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ON THE BOUNDEDNESS OF INTEGRAL OPERATORS

İ. Ekincioğlu & İ. A. Ikromov

Abstract

In this paper, we consider integal operators defined by kernel functions. It is well

known the boundedness of such kind of operators as Shur Lemma type statements.

But, the norm of operators was estimated by two integrals of kernel function. We

obtain estimation of operators norm by one integral of kernel function.

1. Introduction

Let Lp(Rn) be the space of all integrable functions with degree p and denote by

Lploc(R
n) the space of all local integrable functions with degree p in particular denote

by L∞loc(R
n) the space of local bounded functions. Let D1 ⊂ Lp(Rn) be a subspace of

Lp(Rn).

Consider a linear operator T : D1 → D2 , where D2 ⊂ Lq(Rn).

Definition Operator T is called an operator of type (p, q) if there exists a real number

c such that for any f ∈ D1 it holds the following inequality ‖ Tf ‖q≤ c ‖ f ‖p , where

‖ · ‖p is a natural norm of the space Lp(Rn) (see [3]).

Note that if D1 is a dense set on Lp(Rn) then the operator T has a bounded

extension from Lp(Rn) to Lq(Rn). Let T be an integral operator with the kernel

function K(x, y) and operator T is defined from C∞0 (Rn) to L2
loc(R

n). It is well

known the statements about bonudedness of integral operators. In the statements of

type Shur Lemma the L2 -norm of operators is estimated by both supy
∫
|K(x, y)|dx and

supx
∫
|K(x, y)|dy . i.e. by two integrals of kernel functions (see [1]).
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We consider the integral operator of type

(Tf)(y) =
∫
Rn

K(x, y)f(x)dx
|y|n .

∗

Denote by σA the set of Rn × Rn :

σA ≡ {(x, y) : x ∈ Rn, y ∈ Rn : |y| ≤ A|X|},

where A is a fixed positive.

Our main result consists of the following Theorem.

Theorem 1.1. If supp K ⊂ σA , and there exists a number p > 2 such that

∫
Rn
|K(

y|x|
|y|2 , x)|

pdy = ρ(x) ∈ L∞(Rn),

then the integral operator (1.1) has a bounded extension on Lp(Rn) .

Now, consider also one variant of the statement for one-dimensional case. Let

K(ξ, x) be a measurable function. Assume that suppK(., x) ⊂ [a, b] and consider integral

operator

(Tf)(x) =
∫
R

K(xy , x)

y
f(y)dy (0.1)

where f ∈ C∞0 (R\{0}).
It holds the following theorem.

Theorem 1.2. Let there exists a number p > 2 such that

∫
Rn
|K(ξ, x)|pdξ = c(x) ∈ L∞(R),

then the integral operator (1.2) has a bounded extension on L2(R) .

∗ 1991 mathematics Subject Classification: 44A15, 47B37
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EKİNCİOĞLU, IKROMOV

2. Shur Lemma on the Boundedness of Integral Operators

Let TB be an integral operator with the kernel function B(x, y) and opertor TB
is defined from C∞0 (Rn) to L2

loc(R
n):

(TBf)(x) =
∫
B(x, y)f(y)dy.

It is well known the Shur Lemma and its generalizations on the boundedness of the

operators [1,3]. The following Lemma was proved in (see [2], p.47).

Lemma 2.1. Let there exists non-negative numbers ε, c and a mesurable function

M(x, y) such that the following inequalities

|B(x, y)| ≤M(x, y),∫
Rn

M(x, y)|x|−εdx ≤ c|y|−ε,∫
Rn

M(x, y)|y|−εdy ≤ c|x|−ε

hold. Then the integral operator TB has a bounded extension on L2(Rn) and its norm is

estimated by c .

Firstly we consider the application of Lemma 2.1 to the special integral operator.

Let ρ ∈ L∞(Rn×Rn) be a fixed function and D = C∞0 (Rn\{0}). Consider integral

operator T : D → L2
loc(R

n) given by

Tf(y) =
∫
Rn

ρ(x, y)f(x)dx
|x|α|y|β , (0.2)

where α, β are fixed positive numbers and α+ β = n .

