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Abstract

It is a known fact that `1 , the dual space of the null sequences c0 , has the Schur

property, that is, weakly convergent sequences in `1 are norm convergent. In this

paper, we prove that if (Xα)α∈I are Banach spaces and X = (⊕α∈IXα)1 their

l1 -sum, then the space X has the Schur property iff each factor Xα has it.
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1. Introduction

A Banach space X is said to have the Schur property if every weakly convergent

sequence in X is norm convergent; equivalently if weakly compact subsets of X are norm

compact. It is a known fact that `1 , the dual space of the null sequences c0 , has the Schur

property. Many other results about the Schur property can be found in the litterature.

In [3], the authors show that the dual space of the group C∗ -algebra C∗(G) of a compact

group G has the Schur property. In [1], W. S. Brown shows under a very mild condition

that the dual space of every commutative subalgebra of the operator algebra K(H) of

the compact operators on a Hilbert space H has the Schur property. Continuing this

work, in [8], A. Ülger characterizes the closed subspaces and subalgebras of K(H) whose

duals have the Schur property. The characterizations of C∗ -algebras whose duals have

the Schur property has been given by A. Lau and A. Ülger [3], and of commutative C∗ -

algebras whose duals have the Schur property by A. Pelczynski and Z. Semadeni [5]. J.

Diestel gave the connection of the Schur property with the Dunford-Pettis property [2].
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If two Banach spaces have the Schur property, then so do their injective and projective

tensor products [4], [6].

In this paper, we prove that if (Xα)α∈I are Banach spaces and X = (⊕α∈IXα)1

their l1 -sum, then the space X has the Schur property if each factor Xα has it. The

technique used to prove that `1 has the Schur property is the inspiration for most of the

results [7].

Our notation is quite standard. For any Banach space 〈X, ‖ ‖〉 , we denote its dual

by X∗ and its closed unit ball by X1 . The natural duality between X and X∗ is denoted

as 〈u, f〉 or as 〈f, u〉 .

2. Direct sums of spaces with the Schur property

Proposition Let (Xα)α∈I be Banach spaces and X = (⊕α∈IXα)1 be their l1 -sum. The

space X has the Schur property iff each factor Xα has it.

Proof. If a space has the Schur property, then any closed subspace of the space clearly

has the Schur property. Hence the implication is true. For the reverse implication,

first recall that a Banach space has the Schur property iff all of its closed separable

subspaces have the Schur property. So we can assume that each Xα is separable and take

I = N . Since X = (⊕k∈NXk)1 is separable, the closed unit ball of X∗ = (⊕k∈NX
∗
k )∞

under its w∗ -topology is metrizable ([9], II.A.15). It follows that a weakly null sequence

{an} in X is norm-null if any w∗ -null sequence {fn} in the unit ball of X∗ satisfies

limn→∞〈fn , an〉 = 0.

Let then {an}n∈N be a weakly null sequence in X . Then an = {bn,k}k∈N and

for all k ∈ N , the sequence {bn,k}n∈N is weakly null in Xk . As Xk has the Schur

property, limn→∞ ‖ bn,k ‖= 0, for all k ∈ N . On the other hand, let {fn}n∈N be

a w∗ -null sequence in the unit ball of X∗ . Each fn is of the form fn = {gn,k}k∈N ,

and for all k ∈ N , the sequence {gn,k} is w∗ -converging in X∗k to zero. To prove that

limn→∞〈fn , an〉 = 0, it is enough to show that the sum
∑

k∈N |〈gn,k, bn,k〉| converges to

zero uniformly in n ∈ N , i.e. supn∈N

∑
k>N |〈gn,k, bn,k〉| → 0, as N → ∞ . In other

words, we have to show that,
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∀ε > 0 ∃N ∈ N ∀n ∈ N
∑
k>N

|〈gn,k,bn,k〉| < ε (∗)

Assume (∗) is false. So, there is an ε > 0 such that,

∀NεN ∃n ∈ N
∑
k>N

|〈gn,k,bn,k〉| ≥ ε (∗∗)

Consider a sequence of positive numbers {δk} such that
∑∞

k=1 δk <
ε
4 . We are going to

construct two strictly increasing sequences {nk}k≥1 and {Nk}k≥0 such that

1)
∑

p>Nk
‖ bnk,p ‖≤ δk for each k ≥ 1,

2)
∑Nk−1

p=1 |〈gn,p, bnk−1,p〉| ≤ δk for each n ≥ nk ,

3)
∑

p>Nk−1
|〈gnk,p, bnk,p〉| ≥ ε .

