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ALTERNATIVE POLYNOMIAL AND HOLOMORPHIC
DUNFORD-PETTIS PROPERTIES∗

Walden Freedman

Abstract

Alternatives to the Polynomial Dunford-Pettis property and the Holomorphic
Dunford-Pettis property, called the PDP1 and HDP1 properties, respectively, are
introduced. These are shown to be equivalent to the DP1 property, an alternative
Dunford-Pettis property previously introduced by the author, thus mirroring the
equivalence of the three original properties.

Introduction

In [4], R. Ryan proved that the Dunford-Pettis property, the Polynomial Dunford-
Pettis property, and the Holomorphic Dunford-Pettis property are all equivalent. In [1],
a property closely related to the Dunford-Pettis property, called the DP1 property, is
introduced and defined as follows:

A Banach space X has the DP1 property if for any Banach space Y and any weakly
compact linear operator T : X → Y , if xn → x weakly in X with ‖xn‖ = ‖x‖ = 1 for all
n, then Txn → Tx in norm in Y .

We will consider two alternative properties, the PDP1 property and the HDP1 prop-
erty, in the same spirit as [4], and show that like the original properties, DP1, PDP1 and
HDP1 are all equivalent. Some applications to Banach algebras are also given.

Notation and Background

Throughout the paper, X and Y will denote Banach spaces over the field of complex
numbers. We identify X with its image in X∗∗ under its canonical embedding in X∗∗.
The Banach space of all bounded linear operators from X to Y will be denoted L(X; Y ).
Given x0 ∈ X and r > 0, the open and closed balls centered at x0 with radius r will

be denoted ∆(x0, r) and ∆(x0, r), respectively. By the term ‘operator’, we will always
∗This paper is a part of the author’s doctoral dissertation at the University of California, Santa

Barbara.
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mean a bounded linear operator. Given f ∈ X and a ∈ X∗ we often write f(a) or 〈f, a〉
for the evaluation of a on f . The Banach space of all sequences in Y that are norm
convergent to 0 will be denoted by c0(Y ), and c(Y ) will denote the Banach space of all
convergent sequences in Y . For each n ∈ N, let πn : c(Y ) → Y be the nth coordinate
map, i.e., πn(yj) = yn. If T : X → c(Y ), the composition πnT will be denoted by Tn.

Let π : c(Y ) → Y be the operator defined by π(yn) = limn yn, and let ι : Y → c(Y ) be
the operator defined by ι(y) = (y, y, . . .).

Recall that a Banach space X is said to have the Dunford-Pettis Property (DP) if
for any Banach space Y , every weakly compact operator from X to Y maps weakly
convergent sequences to norm convergent sequences.

The PDP1 property

Recall the following standard result regarding weakly compact operators: An operator
T : X → Y is weakly compact if and only if T ∗∗(X∗∗) ⊆ Y . The following lemma gives
a useful characterization of weakly compact operators T : X → c0(Y ).

Lemma ([4, Lemma 1.2]) T : X → c0(Y ) is weakly compact if and only if

(a) For all n, Tn : X → Y is weakly compact, and

(b) For all g ∈ X∗∗, one has limn ‖T ∗∗n g‖ = 0.

We use this result to prove the following lemma which characterizes weakly compact
operators T : X → c(Y ).

Lemma 1.1 Let T : X → c(Y ). Then T is weakly compact if and only if

(a) For all n, Tn : X → Y is weakly compact, and

(b) For all g ∈ X∗∗, one has limn ‖(T ∗∗n − π∗∗T ∗∗)g‖ = 0.

Proof. If T is weakly compact, then clearly Tn and T − ιπT : X → c0(Y ) are weakly
compact. Since πn(T − ιπT ) = Tn − πT , the lemma above implies that
‖(T ∗∗n − π∗∗T ∗∗)g‖ → 0 for all g ∈ X∗∗.

For the converse, suppose that (a) and (b) hold. It follows from (a) that for all
g ∈ X∗∗, we have T ∗∗n g ∈ Y , and so by (b) we have that π∗∗T ∗∗g ∈ Y as well. It follows
that πT is weakly compact and hence Tn−πT is weakly compact for all n. The previous
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lemma then implies that T − ιπT is weakly compact, and hence T is weakly compact as
well.