The following lemma is needed for the sequel.

Lemma 2.2. Let A be a fixed positive number. If suppρ ⊂ σA and α < β then the

operator T defined by the formula (2.1) has a type (2.2).

Proof. Without loss of generality we can assume that A = 1. Let α < ε < β be a fixed

positive number. Then it is easy to show that the following inequalities:
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∫
Rn

|ρ(x, y)dx
|x|ε|x|α|x|β ≤

H

|y|ε ,∫
Rn

|ρ(x, y)dy
|x|α|y|β|y|ε ≤

H

|x|ε

hold, where H is a some constant.

Consequently, by the Lemma 2.1 the integral operator T has a bounded extension on

L2(Rn), therefore, it has a type (2,2) and the proof is completed 2

3. Proof of Theorems

In this section we will prove the Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1 We show that the integral operator (1.1) has a type (2.2).

Without loss of generality we can assume that A = 1. Let f ∈ C∞0 (Rn\{0}) be a fixed

function. Then we have

|Tf(y)|2 =
∫
Rn

∫
Rn

K(y, x1)K(y, x2)
|y|2n f(x1)f(x2)dx1dx2.

We will represent the integral |Tf(y)|2 as a sum of two integrals.

|Tf(y)|2 =
∫ ∫

|x1|≥|x2|

K(y, x1)K(y, x2)
|y|2n f(x1)f(x2)dx1dx2

+
∫ ∫

|x1|≤|x2|

K(y, x1)K(y, x2)
|y|2n f(x1)f(x2)dx1dx2

We will prove that the following inequality

∫
Rn

∫ ∫
|x1|≥|x2|

∣∣∣K(y, x1)K(y, x2)
∣∣∣

|y|2n
∣∣∣f(x1)f(x2)

∣∣∣ dx1dx2dy ≤ L ‖ f ‖2 (0.3)

holds, where L is a positive number. Let q be an adjoint number to p , i.e., 1
p + 1

q = 1.

Then by using the Hölder’s inequality we obtain
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∫
Rn
dy

∫ ∫
|x1|≥|x2|

∣∣∣K(y, x1)K(y, x2)
∣∣∣

|y|2n |f(x1)f(x2)|dx1dx2

=
∫ ∫

|x1|≥|x2|
|f(x1)f(x2)| dx1dx2

∫
Rn

∣∣∣K(y, x1)K(y, x2)
∣∣∣

|y|2n dy ≤

≤
∫ ∫

|x1|≥|x2|
|f(x1)f(x2)| dx1dx2

×
(∫

Rn

|K(y, x2)|p dy
|y|2n

) 1
p
(∫

Rn

|K(y, x1)|q dy
|y|2n

) 1
q

Changing of variables by y = z|x2|
|z|2 we get for the jacobian the relation

J(x2, z) =
|x2|n
|z|2n a(x2, z),

where a(x2, z) is some uniformly bounded function on Rn ×Rn .

It is clear that if (y, x2) ∈ σ , then |z| = |x2|
|y| ≤ 1. Consequently, we obtain

∫
Rn

|K(y, x2)|p
|y|2n dy =

∫
|z|≤1

∣∣∣K( z|x2|
|z|2 , x2)

∣∣∣p
|x2|n

|a(x2, z)dz

≤ ‖ a ‖∞
|x2|n

∫
|z|≤1

∣∣∣∣K(
z|x2|
|z|2 , x2)

∣∣∣∣p dz.
Hence

∫
Rn

|K(y, x2)|p
|y|2n dy ≤ ρ1(x2)

|x2|n

where ρ1 ∈ L∞(Rn).

