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Abstract

We consider the class Sy (D,Q) of complex functions f which are univalent,
harmonic, sense preserving on a simple connected domain D # C containing the
origin, satisfy f(0) = ao, fz(0) = 0 < f.(0), and have the fixed range f(D) = Q,
where Q = {w : Rew > a, a € R}. In particularly, we describe the closure Sy (D, Q)
of Sy (D,Q) and characterize its extreme points, as well as sharp estimates for
coefficients and distortion theorems.
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1. Introduction.

Recently, there has been interest [1,2,4,5,6] in studying the class Sy of all complex-
valued, harmonic, sense preserving univalent mappings f defined on the open unit disk

U, which are normalized at the origin by
f0)=0 and  £.(0) > 0. (1)

Such functions can be represented as f = h + g where h(z) = z + az2? + ... and
g(2) = b1z + be2? + ... are analytic in U. Since f is sense preserving, J;(z) = |h'(2)|* —
lg'(z)] > 0 and then |¢'(2)] < |W'(z)| for z € U. It follows that |b;] < 1 and hence
fo=(f—b1f)/(1—|b1|?) also belongs to S . Thus we obtain restriction to the subclass
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S9 of Sy, consisting of those functions in Sy with fz(0) = 0. If we let F and G be
analytic in U and satisfy Re = Re f =wu and Re G =Im f = v, then h = (F +iG)/2
and g = (F —iG)/2.

In contrast to conformal mappings, harmonic univalent functions f are not at all
determined (up to normalization (1)) by their image domains. So, it is natural to study
the class of harmonic, sense preserving univalent mappings of a simple connected domain
D # C onto another domain 2. We shall assume that D contain the origin and €

contain any fixed real point ag and that functions f € Sy (D, Q) are normalized so that
£(0) = aq, f2(0) >0 and fz(0) =0.

Hengartner and Schober [5] and later Cima and Livingston [2] considered the case
of Q being a strip, Abu-Muhana and Schober [1] considered the case of ) being a wedge or
half- plane, Livingston [6] considered the case of 2 = C\(—o00,a], a < 0, and Grigoriyan
and Szapial [4] considered the case of = C\{(—o0,a]U[b,4+00)}, a <0 <.

Our purpose is to study the closure of the class Sy (D, ) where Q@ = {w :Re
w>a, —00 < a<a < +oo}r. Also, we will give coefficient estimations and a sharp

upper bound for the area of the image f({z:|z| <r}) for these functions.

2. Harmonic mappings onto half plane
We shall use the half plane
Q={w:Rew>a, —c0o<a<ay <+oo}

and a simply connected domain D # C containing the origin. Then Sy (D, ) consists
of harmonic, sense preserving univalent mappings f = h + g from D onto 2 normalized
by

f(0)=ao,  f:(0)>0 and  f:(0)=0,

where h and g are analytic in D and have the expansion
o0 o0
h(z) = Z anz" and g(z) = Z b 2"
n=0 n=2

in a neighborhood of origin. Since f is sense preserving, the function w(z) = —¢'(2)/h’(2)

satisfies |w(z)| < 1, and the normalizations implies w(0) = 0.
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@p denotes the conformal mapping from D onto the unit disk U normalized by
ep(0)=0 and ' (0) > 0.
Since Sy (D, Q) = Sy (U, Q) o ¢p, it is sufficient for many problems to consider the class

Sy (U, Q). Particularly if D =, then Sy (€, Q) consists of automorphisms of 2.
For z € U and |n| = 1, define now the kernel
“l4+n¢  d¢
k(z, = /
=) o 1=n¢(1=¢)?
2” 1—z 1+ z .
|:(n—1)210g (l—nz) + 1_—:72 1—z:| if n 7é 1

Then we define the family

F= {f : f(2) = Re (C”“O) +i Im [2(% —a) /lnl:lk(zan)d% e P]}

1—2

where @ is the set of probability measures on the Borel sets of [§| =1 and ¢ = a¢ — 2a.

Theorem 1. Sy (U,Q) C F.

