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Abstract

Call a commutative Banach algebra A a «y-algebra if it contains a bounded group
T" such that m contains a multiple of the unit ball of A. In this paper, first by
exhibiting several concrete examples, we show that the class of y-algebras is quite
rich. Then, for a ~-algebra A, we prove that A* has the Schur property iff the
Gelfand spectrum ) of A is scattered iff A* = ap(A) iff A* = S’pT(Z).
Key words and phrases: Schur property, Segal algebras, almost periodic func-
tionals.
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1. Introduction

Let A be a commutative Banach algebra. We call A, for want of a better name, a
~-algebra if A contains a bounded group T' (for multiplication) such that m,
for some constant ¢ > 0. Here m is the absolute convex hull of I and A; is the closed
unit ball of A. The example that motivated us to introduce this class of Banach algebras
is the algebra A = C(K) of the continuous complex valued functions on a compact
(Hausdorff) space K. For this algebra, the set I' = {e%9 : geCr(K)} is a bounded group
for the multiplication and, by Russo-Day-Palmer Theorem [B — D; p.208], aco(T) = A;.
In section 2 we give several examples of y-algebras and study stability properties of these

algebras under some Banach algebras construction procedures. In particular we show
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that the quotient algebras of Segal algebras [Re] by closed ideals with compact hulls are
~-algebras, and that the projective tensor product A®B of two vy-algebras A and B is
again a y-algebra. In section 3 we study structural and geometric properties of y-algebras.
The main results are the following. We first prove that, in spite of the diversity of the
examples, the only y-algebras are the quotient algebras of the group algebra ¢1(I") for a
discrete abelian group I'. This result reduces the study of the y-algebras to that of the
quotient algebras of the discrete group algebra ¢1(I'). The second main result establishes
the following equivalences for a vy-algebra A with the spectrum > : The space A* has
the Schur property (i.e. weakly convergent sequences in A* are norm convergent) iff
A* = ap(A) iff Span(Y.) = A* iff 3 is scattered (i.e. it has no nonempty perfect subset).
These results generalize and unify several known results or parts of them e.g. [P-S; Main
Theorem], [D—U; Proposition 3.5], [L-P1;Theorem 1]. The main ingredients of the proofs
are a result of Loomis [Lo; Theorem 4.] stating that a continuous function on an locally
compact abelian group with scattered spectrum is almost periodic, and Theorem 2.14 of
Lust-Piquard [L-P 2].

Notation and Preliminaries.

Our rotation and terminologies are quite standard. If X is a Banach space, we denote
by X* its dual and by X its closed unit ball. For x in X and f in X*, we denote by
< x, f > the natural duality between X and X*. We always consider X as naturally
embedded into its second dual X**. For any subset E of X*, we denote by SpT(E) and
SpT(E)*, respectively, the norm and weak* closures of Span(F) in X*.

Now let A be a Banach algebra. For f in A* and a in A, we denote by f.a the
functional defined on A by < f.a,z >=< f,ax >. The functional f is said to be almost
periodic on A if the set H(f) = {f.a : a € A1} is relatively compact in A*. By ap(A4)
we denote the space of the almost periodic functionals on A. This is a closed subspace of
A*. Now let T' be a discrete abelian group, G be its dual group, and ¢! (T") be its group
algebra. For a in ¢}(T'), we denote by @ the Fourier transform of a. We consider each
element f of G as a multiplicative linear functional on ¢!(T") acting through the formula
< a, f>=a(f). For a subset E of G, we denote by SpT(E) the norm closed subspace of
£>2(T") generated by E. By AP(T") we denote the space of the almost periodic functions
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on I'. As is well known, AP(T) = Span(G) = ap(¢*(T)). For ¢ in ¢}(T'), the spectrum of
¢ is denoted by o(p). This is the set

o(p) =GNn{p.a:ael(l)}*. [K;p.170]

For a closed subset F of G, by k(E) we denote the kernel of E. This is largest closed
ideal of ¢/}(I") whose hull is E. Finally, by k(E)*, we denote the annihilator of k(E) in
£2(T).

Examples of 7-Algebras.

