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ALTERNATIVE POLYNOMIAL AND HOLOMORPHIC
DUNFORD-PETTIS PROPERTIES*

Walden Freedman

Abstract

Alternatives to the Polynomial Dunford-Pettis property and the Holomorphic
Dunford-Pettis property, called the PDP1 and HDP1 properties, respectively, are
introduced. These are shown to be equivalent to the DP1 property, an alternative
Dunford-Pettis property previously introduced by the author, thus mirroring the
equivalence of the three original properties.

Introduction

In [4], R. Ryan proved that the Dunford-Pettis property, the Polynomial Dunford-
Pettis property, and the Holomorphic Dunford-Pettis property are all equivalent. In [1],

a property closely related to the Dunford-Pettis property, called the DP1 property, is
introduced and defined as follows:

A Banach space X has the DP1 property if for any Banach space Y and any weakly
compact linear operator T : X — Y, if z,, — = weakly in X with ||z,|| = ||z| = 1 for all
n, then Tx,, — Tz in norm in Y.

We will consider two alternative properties, the PDP1 property and the HDP1 prop-
erty, in the same spirit as [4], and show that like the original properties, DP1, PDP1 and

HDP1 are all equivalent. Some applications to Banach algebras are also given.

Notation and Background

Throughout the paper, X and Y will denote Banach spaces over the field of complex
numbers. We identify X with its image in X** under its canonical embedding in X**.
The Banach space of all bounded linear operators from X to Y will be denoted £(X;Y).

Given zg € X and r > 0, the open and closed balls centered at xy with radius r will

be denoted A(zg,r) and A(zg,r), respectively. By the term ‘operator’, we will always

*This paper is a part of the author’s doctoral dissertation at the University of California, Santa
Barbara.
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mean a bounded linear operator. Given f € X and a € X* we often write f(a) or (f,a)
for the evaluation of @ on f. The Banach space of all sequences in Y that are norm
convergent to 0 will be denoted by ¢o(Y), and ¢(Y") will denote the Banach space of all
convergent sequences in Y. For each n € N, let 7, : ¢(Y) — Y be the nth coordinate
map, i.e., T (y;) = yn. T : X — c(Y), the composition 7, T will be denoted by T,.
Let 7 : ¢(Y) — Y be the operator defined by 7(y,) = lim,, yn, and let ¢ : Y — ¢(Y') be
the operator defined by «(y) = (y, v, .. .).

Recall that a Banach space X is said to have the Dunford-Pettis Property (DP) if

for any Banach space Y, every weakly compact operator from X to Y maps weakly
convergent sequences to norm convergent sequences.

The PDP1 property

Recall the following standard result regarding weakly compact operators: An operator
T : X — Y is weakly compact if and only if 7**(X**) C Y. The following lemma gives

a useful characterization of weakly compact operators T : X — ¢o(Y).

Lemma ([4, Lemma 1.2]) T :X — ¢y(Y) is weakly compact if and only if
(a) For allm, T, : X — Y is weakly compact, and
(b) For all g € X**, one has lim, ||T,*g|| = 0.

We use this result to prove the following lemma which characterizes weakly compact
operators T : X — ¢(Y).

Lemma 1.1 Let T: X — ¢(Y). Then T is weakly compact if and only if
(a) For alln, T), : X — Y is weakly compact, and

(b) For all g € X**, one has lim,, ||(T;* — 7**T**)g|| = 0.

Proof. If T is weakly compact, then clearly T,, and T'— 7T : X — ¢o(Y') are weakly
compact. Since 7, (T —vnT) = T,, — nT, the lemma above implies that
Ty —m**T**)g|| — 0 for all g € X**.

For the converse, suppose that (a) and (b) hold. It follows from (a) that for all
g € X**, we have T)**g € Y, and so by (b) we have that 7**T**g € Y as well. It follows

that 7T is weakly compact and hence T;, — 7T is weakly compact for all n. The previous

408



FREEDMAN

lemma then implies that T — (7T is weakly compact, and hence T is weakly compact as
well. O

We now state and prove the main result.