Start with n1 = 1 and N0 = 0. Since an1 ∈ X , i.e.
∑

p∈N ‖ bn1,p ‖<∞ , we can

choose N1 such that
∑
p>N1

‖ bn1,p ‖≤ δ1 . Since {gn,1}n∈N,...,{gn,N1}n∈N converge to

zero in (X∗1 , w∗), . . . , (X∗N1
, w∗) respectively, there exists n̄2 > n1 such that

∀n ≥ n̄2,

N1∑
p=1

|〈gn,p, bn1,p〉| ≤ δ2.

By (∗∗), there exists n2 ≥ n̄2 such that

∑
p>N1

|〈gn2,p, bn2,p〉| ≥ ε.

Now let N2 > N1 such that
∑
p>N2

‖ bn2,p ‖≤ δ2 .

Since {gn,1}n∈N,...,{gn,N2}n∈N converge to zero in (X∗1 , w
∗), . . . , (X∗N2

, w∗)

respectively, there exists n̄3 > n2 such that

∀n ≥ n̄3,

N2∑
p=1

|〈gn,p, bn2,p〉| ≤ δ3.

Let n3 ≥ n̄3 and N3 > N2 be such that,
∑N2

p=1 |〈gn,p, bn2,p〉| ≤ δ3 and∑
p>N3

‖ bn3,p ‖≤ δ3 and so on . . .

Now let us choose a sequence {γp} such that
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for N0 + 1 ≤ p ≤ N1, γp〈gn1,p, bn1,p〉 = |〈gn1,p, bn1,p〉|
for N1 + 1 ≤ p ≤ N2, γp〈gn2,p, bn2,p〉 = |〈gn2,p, bn2,p〉|
for Nk−1 + 1 ≤ p ≤ Nk, γp〈gnk,p, bnk,p〉 = |〈gnk,p, bnk,p〉|

We shall define an element h in X∗ as

h = (γ1gn1,1, γ2gn1,2, . . . , γN1gn1,N1 , γN1+1gn2,N1+1, γN1+2gn2,N1+2, . . .

γN2gn2,N2 , γN2+1gn3,N2+1, γN2+2gn3,N2+2, . . .)

If we denote h as h = (hp)p≥1 , then we have ‖ h ‖= supp≥1 ‖ hp ‖≤ 1 and

〈h, ank〉 =
∞∑
p=1

〈hp, bnkp〉 =

k−1∑
j=1

Nj∑
p=Nj−1+1

γp〈gnj,pbnj , p〉+
Nk∑

p=Nk−1+1

|〈gnk,p, bnk,p〉|+
∞∑

p=Nk

γp〈gnk,p, bnk,p〉.

Using the inequalities 1), 2), 3), and ‖ gnk,p ‖≤ 1 we get:

|〈h, ank〉| ≥ −
k−1∑
j=1

δj +
Nk∑

p=Nk−1+1

|〈gnk,p, bnk,p〉| − δk

≥ −
k−1∑
j=1

δj +
∑

p>Nk−1

|〈gnk,p, bnk,p〉| −
∑

p≤Nk+1

|〈gnk,p, bnk,p〉| − δk

≥ −
k−1∑
j=1

δj +
∑

p>Nk−1

|〈gnk,p, bnk,p〉| − 2δk

≥ ε−
k−1∑
j=1

δj − 2δk

≥ ε− 2
∞∑
j=1

δj > 2
ε

2
.
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This contradicts the fact that {an} converges weakly to zero. Consequently, (∗)
holds, that is

lim
K→∞

sup
n∈N

K∑
k=1

|〈gn,k, bn,k〉| = 0.

It follows that

lim
n→∞

∞∑
k=1

|〈gn,k, bn,k〉| =
∞∑
k=1

lim
n→∞

|〈gn,k, bn,k〉|.

As ‖ bn,k ‖→ 0, |〈gnk, bnk〉| → 0, so that,

lim
n→∞

∞∑
k=1

|〈gn,k, bn,k〉| = 0.

As |〈fn, an〉| ≤
∑∞
k=1 |〈gn,kbn,k〉| , we conclude that limn→∞〈fn, an〉 = 0, and so

‖ an ‖ converges to zero. 2
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