As introduced in the preceding section, by a ~y-algebra we mean a commutative Banach
algebra A that contains a bounded group I' such that m D cAy, for some constant
¢ > 0. Such an algebra necessarily has a unit element. Beside the commutative C*-
algebras, several well known Banach algebras are + algebras. In this section we give

several examples of v-algebras and study some stability properties of them.

a) Group Algebra. Let G be a locally compact abelian group and L'(G) be its
group algebra.

Proposition 2.1  The algebra L'(G) is a y-algebra iff the group G is discrete.

Proof.  Since a y-algebra is unital, if L!'(G) is a y-algebra then G is discrete. Con-
versely, if G is dicrete then the Dirac measures d,(g € G) are in L'(G) and I' = {5, : g €
G} is a bounded group in L'(G)(df % d; = 0¢44), and the closed absolute convex hull of
T is the closed unit ball of /1(G) = L*(G). m

As an immediate corollary of this proposition we have following result.

Corollary 2.2.  The Fourier algebra A(G) is a y-algebra iff the group G is compact.

b) Segal Algebra. Let G be a locally compact abelian group. We recall that a Segal
algebra S(G) on G is a Banach algebra such that

i) S(G) is a translation invariant dense subalgebra of L'(G),

ii) For a € S(G) and g € G, | a4 ||=| @ ||, where a4 is defined by a,(f) = a(f + g),
and || - || is the norm of S(G),
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iii) For each a € S(G), the mapping g — a4 is continuous from G into S(G) at the
unit element of G.

About Segal algebras, ample information can be found in Reiter’s book [Re]. We now
give some concrete examples of Segal algebras.

1) The algebra S(G) = LY(G) N LP(G)(1 < p < o0), equipped with the norm
lall=llall1+ | allp, is a Segal algebra.

2) The algebra S(G) = L'(G) N C,(G), equipped with the norm || a ||=| a |1 +
I @ |loo, is a Segal algebra.

A Segal algebra S(G) is a commutative semisimple regular Banach algebra whose
Gelfand spectrum is G, the dual group of G. For a € S(G), the Gelfand transform
of a is just the Fourier transform of a € L'(G). From these facts it follows that, for
a closed subset K of G,Ix = {a € S(G) : a(K) = 0} is the largest, and the set
Jxk = {a € S(G) : Supp(a) N K =0} is the smallest, closed ideals of S(G) whose hull
is K. We shall also need the following two facts about Segal algebras [Re; p.128]:

(%) There is a constant ¢ > 0 such that, for a € S(G), || a [1< ]| a |-
(%*) S(G) is an ideal in L'(G) and, for a € S(G) and b € L*(GQ), || axb <
Fall 116

Proposition 2.3.  Let I be a closed ideal of a Segal algebra S(G) with compact hull.
Then the quotient algebra S(G)/I is a y-algebra.

Proof. Let K be the hull of I. Choose a function v € S(G) such that & = 1 on
a neighborhood of K. Then, the element u + I is the unit element of the algebra
A=5(GQ)/I. PutT = {uyg+I: g € G}. Asusxug = upyqg and || ug+I ||=| v+l ||<|| w ||, T
is a bounded group in A. To prove that m contains a multiple of Ay, it is enough
to show that, for ¢ € It | ¢ || cSupgec| < p,uy > |, for some positive constant
c. To this end, observe that, since for each a € S(G),axu —a € Jx C I, we have

< p,a >=< p,uxa >. From this equality, by (%), we get that ¢ = ¢ * u and that

| <pa>[<[[e|-luxall<fel-lul-lal.

This inequality shows that ¢ is bounded on S(G) for the norm of L'(G). Hence, S(G)
being dense in L!(G), ¢ can be extended in a unique way to L'(G). We denote by @
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this unique extension of . Since, by (%), [*°(G) embeds continuously into S(G)*, there
is a constant ¢ > 0 such that || ¢ [|< ¢ || @ ||eo. Now, since ¢ = ¢ * u, @ is a continuous

function on G so that
| @ lloo=Il ¢ llco= Supgec|(@ *u)(—g)| = Supgea| < v, ug > |

From this we conclude that || ¢ ||< cSupgea| < ¢, uqy > |, and so aco(I') D
CAl. O

This proposition has several immediate corollaries.

Corollary 2.4.  Let I be a closed ideal of L*(G) with compact hull. Then the algebra
LYG)/I is a y-algebra.