Theorem 1.2  Assume that X7, X5, ..., X; are Banach spaces with the DP1 property.
Let (2%)%; for 1 < i < k be weakly convergent norm-one sequences in X; with norm-one
limits x; € X;, and set X = X;®X,® - - - ®Xk. For any Banach space Y, if T € L(X;Y)

is weakly compact then the sequence
(T(wp, @ 23 ® - @ ap))o2y

is norm convergent to T(xl Ry - Qx)inY.

Proof. Suppose that X; has DP1 for each 1 < ¢ < k. We use a technique similar
to that used in [3] and [4], proceeding by induction on k, the case of k = 1 holding by
definition of DP1. Assume the statement is true for k; suppose that Xy, Xo, ..., Xi41 are

Banach spaces having DP1; let X = X10X® - Xk + 1, and W = X10Xo® - - -@Xk:;
suppose T' € L(X;Y) is weakly compact, and that for all 1 <i < k + 1, (%)) is a weakly

n
convergent norm-one sequence in X; with norm-one limit z; € X;.
It is easy to see that for fixed z; € X;, 1 < i < k, the operator

T T(1®2Q - ® 2, Qx)

which maps Xy 1 to Y is weakly compact since T' is weakly compact, and so since X1
has DP1, the sequence

(T(5 ®---® 2 @),

is norm convergent in Y to T(z1 ® -+ ® 2k ® Tr4+1). We can thus define an operator
t: W — ¢(Y) by setting

t(21 K- ® Zk‘) = (T(Zl R 2k ® xl;i—i_l))n)

and extending linearly. Assuming ¢ is weakly compact, it then follows from the induction
hypothesis that the sequence

trf@;@ @), = (T @@z @yt
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is norm convergent to (T'(z1 ® - ® xp, ® 28T1))22 € ¢(Y). Tt follows easily that the

sequence of “diagonal” elements
(T, @23, @ @2 )0,

of the above sequence is norm convergent to T'(x1 ®- - -®2 1) in Y, which then completes
the proof.

Now, since t,(z1 ® - - @ 2) = T(21 ® - - - @ 2, @ FF1), and T is weakly compact, it
is easy to see that t,, is weakly compact.

Given S € X*, and © € Xg1, define §" : Xp11 — W* by

S@) (1 @20 ®z)=5(21 ® - ® 2 @ T).
For any ¢ € W**, define ¢ : Xk41 — X by
(S, p(x)) = (S'(x),¢), forall € Xpy1, S€W™.
Forall z; € X;, 1 <i <k, and ¢ € Y* we have

T* () (@) (1 @ @ z) =T W) (21 © - @ 2, @ 2y ™)
=p(T(1 ® @2z @ah™))

=Y(tn(21 @ ® 2k))

=t, (V)21 ®- - @ 2)

so that T (v) (z71) = t;,(4).
It follows that for all ¢ € W**, and ¢ € Y*, we have

(W, 137 (9)) = (1), ) = (T*(¥), sl ™)) = (¥, T (d(xy ™)),
and hence for all n we have
tr(¢) = T (k™)) € V™.

As T is weakly compact, the map T**¢ : Xk41 — Y™ is weakly compact. Hence, since
Xj41 has DP1,

1T (o ™) = T (S(@r+1))| = 1637(9) = T (d(@r+1))l| — 0.
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Thus to complete the proof, we need only show that

T (¢(wpta)) = 777 (),

and apply Lemma 1.1.
For any v € Y*, we have

(W, T (d(zr11))) = (T* (), d(wr11)) = (T () (@h41), &),

but for all z1, 2o, ...,z € X, we have

(T* () (xr41) (21 @ - - @ 28) = (T* () (21 @ - - - @ 25 @ Tp41)

=(T(21 @ @ 2 @ Thoy1))
=(n(t(zn @ - @ z)))
so that
(W, T ((xx+1))) = (T*(9)) (@r41), §) = (Wmt, 6) = (4, 7 (9)).
Thus T**(¢(xx11)) = 7°*t**(4), completing the proof. 0O