We now state and prove the main result.

Theorem 1.2 Assume that X1, X2, . . . , Xk are Banach spaces with the DP1 property.
Let (xin)∞n=1 for 1 ≤ i ≤ k be weakly convergent norm-one sequences in Xi with norm-one

limits xi ∈ Xi, and set X = X1⊗̂X2⊗̂ · · · ⊗̂Xk. For any Banach space Y , if T ∈ L(X; Y )
is weakly compact then the sequence

(T (x1
n ⊗ x2

n ⊗ · · · ⊗ xkn))∞n=1

is norm convergent to T (x1 ⊗ x2 ⊗ · · · ⊗ xk) in Y .

Proof. Suppose that Xi has DP1 for each 1 ≤ i ≤ k. We use a technique similar
to that used in [3] and [4], proceeding by induction on k, the case of k = 1 holding by
definition of DP1. Assume the statement is true for k; suppose that X1, X2, . . . , Xk+1 are

Banach spaces having DP1; let X = X1⊗̂X2⊗̂ · · · ⊗̂Xk + 1, and W = X1⊗̂X2⊗̂ · · · ⊗̂Xk;
suppose T ∈ L(X; Y ) is weakly compact, and that for all 1 ≤ i ≤ k + 1, (xin) is a weakly
convergent norm-one sequence in Xi with norm-one limit xi ∈ Xi.

It is easy to see that for fixed zi ∈ Xi, 1 ≤ i ≤ k, the operator

x 7→ T (z1 ⊗ z2 ⊗ · · · ⊗ zk ⊗ x)

which maps Xk+1 to Y is weakly compact since T is weakly compact, and so since Xk+1

has DP1, the sequence

(T (z1 ⊗ · · · ⊗ zk ⊗ xk+1
n ))n

is norm convergent in Y to T (z1 ⊗ · · · ⊗ zk ⊗ xk+1). We can thus define an operator
t : W → c(Y ) by setting

t(z1 ⊗ · · · ⊗ zk) = (T (z1 ⊗ · · · ⊗ zk ⊗ xk+1
n ))n,

and extending linearly. Assuming t is weakly compact, it then follows from the induction
hypothesis that the sequence

(t(x1
i ⊗ x2

i ⊗ · · · ⊗ xki ))∞i=1 = ((T (x1
i ⊗ · · · ⊗ xki ⊗ xk+1

n )n)∞i=1
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is norm convergent to (T (x1 ⊗ · · · ⊗ xk ⊗ xk+1
n ))∞n=1 ∈ c(Y ). It follows easily that the

sequence of “diagonal” elements

(T (x1
n ⊗ x2

n ⊗ · · · ⊗ xk+1
n ))∞n=1

of the above sequence is norm convergent to T (x1⊗· · ·⊗xk+1) in Y , which then completes
the proof.

Now, since tn(z1 ⊗ · · · ⊗ zk) = T (z1 ⊗ · · · ⊗ zk ⊗ xk+1
n ), and T is weakly compact, it

is easy to see that tn is weakly compact.
Given S ∈ X∗, and x ∈ Xk+1, define S′ : Xk+1 →W ∗ by

S′(x)(z1 ⊗ z2 ⊗ · · · ⊗ zk) = S(z1 ⊗ · · · ⊗ zk ⊗ x).

For any φ ∈W ∗∗, define φ̃ : Xk+1 → X∗∗ by

〈S, φ̃(x)〉 = 〈S′(x), φ〉, for all x ∈ Xk+1, S ∈W ∗.

For all zi ∈ Xi, 1 ≤ i ≤ k, and ψ ∈ Y ∗ we have

T ∗(ψ)′(xk+1
n )(z1 ⊗ · · · ⊗ zk) = T ∗(ψ)(z1 ⊗ · · · ⊗ zk ⊗ xk+1

n )

= ψ(T (z1 ⊗ · · · ⊗ zk ⊗ xk+1
n ))

= ψ(tn(z1 ⊗ · · · ⊗ zk))

= t∗n(ψ)(z1 ⊗ · · · ⊗ zk)

so that T ∗(ψ)′(xk+1
n ) = t∗n(ψ).