Corollary 2.5.  Let A(G) be the Fourier algebra of G, K be a compact subset of G, and
I be the largest closed ideal of A(G) whose hull is K. Then the algebra A(K) = A(G)/Ix
is a y-algebra.

¢) Projective tensor products and quotients of v-algebras.

If A and B are two commutative Banach algebras then their projective tensor product
A®B is a commutative Banach algebra for the multiplication which is the linear extension
of the multiplication a ® b.c ® d = ac ® bd on the simple tensors [B-D; Chapter VI].

Proposition 2.6 The projective tensor product A®B of two v-algebras A and B is

also a ~y-algebra.

Proof. LetT; C A (T'2 C B) be abounded group such that aco(T'1) 2 ¢1 41 (aco(T2) 2
¢2By) for some constant ¢; > 0(c > 0). Then ' ={a®0b:a € T'1,b € 'z} is a bounded
group in A®B, and by the very definition of the projective tensor norm, aco(I') contains

c(A®B)1, where ¢ = min{cy, ca}. O

Proposition 2.7. Let A be a v-algebra and B be an arbitrary Banach algebra. If
there is a continuous onto homomorphism i : A — B, then the algebra B is also a

~v-algebra.
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Proof. Let Ty be a bounded group in A such that aco(T'y) 2 ¢1A4;, for some con-
stant ¢; > 0. As h is onto, by the Open Mapping Theorem, there is a constant cy > 0
such that h(A1) 2 c2By. Let T's = h(I'y). Then TI's is a bounded group in B and
aco(T'z) 2 h(aco(T'1)) 2 c1h(A1) 2 c1h(A1) 2 c¢1caBy. This proves that B is also a

~-algebra. O

3. Structure of y-Algebras.

The above results show that the class of ~-algebras is quite rich and the algebras
constituting it are quite various. The first main result of this chapter shows that, in spite
of the diversity of vy-algebras, y-algebras are exactly the quotient algebras of the discrete
group algebra ¢*(T) for some discrete group I

Theorem 3.1. A commutative Banach algebra A is a y-algebras iff it is isomorphic

to a quotient algebra of the group algebra (*(T') for some discrete group T .

Proof. Let T be a bounded group in A such that aco(T') D cA;, for some constant
¢ > 0. Consider the mapping w : £1(I') — A, defined by w(a) = >

really the Fourier transform but exactly as in the case of the Fourier transform one can

el a(y)y~!. Thisis not
easily see that w is an algebra homomorphism. The group I' being bounded, w is bounded.
Moreover, for a = §,-1 (Dirac measure at v!), w(a) =7 so that w(¢*(I')1) 2 aco(T). It
follows that m D cA;. From this inclusion, as in the most standard proof of the
open mapping theorem (see e.g. [H-S; p.215]), we deduce that w is onto. If follows that
A is isomorphic to a quotient algebra of the algebra ¢1(I"). For the reverse implication it

is enough to apply Propositions 2.1 and 2.7. m

For the proof of the second main result of this section we need the following three

lemmas

Lemma 3.2. Let I' be a discrete abelian group and E be a closed subset of the dual
group G of I'. Then the following assertions are equivalent.

a) The set E is scattered.

b) k(E)+ C AP(T).
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¢) k(E)* = Span(E).
Proof. a)— b). Assume that the set E is scattered. Let ¢ be an element of k(E)= .
We have to show that the function ¢ is almost periodic on I'. Let us first see that the
spectrum of ¢ is contained in E. To see this, let f be an element in o(p). Then, by
definition of o(p), f = weak* — limp.a, for some net (aq)qes in A. If f ¢ E, then by
regularity of the algebra ¢(I'), there exists an element a in ¢!(T') such that < f,a ># 0
and a(F) = 0. Hence a is in the ideal k(F) and, since < f,a ># 0, f.a =< f,a > f #0.
As k(E) is an ideal, for any b € £1(T'),a xb € k(E) so that < ¢,axb >=< p.a,b >= 0.
This implies that p.a = 0. However, as f.a = weak™ —limy.aq.a = 0, this contradicts the
fact that f.a # 0. Hence o(p) C E, and the set E being scattered, by Loomis’ Theorem
[Lo; Theorem 4], ¢ is almost periodic on I'. This proves the inclusion k(E)+ C AP(T).

b)— c). Assume b) holds. The inclusion Span(E) C k(E)* being clear, we prove the
reverse inclusion only. To prove this, let ¢ be an element of k(E)*. As o(¢) C E, and ¢
is almost periodic on I', ¢ € SpT(E), see e.g. [B; p. 110, Theorem 2.2.3]. This proves
the inclusion k(E)*+ C Span(E).