We now review some concepts from the references. Given Banach spaces X;,1 < j <

k, and Y, a k-linear operator T : X7 X Xo X -+ X X} — Y is a k-linear mapping which
is continuous in all variables x; simultaneously. The set of all k-linear operators forms a
Banach space with the usual vector space operations and the norm

1T = sup{||T(x1, 22, ..., wx)l|  sup || <1}
K]

We will denote this Banach space by E(k)(Xl,XQ,...,Xk;Y). If all X; = X, for
some Banach space X, we write L) (X*;Y) for LF)(X,..., X;Y). Letting W =
X1 ®X,®---®Xjk, where ® denotes the projective tensor product, we make careful
note that there is a canonical isometric isomorphism of £*)(X;, Xo,..., X;;Y) with
L(W;Y) associating the k-linear operator T' € E(k)(Xl, Xo, ..., X:;Y) with the operator
T ¢ L(W;Y) where f(zl ®z2Q - Qzk) =T(21,22,...,2k) for z; € X;, 1 <i < k.

A Ek-linear operator T € E(k)(Xl, Xo,..., XE;Y) is called weakly compact if for any

k bounded sequences (z%) in X;, 1<1i <k, the sequence
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has a weakly convergent subsequence. As shown in [4, p. 374], a k-linear operator

T e E(k)(Xl,XQ, .o, Xp; Y) is weakly compact if and only if the associated operator T

is weakly compact. Applying these facts to the previous result, we obtain the following
corollary.

Corollary 1.3 X has DP1 if and only if for every Banach space Y and any k € N, if
T € LF)(X*,Y) is weakly compact, and (2752, for 1 < i < k are weakly convergent
norm-one sequences with norm-one limits ;, then the sequence (T'(z}, 22, ..., zk))e2 is

norm convergent to T'(z1,...,x) in Y.

Continuing with the review, let X be a Banach space. A map p: X — Y is called a
k-homogeneous polynomial, (k > 1), if there exists a k-linear operator T' € L*)(X*;Y),
called a generator of p, such that for all z € X,

The space of all k-homogeneous polynomials from X into Y becomes a Banach space
with the norm

[Pl = sup{llp()[| : [lz]| < 1}.

A map p: X — Y is called a polynomial if there exists n € N and k-homogeneous
polynomials pg, with 0 < k < n, such that p = pg+p1 + -+ - + pn. (By definition, a 0-
homogeneous polynomial is any constant map from X to Y.) A polynomial p: X — Y is
said to be weakly compact if for every bounded sequence (z,,) in X, the sequence (p(z,))
has a weakly convergent subsequence in Y.

A Banach space X is said to have the Polynomial Dunford-Pettis property (PDP) if

for any Banach space Y, every weakly compact polynomial from X into Y maps weakly
Cauchy sequences onto norm convergent sequences. We will say that X has PDP1 if for

any Y, and for every weakly compact polynomial p: X — Y, if (x,,) is a sequence in X
such that z, — = weakly and ||z|| = 1 = ||z,|| for all n, then the sequence (p(x,)) is
norm convergent in Y. In [4], a question posed by Pelczyniski is answered, namely it is

shown that X has DP if and only if X has PDP. The next result mirrors the equivalence
of DP and PDP.

Corollary 1.4 Let X be a Banach space. Then X has DP1 if and only if X has PDP1.

Proof. For the forward implication, let p : X — Y be a weakly compact polynomial,
where p = pg + p1 + - Pn, for k-homogeneous polynomials pg, 0 < k < N, and let
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x, — x weakly with ||z,| = ||| = 1. As p is weakly compact, py is weakly compact and
it follows that py, has a weakly compact generator [3, Proposition 3]. Hence by Corollary
1.3, for each k, the sequence (pi(zy)) is norm convergent in Y, and hence (p(x,)) is norm

convergent in Y, whence X has PDP1.
The backward implication follows immediately from the fact that every operator is a
1-homogeneous polynomial. n

From the theorem, we also obtain an alternative proof of (one direction of) [1, Theo-

rem 3.1].