It follows that for all φ ∈ W ∗∗, and ψ ∈ Y ∗, we have

〈ψ, t∗∗n (φ)〉 = 〈t∗n(ψ), φ〉 = 〈T ∗(ψ), φ̃(xk+1
n )〉 = 〈ψ, T ∗∗(φ̃(xk+1

n ))〉,

and hence for all n we have

t∗∗n (φ) = T ∗∗(φ̃(xk+1
n )) ∈ Y ∗∗.

As T is weakly compact, the map T ∗∗φ̃ : Xk+1 → Y ∗∗ is weakly compact. Hence, since
Xk+1 has DP1,

‖T ∗∗(φ̃(xk+1
n ))− T ∗∗(φ̃(xk+1))‖ = ‖t∗∗n (φ) − T ∗∗(φ̃(xk+1))‖ → 0.
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Thus to complete the proof, we need only show that

T ∗∗(φ̃(xk+1)) = π∗∗t∗∗(φ),

and apply Lemma 1.1.
For any ψ ∈ Y ∗, we have

〈ψ, T ∗∗(φ̃(xk+1))〉 = 〈T ∗(ψ), φ̃(xk+1)〉 = 〈(T ∗(ψ))′(xk+1), φ〉,

but for all z1, z2, . . . , zk ∈ X, we have

(T ∗(ψ))′(xk+1)(z1 ⊗ · · · ⊗ zk) = (T ∗(ψ))(z1 ⊗ · · · ⊗ zk ⊗ xk+1)

= ψ(T (z1 ⊗ · · · ⊗ zk ⊗ xk+1))

= ψ(π(t(z1 ⊗ · · · ⊗ zk)))

so that

〈ψ, T ∗∗(φ̃(xk+1))〉 = 〈(T ∗(ψ))′(xk+1), φ〉 = 〈ψπt, φ〉 = 〈ψ, π∗∗t∗∗(φ)〉.

Thus T ∗∗(φ̃(xk+1)) = π∗∗t∗∗(φ), completing the proof.

We now review some concepts from the references. Given Banach spaces Xj , 1 ≤ j ≤
k, and Y , a k-linear operator T : X1 ×X2 × · · · ×Xk → Y is a k-linear mapping which
is continuous in all variables xi simultaneously. The set of all k-linear operators forms a
Banach space with the usual vector space operations and the norm

‖T‖ = sup{‖T (x1, x2, . . . , xk)‖ : sup
i
‖xi‖ ≤ 1}.

We will denote this Banach space by L(k)(X1, X2, . . . , Xk; Y ). If all Xi = X, for

some Banach space X, we write L(k)(Xk; Y ) for L(k)(X, . . . , X; Y ). Letting W =

X1⊗̂X2⊗̂ · · · ⊗̂Xjk, where ⊗̂ denotes the projective tensor product, we make careful

note that there is a canonical isometric isomorphism of L(k)(X1 , X2, . . . , Xk; Y ) with

L(W ; Y ) associating the k-linear operator T ∈ L(k)(X1, X2, . . . , Xk; Y ) with the operator

T̂ ∈ L(W ; Y ) where T̂ (z1 ⊗ z2 ⊗ · · · ⊗ zk) = T (z1, z2, . . . , zk) for zi ∈ Xi, 1 ≤ i ≤ k.

A k-linear operator T ∈ L(k)(X1, X2, . . . , Xk; Y ) is called weakly compact if for any

k bounded sequences (zin) in Xi, 1 ≤ i ≤ k, the sequence

(T (z1
n, z

2
n, . . . , z

k
n))∞n=1
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has a weakly convergent subsequence. As shown in [4, p. 374], a k-linear operator

T ∈ L(k)(X1 , X2, . . . , Xk; Y ) is weakly compact if and only if the associated operator T̂
is weakly compact. Applying these facts to the previous result, we obtain the following
corollary.