Proof.Let f = h+ g € Sy(U,Q). w(z) = —¢'(2)/hW(z) satisfies the hypotesis of
Schwarz’s lema. Since {2 is convex in the direction of the imaginary axis, by a result
of Clunie an Sheil-Small [3], 1) = h + g is a conformal univalent mapping of U onto 2.
Since the function 1 satisfies normalizations ¥(0) = h(0) = ap and ¢’(0) = A'(0) > 0,
such a conformal mapping is determined uniquely by Riemmann mapping theorem. Hence

cz + ap
1—2 "

P(2) = h(z) +9(2) =

Thus we obtain

u(z) = Re f(z) = Retp(z) = Re (

At the same time,

W(z)-g'z) = () +9'(2>]Z:Ez§ 4:38
_ 20 —a) 1+w(z) 2(ap—a) P
T U T a-ap
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where, by the Herglotz formula p(z) = [, _ (1+nz)/(1—nz)du for some measure y € ©.

[n|=1
Thus
v(z) = Imf(z) = Im{h(2) = g(2)] = 2(ao — a)lm [/OZ (1p£CQ)“)2dC]
= ap — a)lm T14nC . d¢
= 2(ap —a)l ||/ UO e (1_02]d
n|=1
= 2(ap — a)lm / k(z,m)dp
[n|=1
and the theorem is proved. -

Lemma 2. If f € Sy(U,Q) and fe Sy(D,Q), then

ao(f) =ao(f), a1 =a1(f) =a1-¢p(0) and ar=ai(f)=2(a0 —a).
Proof. For each f € Sy(D,Q) and f € Sy (U,Q), as we can write f = fopp,

do(f) = F(0) = (f o p)(0) = £(0) = a,

Also

Theorem 3. F is convex and compact.

Proof. For p € p the transformation £(y) =Im [al fln|=1 k(z,m) dp| is a linear trans-
formation of . Then for fi, fo € F, p1,u2 € p and for the constant C', we can write
fi=C+ L(1) and fo = C + L(p2). From this, for 0 < ¢ < 1 we can obtain

th+(1-0)f2=C+fi=C+ Lt + (1 —t)u2).
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Therefore the convexity of p implies the convexity of F.

Similarly it can be shown that the compactness of g implies the compactness of
F. 0

Theorem 4. If f € F, then f is normalized harmonic, sense preserving and univalent
from U into 2.

Proof. Let f =h+ g=ReF +i ReG, then with

cz + ap

Fz) = 1—-2

Since

g'(2)/1(2) = [F'(2) —iG' (2)] /[F'(2) +iG'(2)] = [1 = p(2)] /[1 + p(2)],

it follows that |¢’(z)| < |W/(z)| for z € U. Thus f islocally univalent and sense preserving
in U. Also

arz
h(z) +g(z) = i +ao

is convex in the direction of the real axis. By the theorem of Clunie and Sheil-Small [3],

f is univalent in U. Morever, since

Ref(z) = Rem >a
1—-2
for all f € F and z € U, it follows that f(U) C Q. O

Remark 1. Sy (U,Q) # F. For istance, if 1 is a unit point mass at n = —1, then

+ , 1+
f(z) = Re (7(01,2_ :)02> +Z%a7‘g (1 — z>

maps U onto the half-strip {w : Rew > a, |Imw| < ayw/4}. Therefore f € F\Su(U,Q).

Although, functions in F do not necesserily map U onto €2 but they map U into
subdomains.
Using an argument similar to that in [5, Lemma 2.5 and Theorem 2.7 | we obtain

the following results. We omit the proofs.
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Theorem 5. If f € F, then f(U) is convexr.

Theorem 6. F = Sy (U,Q) and Su(D,Q) = Fopp, where the Sy (U, Q) is closure of
SH(Ua Q)

The set of extreme points of Sy (U, Q) is the set of functions

fn(2) =Re (Ci + a0> + i a;lm k(z, 7).
—z
Proof. Let us show the set of extremum points of Sy (U,Q) by Em. If f, €
Em, then the associated p must be an extreme point of the set p of probabil-
ity measures on |n| = 1. Thus, we show that p be a point mass. We suppose that

fo=tfi+ (1 —1t)f, for some fi, fo € Sy(U,Q) and 0 <t < 1. Then Re fa=1tRefi +
(1 —t)Refo and therefore Re f{ =Re fa. Also, the map £(u) =Im [al fln|=1 k(z,m)du| is
linear and one-to-one for p € p. Since Im f,, = tIm f; + (1 —¢)Im f>, and for this equation
to be satisfied it must be the Im f; =Im f5 and g must be of unit point mass. The unit
point masses are the extremum points of . Therefore the relation f, =tfi + (1 —1t)f>

is only walid when f; = f» and pu € E,. Therefore f, € Em. O

3. The Mapping Properties of Extreme Points.

In this section we obtain the image of U under the extreme points f,(z) of

Sy (U, Q). If n =1, then the extreme point is

f(z):Re<cii_ZO>+iallm<(l_%)2>; c=ag— 2a.

