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DIRECT SUMS AND THE SCHUR PROPERTY

B. Tanbay

Abstract
It is a known fact that ¢!, the dual space of the null sequences cg, has the Schur
property, that is, weakly convergent sequences in ¢! are norm convergent. In this
paper, we prove that if (X.)aecr are Banach spaces and X = (PacrXa)1 their
[1-sum, then the space X has the Schur property iff each factor X, has it.
Key words and phrases: Schur property, Banach spaces, AMS Subject Classifi-
cation: 46 B 20.

1. Introduction

A Banach space X is said to have the Schur property if every weakly convergent
sequence in X is norm convergent; equivalently if weakly compact subsets of X are norm
compact. It is a known fact that ¢!, the dual space of the null sequences cp, has the Schur
property. Many other results about the Schur property can be found in the litterature.
In [3], the authors show that the dual space of the group C*-algebra C*(G) of a compact
group G has the Schur property. In [1], W. S. Brown shows under a very mild condition
that the dual space of every commutative subalgebra of the operator algebra K(H) of
the compact operators on a Hilbert space H has the Schur property. Continuing this
work, in [8], A. Ulger characterizes the closed subspaces and subalgebras of K(H) whose
duals have the Schur property. The characterizations of C*-algebras whose duals have
the Schur property has been given by A. Lau and A. Ulger [3], and of commutative C*-
algebras whose duals have the Schur property by A. Pelczynski and Z. Semadeni [5]. J.
Diestel gave the connection of the Schur property with the Dunford-Pettis property [2].
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If two Banach spaces have the Schur property, then so do their injective and projective
tensor products [4], [6].

In this paper, we prove that if (X, )qcs are Banach spaces and X = (BoecrXa)1
their [y -sum, then the space X has the Schur property if each factor X, has it. The
technique used to prove that ¢! has the Schur property is the inspiration for most of the
results [7].

Our notation is quite standard. For any Banach space (X, || ||}, we denote its dual

by X* and its closed unit ball by X;. The natural duality between X and X™ is denoted
as (u, f) or as (f,u).

2. Direct sums of spaces with the Schur property

Proposition Let (X, )aer be Banach spaces and X = (BocrXa)1 be their Iy -sum. The
space X has the Schur property iff each factor X, has it.

Proof. If a space has the Schur property, then any closed subspace of the space clearly
has the Schur property. Hence the implication is true. For the reverse implication,
first recall that a Banach space has the Schur property iff all of its closed separable
subspaces have the Schur property. So we can assume that each X, is separable and take
I =N. Since X = (BrenXi)1 is separable, the closed unit ball of X* = (®renX} )
under its w*-topology is metrizable ([9], II.A.15). It follows that a weakly null sequence
{an} in X is norm-null if any w*-null sequence {f,} in the unit ball of X* satisfies
limy, 00 (fn, an) = 0.

Let then {a,}nen be a weakly null sequence in X. Then a, = {byk}ren and
for all k € N, the sequence {b, }nen is weakly null in Xj. As X has the Schur
property, lim,_o || bnx ||= 0, for all k¥ € N. On the other hand, let {f,}nen be
a w*-null sequence in the unit ball of X*. Each f, is of the form f, = {gn.k}ren,
and for all £ € N, the sequence {g, 1} is w*-converging in X; to zero. To prove that
limy, oo (fn,an) = 0, it is enough to show that the sum ), - [(gn.k, bnk)| converges to
zero uniformly in n € N, ie. supnen D pon (gnk:bn k)| — 0, as N — co. In other

words, we have to show that,
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Ve>03IN eNVneN Y [(gnkbax)| <c (%)
k>N

Assume (%) is false. So, there is an € > 0 such that,

VNeN dn € N Z [{gnk,bnx)| > € (k)
k>N

Consider a sequence of positive numbers {d;} such that Y7, 8, < . We are going to
construct two strictly increasing sequences {ny}r>1 and {Ny}r>o such that

1) > sn, I bns, [[< 0k for each k> 1,

2) Zﬁ;’“l’l [{Gn.ps bry_1,p)| < O for each n > ny,

3) Zp>Nk,1 [{Gnips brp)| = €.

Start with ny =1 and Ny = 0. Since an, € X, i.e. 3° [l bnyp [[< 00, We can
choose Ny such that 37 | bnyp < 01. Since {gn1}nen,... . {gn N tnen converge to

zero in (X{,w*),...,(XR,, w") respectively, there exists o > n1 such that

N1
Vn > na, Z |<gn,pa bnhp)l < ds.

p=1

By (xx), there exists ny > 7ig such that

Z [(gnaps bra,p)| = €

p>N1
Now let N2 > Ny such that 37 _n || bnyp [[< 02
Since {gn,1}neN.,... {gn, N, fnen converge to zero in (X7, w*),..., (Xy,,w")

respectively, there exists ng > ny such that

N2
Vn > ng, Z |<9n,pa bnz,p>| < d3.

p=1
Let n3 > n3 and N3 > Ns be such that, 2521 [{Gn.ps bro,p)| < d3 and

> psny | bngp [[< 03 and so on. ..

Now let us choose a sequence {v,} such that
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for No +1 < p < N1, 7%(9n1.p bnip) = [{Gn1,p> bnap)|
for N1+ 1 <p < Noy¥p(Gnapy bnap) = [{Gna,ps bnap)|
for Ni—1+1 <p < N, %(Gne.p> Onip) = {Gnips Ongep)|

We shall define an element h in X* as

h = (719n1,1, Y29n1,25 -+ s YN19n1,N1s YN1+19n2,N1+1; YN1+29n2,N1+25 - - -

YN29nz,N2s YN2+19n3,Na+15 VN2 +29n3,Na+25 - - )

If we denote h as h = (hy)p>1, then we have || h [|=sup,>; || by [|< 1 and

o

h a’nk Z mcp
p=1
k—1 N; Ny, oo
Z Z Vo{9n; pbn;, P) + Z [{gre.ps Onip) | + Z Vo {Gnr.ps brp)-
j=1p=N;_1+1 p=Ng_1+1 p=Np

Using the inequalities 1), 2), 3), and || gn,,p [|< 1 we get:

Ny,

k—
| h ank > — Z |<gnkm’b"k7;ﬂ>| — O
j=1 p=Ng_1+1

2 _Z(S + Z gnkmabnk,pﬂ_ Z |<gnkmabnkm>|_5k
p>Ni—1 p<Np+1
2 _Z(S + Z gnkvp’b"hp” — 20
p>Ni—1
> - Z 8; — 20k
j=1
2

o0
€
-2 6; > 2=
¢ JZ_IJ 5

352



TANBAY

This contradicts the fact that {a,} converges weakly to zero. Consequently, (x)

holds, that is

K
lim SUEZ |<gn,k, bn,k>| =0.
k_

K—oope

It follows that

(o] (oo}
nli_{go; (k> b k)| = ;nli_{go [(Gn k> b i) |-

As || bThk‘ ||_) 0) |<gnk;bnk>| - 0, SO that,

o0
nh_{go; |<9n,ka bn,k>| =0.

As [{fn,an)| < 21211 [{gn.kbn. k)|, we conclude that lim, oo (fn,an) = 0, and so

|| an || converges to zero. O
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