Corollary 1.3 X has DP1 if and only if for every Banach space Y and any k ∈ N, if

T ∈ L(k)(Xk ; Y ) is weakly compact, and (xin)∞n=1 for 1 ≤ i ≤ k are weakly convergent

norm-one sequences with norm-one limits xi, then the sequence (T (x1
n, x

2
n, . . . , x

k
n))∞n=1 is

norm convergent to T (x1, . . . , xk) in Y .

Continuing with the review, let X be a Banach space. A map p : X → Y is called a

k-homogeneous polynomial, (k ≥ 1), if there exists a k-linear operator T ∈ L(k)(Xk; Y ),
called a generator of p, such that for all x ∈ X,

p(x) = T (x, . . . , x).

The space of all k-homogeneous polynomials from X into Y becomes a Banach space
with the norm

‖p‖ = sup{‖p(x)‖ : ‖x‖ ≤ 1}.

A map p : X → Y is called a polynomial if there exists n ∈ N and k-homogeneous
polynomials pk, with 0 ≤ k ≤ n, such that p = p0 + p1 + · · ·+ pn. (By definition, a 0-
homogeneous polynomial is any constant map from X to Y .) A polynomial p : X → Y is
said to be weakly compact if for every bounded sequence (xn) in X, the sequence (p(xn))
has a weakly convergent subsequence in Y .

A Banach space X is said to have the Polynomial Dunford-Pettis property (PDP) if
for any Banach space Y , every weakly compact polynomial from X into Y maps weakly
Cauchy sequences onto norm convergent sequences. We will say that X has PDP1 if for
any Y , and for every weakly compact polynomial p : X → Y , if (xn) is a sequence in X

such that xn → x weakly and ‖x‖ = 1 = ‖xn‖ for all n, then the sequence (p(xn)) is
norm convergent in Y . In [4], a question posed by Pe lczyński is answered, namely it is
shown that X has DP if and only if X has PDP. The next result mirrors the equivalence
of DP and PDP.

Corollary 1.4 Let X be a Banach space. Then X has DP1 if and only if X has PDP1.
Proof. For the forward implication, let p : X → Y be a weakly compact polynomial,
where p = p0 + p1 + · · ·pn, for k-homogeneous polynomials pk, 0 ≤ k ≤ N , and let
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xn → x weakly with ‖xn‖ = ‖x‖ = 1. As p is weakly compact, pk is weakly compact and
it follows that pk has a weakly compact generator [3, Proposition 3]. Hence by Corollary
1.3, for each k, the sequence (pk(xn)) is norm convergent in Y , and hence (p(xn)) is norm
convergent in Y , whence X has PDP1.

The backward implication follows immediately from the fact that every operator is a
1-homogeneous polynomial.

From the theorem, we also obtain an alternative proof of (one direction of) [1, Theo-
rem 3.1].

Corollary 1.5 Let A be a C∗-algebra. Then A has DP1 if and only if whenever an → a

weakly in A, with ‖an‖ = ‖a‖ = 1 for all n, then an → a σ-strong∗ in A∗∗.

Proof. We prove only the necessity of the condition. Suppose A has DP1 and let
an → a weakly in A with ‖an‖ = ‖a‖ = 1 for all n. Let f ∈ A∗. The map Φ : A×A→ C
defined by Φ(x, y) = f(xy) is obviously bounded, 2-linear, and weakly compact. Hence,
the sequences (Φ(an, a∗n)) and (Φ(a∗n, an)) are both convergent to Φ(a, a∗) and Φ(a∗, a),
respectively, so that f(a∗nan + ana

∗
n)→ f(a∗a+ aa∗), as desired.

The HDP1 property

A map f : X → Y is called holomorphic if for every ξ ∈ X there exists a sequence pk
of k-homogeneous polynomials, k = 0, 1, . . ., (depending on ξ), and a constant r > 0 such
that the series

∞∑
k=0

pk(x− ξ)

converges uniformly to f(x) for all x ∈ ∆(ξ, r). The sequence (pk) is then unique at each
ξ by [2, Proposition 4.2], and this series is called the Taylor series of f at ξ.