Its boundary values are all a except at the point 1. Also, f maps U onto the region
Q ={w:Re w>a}. If n = ¢ # 1, then the extreme point is

cz + ag 1—e?fz

1 z
=R ' —_— ——— ) —cot(8/2) R .
o) =Re (TE2) +ia [2sin2<9/2> o (757 - oo ve (7
Suppose =€, 0 < < w. If ¢ is on the open arc of the unit circle going from
1to n to —1 to 7 in the counter-clockwise direction, then arg[(1 —7¢)/(1 —¢)] = 6/2
and ]inéf(z) = a +iq; where 1 = a;(f+sinf)/(4sin?(0/2)) > 0. Since dg1/df < 0 for
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0 < 0 <m, ¢ is decreasing in this interval and ¢ — a17/4 as 6 — 7. If ¢ is the open
arc from 7 to 1, then arg[(1—7¢)/(1 — )] = (/2) — 7 and we obtain iLI%f(z) =a+igo
where g2 = a1 (0+sinf — 27)/[4sin?(0/2)] < 0. Since dgz2/df > 0 for 0 < 0 < 7, g2 is
increasing in this interval and ga — —ai7/4 as § — w. Thus, the cluster set of f(z) at
7 is the closed segment of the imaginary line joining a +iq; and a +1iqo. The cluster set

of f at 1 contains the rest of 9f(U). It consists of the half-lines

{a+iy:y>q} and {a+iy:y < g2}

4. Applications.

In this section we will use our knowledge of extreme points to solve some extremal

problems on Sy (U, Q).
Theorem 7. f=h+ge< Sy(U,Q) and
(oo} (oo}
h(z) = Z anz" and g(z) = Z bpz"
n=0 n=2

Then
n+1 n—1
ai, |bn| S

lan| < a1 and ||ap] = |ba]] < ay. (2)

Equality occurs in all cases for the functions

f@)zzRe(CitZO>4—imIm <FF§ZP>'

Proof. We need only prove these inequalities for the extreme points of Sy (U,Q2). Let

cz + ap
1—=2

ﬁ@:m( >+mmm@m

In our notation

2 1-—
F(Z):cz—i-ao and iG(z):al[ 771)2105’;( z>+1+77 z ]

1—z (n— 1—nz 1l—-nl-=z
Thus
he) = HF) +iGE)] = L [EED 4 o k)] = 3 e
2)=5FE)+iGE)] =5 |7 ay k(z,m —T;Oanz,
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cz + ag

[F(2) — iG(2)] = % [ g k:(z,n)] - 213"2".

2n 77"—1+1+77
(L=n)?2 n IR

1 n—1 a n—1
_ 1 k| |8 Nk
an = a1 1+n (n k:)n} an(n kz)n}
k=1 k=0
Thus
n+1
lan| < 5 a1 = (n+1)(ag — a).
Similarly, for all n > 2
ap 2 n—1
bnz—?l (n—k)nF and |b,| < a1 = (n—1)(ag — a)
k=0

with equality for n = 1.

Next we are concerned with estimates |, | and |b,| that are valid for all domains
D containing the origin. Let f =h+g € Sy (U, Q) and h(z) = ag + a1z + 222 + ... and
G(2) = byz? + ... in a neighborhood of z = 0. By the Lemma 2, the leading coefficient ag
is independent of D. We can write f = fopp € Sy (D,Q) andso h = hopp, § = gopp
and f=h+g. Since
/ /
W+g = 7(161121;)2 and ' —g' = 7(161121;)2 p(¢p) (3)

we have by Theorem 1

—1 —
a19p(2) ]‘"’ ; g[ eb(z) __enz) 1"V

o= [0 n LT =en()P en() ~ 1]

z2=0
and

n > 1.
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For automorphism of € containing the ag € R we have the following coefficient
O

estimates.

