)1) ⊇ aco(Γ). It

follows that ω(`1(Γ)1) ⊇ cA1. From this inclusion, as in the most standard proof of the

open mapping theorem (see e.g. [H-S; p.215]), we deduce that ω is onto. If follows that

A is isomorphic to a quotient algebra of the algebra `1(Γ). For the reverse implication it

is enough to apply Propositions 2.1 and 2.7.

For the proof of the second main result of this section we need the following three

lemmas

Lemma 3.2. Let Γ be a discrete abelian group and E be a closed subset of the dual

group G of Γ. Then the following assertions are equivalent.

a) The set E is scattered.

b) k(E)⊥ ⊆ AP (Γ).

446



MUSTAFAYEV, ÜLGER

c) k(E)⊥ = Span(E).

Proof. a)→ b). Assume that the set E is scattered. Let ϕ be an element of k(E)⊥.

We have to show that the function ϕ is almost periodic on Γ. Let us first see that the

spectrum of ϕ is contained in E. To see this, let f be an element in σ(ϕ). Then, by

definition of σ(ϕ), f = weak? − limϕ.aα for some net (aα)αεJ in A. If f /∈ E, then by

regularity of the algebra `1(Γ), there exists an element a in `1(Γ) such that < f, a >6= 0

and â(E) = 0. Hence a is in the ideal k(E) and, since < f, a >6= 0, f.a =< f, a > f 6= 0.

As k(E) is an ideal, for any b ∈ `1(Γ), a ? b ∈ k(E) so that < ϕ, a ? b >=< ϕ.a, b >= 0.

This implies that ϕ.a = 0. However, as f.a = weak?−limϕ.aα.a = 0, this contradicts the

fact that f.a 6= 0. Hence σ(ϕ) ⊆ E, and the set E being scattered, by Loomis’ Theorem

[Lo; Theorem 4], ϕ is almost periodic on Γ. This proves the inclusion k(E)⊥ ⊆ AP (Γ).

b)→ c). Assume b) holds. The inclusion Span(E) ⊆ k(E)⊥ being clear, we prove the

reverse inclusion only. To prove this, let ϕ be an element of k(E)⊥. As σ(ϕ) ⊆ E, and ϕ

is almost periodic on Γ, ϕ ∈ Span(E), see e.g. [B; p. 110, Theorem 2.2.3]. This proves

the inclusion k(E)⊥ ⊆ Span(E).

c)→ a). To prove this implication, the implication c)→ b) being clear, we shall prove

that b)→ a). So assume that b) holds. To get a contradiction assume that the set E is

not scattered. Then E contains a nonempty perfect set K. The set K being perfect, by

Theorem 10 in [La; p.52], there exists a nontrivial regular continuous Borel measure µ

on G supported by K. Let ϕ : Γ → C, ϕ(λ) =
∫
G

< f, λ >dµ(f), be the Fourier-Stieltjes

transform of µ. It is clear that the function ϕ is bounded on Γ so that it is in `∞(Γ). For

a ∈ K(E),

< ϕ, a >=
∑
λ∈Γ

ϕ(λ)a(λ) =
∫
G

∑
λ∈Γ

a(λ)< f, λ >dµ(f) =

∫
G

â(f)dµ(f) = 0

since the support of µ is contained in E. This shows that ϕ ∈ k(E)⊥. Hence by b),

ϕ ∈ AP (Γ). Let m be the (unique) invariant mean on AP (Γ) [Bu; p.15, Corollory 1.26].

Then m(ϕ) = µ(e), where e is the unit element of the group G. Define now a new Borel
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measure by µ̃(B) = µ(B−1) on the Borel σ-algebra of G. Then, as in [Bu; p.73, Corollary

4.13], we have

m(|ϕ|2) = (µ ? µ̃(e) =
∑
f∈G
|µ(f)|2 = 0

since µ is continuous. However this is not possible unless ϕ is identically zero [Bu; p.15,

Corollary 1.23], which is not the case since µ is not trivial. This contradiction completes

the proof.

Lemma 3.3. Let A be an arbitrary Banach algebra. If the space A? has the Schur

property, then ap(A) = A?.

Proof. Suppose that A? has the Schur property. Let f be an element of A?. We

have to show that the set H(f) = {f.a : a ∈ A1} is relatively compact in A?. This is

clearly equivalent to showing that the operator T : A → A?, defined by T (a) = f.a, is

compact. To prove this, let (an)n∈N be a sequence in A1. Since A? has the Schur prop-

erty, A does not contain an isomorphic copy of `1[D; Theorem 3]. Hence, by Rosenthal’s

`1-Theorem [R], the sequence (an)n∈N has a subsequence, denoted again (an)n∈N , which

is weakly Cauchly. It follows that the sequence (T (an))n∈N is weakly Cauchy in A?. As

A? has the Schur property, it is weakly sequentially complete. Consequently the sequence

(T (an))n∈N converges weakly, so in norm in A?. This proves that each f in A? is almost

periodic on A so that A? = ap(A).

For the proof of the next lemma we refer the reader to [D-Ü; Corollary 4.3].

Lemma 3.4. Let A be any Banach algebra and I be a closed ideal of it. Then

ap(A/I) = ap(A) ∩ I⊥.

The second main result of this section is the following result.

Theorem 3.5. Let A be a γ-algebra, and let
∑

be its Gelfand spectrum. Then the

following assertions are equivalent.
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a) The space
∑

is scattered.

b) The space A? has the Schur property.

c) ap(A) = A?.

d)Span(
∑

) = A?.