As defined in [4], a holomorphic map f : X → Y is said to be weakly compact if
for each ξ ∈ X there exists s > 0 such that f maps ∆(ξ, s) into a relatively weakly
compact subset of Y . When f is holomorphic and weakly compact, r(f ; ξ) will denote
the supremum of all r ∈ R such that the Taylor series of f at ξ converges uniformly for

z ∈ ∆(ξ, s) for all 0 < s < r, and such that f maps ∆(ξ, r) into a relatively weakly
compact subset of Y .

A Banach space X is said to have the Holomorphic Dunford-Pettis Property (HDP),
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as defined in [4], if for every Banach space Y and every weakly compact holomorphic map
f : X → Y , if (xn) is a weakly Cauchy sequence in X and there exists x ∈ X and ρ > 0
such that ‖xn− x‖ ≤ ρ < r(f ; x) for all n, then the sequence (f(xn)) is norm convergent
in Y . We will say that X has HDP1 if for any Y , and any weakly compact holomorphic
map f : X → Y , if xn → x weakly such that there exists ξ ∈ X and a constant s > 0 with
‖xn − ξ‖ = ‖x− ξ‖ = s < r(f ; ξ) for all n, then the sequence (f(xn)) is norm convergent
in Y .

As shown in [4], DP and HDP are equivalent. The next result mirrors that equivalence.

Theorem 1.6 X has DP1 if and only if X has HDP1.
Proof. Suppose X has DP1. Let Y be a Banach space, let f : X → Y be a weakly
compact holomorphic map, and let xn → x weakly such that there exists ξ ∈ X and a
constant s > 0 with ‖xn − ξ‖ = ‖x− ξ‖ = s < r(f ; ξ) for all n. Let

f(z) =
∞∑
k=0

pk(z − ξ)

be the Taylor series of f at ξ. Let ε > 0, and choose N > 0 such that for all z ∈ ∆(ξ, s),

∥∥ ∞∑
k=N+1

pk(z − ξ)
∥∥ < ε.

Since X has DP1, X has PDP1 by Corollary 1.4, so it follows that for all 0 ≤ k ≤ N ,
the sequence (pk(xn− ξ)) is norm convergent. Hence there exists M > 0 such that for all
0 ≤ k ≤ N , and n,m ≥M , we have

‖pk(xn − ξ) − pk(xm − ξ)‖ <
ε

N
.

It follows easily that ‖f(xn) − f(xm)‖ < 3ε, so that the sequence (f(xn)) is norm
convergent in Y , whence X has HDP1.

The converse follows immediately from the fact that operators are holomorphic maps
[2, Proposition 5.1].

Now, let A be a unital Banach algebra. It is easily seen that the exponential map

x 7→ ex =
∞∑
n=0

xn

n!
, x ∈ A
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is holomorphic. In particular, if A is reflexive then this mapping is also weakly compact,
while if A is a subalgebra of B(H), the operators on a Hilbert space H , then for any
ξ ∈ H , the map x 7→ exξ is holomorphic and weakly compact. Using these facts, we
obtain the following corollary.

Corollary .7 Let A be a unital Banach algebra with DP1 and let an → a weakly in A
with ‖an‖ = ‖a‖ = 1.

(a) If A is reflexive, then ean → ea in norm.

(b) If A ⊆ B(H) is a subalgebra of the operators on a Hilbert space H , then ean → ea

in the strong operator topology of B(H).
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[3] Pe lczyński, A.: On weakly compact polynomial operators on B-spaces with Dunford-Pettis

property. Bull. Acad. Polon. Sci., Sér. sci. math. astr. et phys. 11, 371–378 (1963)

[4] Ryan, R. A., Dunford-Pettis properties. Bull. Acad. Polon. Sci., Sér. sci. math. astr. et

phys. 27, 373–379 (1979)

Walden FREEDMAN
Department of Mathematics,
U.C. Santa Barbara,
Santa Barbara, California 93101 USA
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