At the same time by using Hölder’s inequality we get

∫
Rn

|K(y, x1)|q
|y|2n dy =

∫
|z|≤1

∣∣∣K( z|x1|
|z|2 , x1)

∣∣∣q
|x1|n

|a(x1, z)dz

≤ bn ‖ a ‖∞
|x1|n

(∫
|z|≤1

∣∣∣∣K(
z|x1|
|z|2 , x1)

∣∣∣∣p dz
) q
p

,
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where bn is some constant. Thus we have

∫
Rn

|K(y, x1)|q
|y|2n dy ≤ ρ2(x1)

|x1|n

where ρ2 ∈ L∞(Rn).

Let χ(x1, x2) be an indicator function of the set

σ1 = {(x1, x2) ∈ Rn ×Rn : |x1| ≥ |x2|}.

Consider an integral operator

T1f(x1) =
∫
Rn

χ(x1, x2)ρ1(x2)ρ2(x1)
|x1|

n
q |x2|

n
p

f(x2)dx2.

By the Lemma 2.2 the integral operator T1 has a type (2,2) and consequently has a

bounded extension on L2(Rn). This implies that for any f ∈ L2(Rn) it holds the

following inequality

‖ T1f ‖≤M ‖ f ‖, (0.4)

where M is a constant and norm ‖ · ‖ is L2(Rn).

It is not hard to prove that the following inequality

∫
Rn
dy

∫
|x1|≥|x2|

∣∣∣K(y, x1)K(y, x2)
∣∣∣

|y|2n |f(x1)f(x2)|dx1dx2 ≤
∫
Rn
|f(x1)| |T1f(x1)|dx1

holds.

Therefore we get (3.1) by using (3.2) and Schwartz inequality. The case |x2| ≥ |x1| may

be considered by the analogy. This completes the proof of Theorem 1.2.

Corollary 3.1 Let K(y, x) be a homogeneous function of degree zero with respect to y

and suppK(y, x) ⊂ σa . If the following relation

∫
|y|≤1

|K(y, x)|pds(y) ∈ L∞(Rn)
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holds for some p > 2 , where ds(y) is the Lebesque measure on Sn−1 , then the integral

operator (1.1) has a bounded extension on L2(Rn) .

The Corollary 3.1 is proved by the analogy of Theorem 1.1.

Proof of Theorem 1.2 The noting by T ? adwoint operator of T we see

(T ?f)(y) =
∫
R

K(xy , x)

y
f(x)dx.

We show that T ? has a type (2,2). Let f ∈ C∞0 (R\{0}) be a fixed function.

Then we have

|T ?f(y)|2 =

∣∣∣∣∣
∫ ∫

|x1|≥|x2|

K(x1
y , x1), K(x2

y , x2)f(x1)f(x2)

y2
dx1dx2+

+
∫ ∫

|x1|≤|x2|

K(x1
y , x1), K(x2

y , x2)f(x1)f(x2)

y2
dx1dx2

∣∣∣∣∣ .
Now we prove the analogy of inequality (3.1). By using the Hölder’s inequality we have

∫
dy

∣∣∣∣∣
∫ ∫

|x1|≥|x2|

K(x1
y
, x1), K(x2

y
, x2)f(x1)f(x2)

y2
dx1dx2

∣∣∣∣∣ ≤
≤
∫ ∫

|x1|≥|x2|
|f(x1)f(x2)|

∫
R

∣∣∣K(x1
y1
, x1)

∣∣∣p
y2

1

dy1


1
p

∫
R

∣∣∣K(x2
y2
, x2)

∣∣∣q
y2

2

dy2


1
q

dx1dx2.

Let us use a change of variables x1
y1

= ζ we have

∫
R

∣∣∣K(x1
y1
, x1)

∣∣∣p
y2

1

dy1 =
∫ b

a

|K(ζ, x1)p

|x1|
dζ ≤ c1(x1)

|x1|

where ρ1 ∈ L∞(R).

By the analogy we get
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∫
R

∣∣∣K(x2
y2
, x2)

∣∣∣q
y2

2

dy2 ≤
ρ2(x2)
|x2|

,

where ρ2 ∈ L∞(R) by the condition of the theorem, since q < 2. Now by using Lemma

2.1 as above we arrive to proof of Theorem 1.2.
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