Theorem 8. Let f =h +g € Su(9,Q) and suppose h and g have expansions

B(z) = Z an(z —ao)" and §(z) = Z En(z —ap)"
n=0 n=2

in a neighborhood of z = ag. Then a; =1 and
- 2n—2
lan| = [bn| < — n > 2.
n af

Equality occurs for the functions

f(z) = Re(z) —i(a1/2)arg(z — a)

which arise from unit point measures at n = —1
Proof. Since pq(z) = (z — ag)/(z + ¢), it follows from Lemma 2 that a; =1

7 a190(2) -1

MEFIE = T e

and then a, = —b, for all n > 2. Also, since
1
dp,
)

W(z) =1+ p(pa(z) = / - ol

[n

it follows that for z = ag we have,

1 9 on—2 gn—2
/ n(l—n)"""dp, |nan| < == / dp = ——
[nl=1 a; [n]=1 a;

Nna, =
—1
ay

P NP i
Un = 100l = na?_l o 2n(a0—a)"_1

and so

The next theorem is concerned with the estimates of |d,| and |b,| that are valid
for all domains D. O
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Theorem 9. Let f = h+§ € Su(D,Q) and h, § have expansions (4). Then ay = a1},
and for all n > 2

(2n)!
4(n!)?

P2 ol < [ -2 0,

] < an [

Equality occurs for

~ ai . z
= — I .
Jo R€<2 *1_4Z+a>+za1 m<1_4z>

Proof. It follows from Lemma 2 that a1 = a1¢,. It is no loss of generality to assume

a1 = a1y = 1. Let f € Sy (U,Q) have coefficients a,,, b, and ¢p(z) = 2z + A22? + ...
near z = 0.

By a theorem of Loewner [7] the coeflicients A,, are dominated by the coefficients

_ 1—2z—+1—-4z

@Do(z) = 2

and its rotations. Since the estimates of Theorem 8 are sharp for the function

o) =Te (T2 ) i i (75)

an and b, are dominated by the corresponding coefficients of fo o pp, = ho + 3o -That

of the fuction

is @, and b, are bounded by the corresponding coefficients of

olz) = 51Fo(2) +i Go(2)]  and Go(2) = 5[Folz) — i Go(2)].

. - l[cwDo(Z)—i-ao_i_a ©D, (2) ]:1[ a1 N a1z
21 1-9p,(2) Y= py (2))2 2| V1—4z 1—4z

a1 a [ (2n)!

n n n+1 - . 2n—3 n

Z+—2 E 4"z +2_a1§ [4(n!)2+2 ]Z-i-
n=1 n=1

+ ao]

[N}

B = (2n)!
B al;él(n!)Q

Similarly, we have

~ - (271)' 2n—3 n a
go(z):alz[4(n')2 -2 :| z +§
n=1
Therefore, the proof of the theorem is completed. O
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Theorem 10. If f=h+ge€ Sy (U,Q), then

Equality occurs for the function

F(2) = Re (C’i:m) Vialm (ﬁ) .

Proof. We need only consider extreme points f,(z). In this case
1 {ecz+ap 2n 1-=2 1+n =z
h(z) == 1 )
(2) 2{ 1—2 +a1[(77—1)20g 1—nz +1—771—z

, Y 1 B 2n 1+n
Me =g [(1—z>2 (1—77)(1—2)(1—772)+(1—77)(1—2)2]

(1 =nz)(1—2)?

and

a1 aq
1'(2)] = < -
[1=nzl[1—z*— (1 —[z[)?

Similarly we get

v | ainz a12]
G = - T a0 S A

Theorem 11. If f =h+ g€ Sy(U,Q) and U, = {z: |z| < r < 1}, then the area of
f(U.) is A, and

The bound is sharp.

Proof. Let f = u+iv, OU, = C, and f(C,) =T,. Then the area of the domain enclosed
by I, is by
1 1 [ dv du
AT‘ = — — = — - — - .
2/Fr(udv vdu) 2/0 [u(6) 7 v(0) de]d@
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Since u =Re(h + g) and v =Im(h — g), we have

u(@) = % Z ™ [(@n + bp)e™ + (@ + bp)e™ ™)
n=0

o) = 53— b — (@~ bi)e ).
n=0

By putting these values in (5) and taking integral of both sides, we obtain
oo
Ay =mair’ + 7Y nr*(|an]” — ba?).
n=2
By Theorem 8, we get

o 2 2
147r2)
A, < ma? 2p2n — 27r( ; 0<r<1.
T_ﬂalngﬁnr Taj SE <
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