¢)— a). To prove this implication, the implication ¢)— b) being clear, we shall prove
that b)— a). So assume that b) holds. To get a contradiction assume that the set E is
not scattered. Then F contains a nonempty perfect set K. The set K being perfect, by
Theorem 10 in [La; p.52], there exists a nontrivial regular continuous Borel measure p
on G supported by K. Let ¢ : T'— C,p(\) = [, < f, A >du(f), be the Fourier-Stieltjes
transform of p. It is clear that the function ¢ is bounded on T so that it is in £>°(T"). For
a € K(F),

<piaz= 3 pNa) = [ 3 aWTFASdu(r) -

xel G xer

[ atoyduts) =0
G

since the support of y is contained in E. This shows that ¢ € k(E)*. Hence by b),
¢ € AP(T'). Let m be the (unique) invariant mean on AP(T") [Bu; p.15, Corollory 1.26].

Then m(¢) = p(e), where e is the unit element of the group G. Define now a new Borel
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measure by i(B) = u(B~1) on the Borel o-algebra of G. Then, as in [Bu; p.73, Corollary
4.13], we have

m(|pl*) = (ux fi(e) = > |u(f)* =0
fea
since p is continuous. However this is not possible unless ¢ is identically zero [Bu; p.15,
Corollary 1.23], which is not the case since p is not trivial. This contradiction completes

the proof. .

Lemma 3.3.  Let A be an arbitrary Banach algebra. If the space A* has the Schur
property, then ap(A) = A*.

Proof. Suppose that A* has the Schur property. Let f be an element of A*. We
have to show that the set H(f) = {f.a : a € A1} is relatively compact in A*. This is
clearly equivalent to showing that the operator T : A — A*, defined by T'(a) = f.a, is
compact. To prove this, let (a,)nen be a sequence in Ap. Since A* has the Schur prop-
erty, A does not contain an isomorphic copy of ¢![D; Theorem 3]. Hence, by Rosenthal’s
¢*-Theorem [R], the sequence (a,)nen has a subsequence, denoted again (a, ),en, which
is weakly Cauchly. It follows that the sequence (T'(ay))nen is weakly Cauchy in A*. As
A* has the Schur property, it is weakly sequentially complete. Consequently the sequence
(T'(an))nen converges weakly, so in norm in A*. This proves that each f in A* is almost

periodic on A so that A* = ap(A). 0

For the proof of the next lemma we refer the reader to [D-U; Corollary 4.3].

Lemma 3.4. Let A be any Banach algebra and I be a closed ideal of it. Then
ap(A/I) = ap(A) N T+.

The second main result of this section is the following result.

Theorem 3.5.  Let A be a v-algebra, and let > be its Gelfand spectrum. Then the

following assertions are equivalent.
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a) The space Y is scattered.

b) The space A* has the Schur property.

c) ap(A) = A*.

d)Span(d]) = A*.

Proof. Since A is a v-algebra, by Theorem 3.1, A is isomorphic to the quotient algebra
¢X(T)/I for some discrete abelian group I' and a closed ideal I of ¢}(T"). So we can assume
that A = ¢1(T")/I.

a)— b). Assume that >_ is scattered. This means that the hull of T is scattered. Then
by [L-P1;Theorem 1] or [L-P2;Theorem 2.14], A* has the Schur property.

b)— ¢). This implication follows from Lemma 3.3 above.

c)— d). Assume that ap(4) = A*. Since A = ¢*(I')/I and, by Lemma 3.4,
ap(¢*(T) /1) = ap(¢*(T)) NI+ = AP(T)N I+ = A* = I, we conclude that I+ C AP(T).
Let E be the hull of I. As I C k(E),k(E)* C I+ C AP(T'). Hence, by Lemma
3.2, E is scattered, so a set of synthesis, and I = k(E). Hence, by Lemma 3.2 again,
It =k(E)*t = SpT(E). This proves that SpT(Z:) = A*.

d)— a). Assume that the equality SpT(Z:) = A* holds. As always one has the inclu-
sion Span(>.) C ap(A), we conclude that ap(A) = A*. This implies that I+ C AP(T).