Corollary 1.5 Let A be a C*-algebra. Then A has DP1 if and only if whenever a,, — a
weakly in A, with ||la,| = ||a|]| =1 for all n, then a,, — a o-strong™ in A**.

Proof. @ We prove only the necessity of the condition. Suppose A has DP1 and let
an — a weakly in A with [ja,|| = ||a|]| =1 for all n. Let f € A*. Themap ®: Ax A —C
defined by ®(z,y) = f(zy) is obviously bounded, 2-linear, and weakly compact. Hence,

the sequences (®(an,ar)) and (®(ak,ay)) are both convergent to ®(a,a*) and ®(a*,a),

respectively, so that f(aXa, + anal) — f(a*a+ aa*), as desired. O

The HDP1 property
A map f: X — Y is called holomorphic if for every £ € X there exists a sequence py

of k-homogeneous polynomials, k = 0,1, .. ., (depending on &), and a constant r > 0 such

that the series
o0
> pe(z—9)
k=0

converges uniformly to f(x) for all z € A(¢,r). The sequence (pi) is then unique at each
¢ by [2, Proposition 4.2], and this series is called the Taylor series of f at &.

As defined in [4], a holomorphic map f : X — Y is said to be weakly compact if
for each & € X there exists s > 0 such that f maps A(E,s) into a relatively weakly
compact subset of Y. When f is holomorphic and weakly compact, r(f;&) will denote
the supremum of all » € R such that the Taylor series of f at £ converges uniformly for

z € A(g,s) for all 0 < s < r, and such that f maps A(§,r) into a relatively weakly
compact subset of Y.
A Banach space X is said to have the Holomorphic Dunford-Pettis Property (HDP),
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as defined in [4], if for every Banach space Y and every weakly compact holomorphic map
f: X =Y, if (z,) is a weakly Cauchy sequence in X and there exists z € X and p > 0
such that ||z, — z|| < p < r(f;z) for all n, then the sequence (f(x,)) is norm convergent

in Y. We will say that X has HDP1 if for any Y, and any weakly compact holomorphic
map f: X — Y, if x, — x weakly such that there exists £ € X and a constant s > 0 with

|2n =& = |l =&l = s < r(f; €) for all n, then the sequence (f(x,)) is norm convergent
inY.
As shown in [4], DP and HDP are equivalent. The next result mirrors that equivalence.

Theorem 1.6 X has DP1 if and only if X has HDP1.

Proof. Suppose X has DP1. Let Y be a Banach space, let f : X — Y be a weakly
compact holomorphic map, and let x,, — = weakly such that there exists £ € X and a

constant s > 0 with ||z, — §|| = ||z —&|| = s < r(f;§) for all n. Let

F(2) = pe(z—¢)
k=0

be the Taylor series of f at . Let € > 0, and choose N > 0 such that for all z € A(¢, s),

o

> mz—-9)) <e
k=N+1
Since X has DP1, X has PDP1 by Corollary 1.4, so it follows that for all 0 <k < N,
the sequence (pg(z, —&)) is norm convergent. Hence there exists M > 0 such that for all
0<k<N,and n,m> M, we have

€

ok (xn — &) — pr(zm — &) < v

It follows easily that ||f(zn) — f(zm)| < 3¢, so that the sequence (f(z,)) is norm

convergent in Y, whence X has HDP1.
The converse follows immediately from the fact that operators are holomorphic maps

[2, Proposition 5.1]. 0

Now, let A be a unital Banach algebra. It is easily seen that the exponential map
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is holomorphic. In particular, if A is reflexive then this mapping is also weakly compact,
while if A is a subalgebra of B(H), the operators on a Hilbert space H, then for any

& € H, the map = — €%¢ is holomorphic and weakly compact. Using these facts, we
obtain the following corollary.

Corollary .7 Let A be a unital Banach algebra with DP1 and let a,, — a weakly in A

with [|an[| = [l = 1.
(a) If A is reflexive, then e — e in norm.

(b) If A C B(H) is a subalgebra of the operators on a Hilbert space H, then e’ — e
in the strong operator topology of B(H).
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