Proof. Since A is a γ-algebra, by Theorem 3.1, A is isomorphic to the quotient algebra

`1(Γ)/I for some discrete abelian group Γ and a closed ideal I of `1(Γ). So we can assume

that A = `1(Γ)/I.

a)→ b). Assume that
∑

is scattered. This means that the hull of I is scattered. Then

by [L-P1;Theorem 1] or [L-P2;Theorem 2.14], A? has the Schur property.

b)→ c). This implication follows from Lemma 3.3 above.

c)→ d). Assume that ap(A) = A?. Since A = `1(Γ)/I and, by Lemma 3.4,

ap(`1(Γ)/I) = ap(`1(Γ)) ∩ I⊥ = AP (Γ) ∩ I⊥ = A? = I⊥, we conclude that I⊥ ⊆ AP (Γ).

Let E be the hull of I. As I ⊆ k(E), k(E)⊥ ⊆ I⊥ ⊆ AP (Γ). Hence, by Lemma

3.2, E is scattered, so a set of synthesis, and I = k(E). Hence, by Lemma 3.2 again,

I⊥ = k(E)⊥ = Span(E). This proves that Span(
∑

) = A?.

d)→ a). Assume that the equality Span(
∑

) = A? holds. As always one has the inclu-

sion Span(
∑

) ⊆ ap(A), we conclude that ap(A) = A?. This implies that I⊥ ⊆ AP (Γ).

From this, as above, we conclude that
∑

is scattered.

Corollary 3.6. Let X be a weak?- closed subspace of `∞(Γ) which is also an `1(Γ)-

module. Then X has the Schur property iff X ⊆ AP (Γ).

Proof. Since X is weak?-closed and an `1(Γ)-module, X = I⊥ for some closed ideal

I of `1(Γ). Let E = hull(I). Then I ⊆ k(E) so that k(E)⊥ ⊆ I⊥ = X. Now suppose

that X ⊆ AP (Γ). Then, by Lemma 3.2, the set E is scattered, so a set of synthesis

and I = k(E). Hence, by the preceding theorem, X has the Schur property. Conversely,

assume that X has the Schur property. Then k(E)⊥ has the Schur property. Hence, by

Lemma 3.2, E is scattered, X = k(E)⊥ and X ⊆ AP (Γ).

From examples in section 2 and he preceding theorem, the following corollaries are

immediate. For related results we refer the reader to the papers of Lust-Piquard [L-P1
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and L-P2], and Granirer [G].

Corollary 3.7. Let G be a locally compact abelian group, S(G) be a Segal algebra on

it and I be a closed ideal of S(G) with compact hull. Then the space (S(G)/I)? has the

Schur property iff the hull of I is scattered.

Corollary 3.8. Let A and B be two γ-algebras. Then the space (A⊗̂B)? has the Schur

property iff the spectrums
∑

A and
∑
B of A and B are both scattered. Moreover, in this

case, (A⊗̂B)?= the closure in K(A, B?) of the space Span{f ⊗ g : fε
∑

A, gε
∑
B}. Here

K(A, B?) is the space of the compact linear operators T : A→ B?, and f ⊗ g : A → B?

is defined by < f ⊗ g, a >= f(a)g.

Corollary 3.9. Let G be a locally compact abelian group, E be a compact subset of it,

and A(E) = A(G)/k(E). Then the space A(E)? has the Schur property iff the set E is

scattered.

In general it is not easy to prove that the spectrum of a given Banach algebra A is

scattered. In the case of γ-algebras we have the following result.

Theorem 3.10. Let A and B be two γ-algebras, and assume that we have a continuous

one-to one homomorphism h : A→ B whose range is dense in B. Then the space A? has

the Schur property iff the space B? has the Schur property.

Proof. We first observe that, by Theorem 3.1, every γ-algebra is (Silov) regular. Now

assume that the spectrum
∑

A of A is scattered. Then the set h?(
∑

B) being a compact

subset of
∑

A, is also scattered. As h? is a homeomorphism from
∑

B onto h?(
∑

B), we

conclude that
∑

B is also scattered. Now assume that
∑
B has the Schur property. Let

us see that h?(
∑

B) =
∑

A. If f ∈
∑

A \ h?(
∑

B), by regularity of A, there exists an

element a ∈ A such that < a, f >= 1 and < h(a), g >= 0 for each g ∈
∑

B . As the space∑
B is scattered, the algebra B is semisimple by Theorem 3.1. Hence h(a) = 0. As h is

one-to-one, a = 0. This contradiction proves that h?(
∑

B) =
∑
A, and

∑
A is scattered.

From this theorem we easily deduce the following result.
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Corollary 3.11. Let A be a γ-algebra, which is algebraically isomorphic to a dense

subalgebra of C(K) for some compact space K. Then A? has the Schur property iff K is

scattered.

We end the paper with a few questions.

Questions 1) Let A be a commutative semisimple regular Banach algebra. If A? has the

Schur property, is it then true that the spectrum of A is scattered?

2) Let Γ be a discrete abelian group. In view of Lemma 3.3, the following question

arises naturally. Let I be a closed ideal of `1(Γ). What should the hull of I be for

the inclusion I⊥ ⊆ WAP (Γ) to hold? Here WAP (Γ) is the space of the weakly almost

periodic functions on Γ.

3) Let G be a locally compact (abelian or not) group, Ap(G) be its Figa-Talamanca-

Herz algebra [H] and I be a closed ideal of it with compact hull. Is the algebra Ap(G)/I

a γ-algebra?

4) Let X be a closed subspace of `∞(Γ) which is also an `∞(Γ)- module. Suppose

that X has the Schur property. Is then true that

i) X is weak?- closed in `∞(Γ)?

ii) X ⊆ AP (Γ)?

iii) X = Span(E) for some closed scattered subset E of Γ̂?

5l) How to prove Theorem 3.10 without using Theorem 3.5?
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email: aulger@ku.edu.tr

Received 08.04.1999

452