From this, as above, we conclude that } is scattered. O

Corollary 3.6.  Let X be a weak*- closed subspace of ¢>°(T) which is also an ¢*(T)-
module. Then X has the Schur property iff X C AP(T).

Proof. Since X is weak*-closed and an ¢!(I')-module, X = I+ for some closed ideal
I of 1(T'). Let E = hull(I). Then I C k(E) so that k(E)t C I+ = X. Now suppose
that X C AP(T'). Then, by Lemma 3.2, the set E is scattered, so a set of synthesis
and I = k(F). Hence, by the preceding theorem, X has the Schur property. Conversely,
assume that X has the Schur property. Then k:(E)L has the Schur property. Hence, by
Lemma 3.2, E is scattered, X = k(E)* and X C AP(T). 0

From examples in section 2 and he preceding theorem, the following corollaries are

immediate. For related results we refer the reader to the papers of Lust-Piquard [L-P1
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and L-P2], and Granirer [G].

Corollary 3.7. Let G be a locally compact abelian group, S(G) be a Segal algebra on
it and I be a closed ideal of S(G) with compact hull. Then the space (S(G)/I)* has the
Schur property iff the hull of I is scattered.

Corollary 3.8.  Let A and B be two y-algebras. Then the space (AQB)* has the Schur
property iff the spectrums Y~ , and Y5 of A and B are both scattered. Moreover, in this
case, (A®B)* = the closure in K (A, B*) of the space Span{f @g: fe> 4,9¢> p}. Here
K (A, B*) is the space of the compact linear operators T : A — B*, and f ® g: A — B*
is defined by < f ® g,a >= f(a)g. O

Corollary 3.9. Let G be a locally compact abelian group, E be a compact subset of it,
and A(E) = A(G)/k(E). Then the space A(E)* has the Schur property iff the set E is
scattered.

In general it is not easy to prove that the spectrum of a given Banach algebra A is

scattered. In the case of y-algebras we have the following result.

Theorem 3.10. Let A and B be two y-algebras, and assume that we have a continuous
one-to one homomorphism h : A — B whose range is dense in B. Then the space A* has

the Schur property iff the space B* has the Schur property.

Proof. We first observe that, by Theorem 3.1, every v-algebra is (Silov) regular. Now
assume that the spectrum ) , of A is scattered. Then the set h*(3" ;) being a compact
subset of ) 4, is also scattered. As h* is a homeomorphism from ) 5 onto h*(}_p), we
conclude that > 5 is also scattered. Now assume that ) 5 has the Schur property. Let
us see that h*(D"5) = > 4. I f € > 4\ h*(Op), by regularity of A, there exists an
element a € A such that < a, f >=1 and < h(a),g >= 0 for each g € 3~ 5. As the space
> p is scattered, the algebra B is semisimple by Theorem 3.1. Hence h(a) = 0. As h is
one-to-one, a = 0. This contradiction proves that h*(}°5) = > 4, and >~ 4 is scattered. [

From this theorem we easily deduce the following result.
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Corollary 3.11.  Let A be a y-algebra, which is algebraically isomorphic to a dense
subalgebra of C(K) for some compact space K. Then A* has the Schur property iff K is
scattered.

We end the paper with a few questions.

Questions 1) Let A be a commutative semisimple regular Banach algebra. If A* has the
Schur property, is it then true that the spectrum of A is scattered?

2) Let T be a discrete abelian group. In view of Lemma 3.3, the following question
arises naturally. Let I be a closed ideal of ¢}(T"). What should the hull of I be for
the inclusion I+ C WAP(T) to hold? Here WAP(T) is the space of the weakly almost
periodic functions on I'.

3) Let G be a locally compact (abelian or not) group, A,(G) be its Figa-Talamanca-
Herz algebra [H] and I be a closed ideal of it with compact hull. Is the algebra A,(G)/I
a vy-algebra?

4) Let X be a closed subspace of ¢>°(T") which is also an £>°(T")- module. Suppose
that X has the Schur property. Is then true that

i) X is weak*- closed in ¢>°(T")?

ii) X C AP(T)?

iil) X = SpT(E) for some closed scattered subset E of ['?

51) How to prove Theorem 3.10 without using Theorem 3.5?
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