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ON CERTAIN VARIETIES OF SEMIGROUPS

A. Tiefenbach

Abstract

In this paper we generalize the class of completely regular semigroups (unions

of groups) to the class of local monoids, that is the class of all semigroups where

the local subsemigroups aSa are local submonoids. The sublattice of this variety

(L(L(M)) covers another lattice isomorphic to the lattice of all bands ([x2 = x]).

Every bundvariety U has as image the variety Φ − U , which is the class of all

semigroups, where Φ is a U -congruence (aΦb ⇔ aSa = bSb). It is shown how one

can find the laws for Φ−U for a given bandvariety U . The laws for Φ−B are given

and it is shown that Φ−RB −L(G)L(V) := {S : aSa ∈ V∀a ∈ S}).

1. Preliminary

In 1940 Clifford ([3]) generalized the concept of groups by introducing relative inverses.

This class of semigroups became one of the most studied class of semigroups. Semigroups

which admit relative inverses are a union of groups and they are also known to be

completely regular. Regularity was introduced by von Neumann in ringtheory. A ring is

regular if the multiplication is such that one can find for every element a and element x

with a = axa. A semigroup is regular if all its elements are regular. If in addition, there

is an element x which commutes with a, that is a = axa and ax = xa, then the element

is completely regular and if all elements are completely regular, then the semigroup is

called completely regular.

Note that there are many examples of completely regular semigroups. Of course,

groups are completely regular as are idempotent semigroups, that is all semigroups with

a2 = a for every element a (lattices, semilattices, rectangular bands,...). The latter are

called bands and will play an important role in this paper.
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Since 1935, when Birkhoff ([1]) proved his famous result, namely that varieties are

equational classes, there has been the aim to find equations for a given veriety of algebras

and to show the relation between varieties by ordering them. This leads to sublattices of

varieties of a given variety.

It is clear, that some subclasses of semigroups are not varieties. For example, the

class of groups is not a variety of semigroups, because it is not closed under taking

subsemigroups (e.g. N is a subsemigroup of Z but not a group). Therefore a unary

operation (inversion) was introduced and the class of all completely regular semigroups

is described as a variety of type 2-1. This variety is denoted by CR and its lattice of

subvarieties is denoted by L(CR).

If a semigroup is complete, then of course every element lies in a subgroup of the

given semigroup. This property has been generalized to groupbond, which means that

the power of each element is in a subgroup. Here, we introduce a concept somewhat

in between. Using the fact, that for every element a there is an idemponent a0 (the

identity of the maximal subgroup a lies in), with aa0 = a0a = a, it is easy to see, that

the subsemigroups of the form aSa are monoids with a0 as its identity. In [4] I showed

that the class of all semigroups with this property (aSa being a monoid for every a) is a

variety of algebras of type 2-1. (For general information about universal algebra see [2].)

Now we pull our attention to this class and we will describe a sublattice of subvarieties

of this variety.

The class of all monoids is denoted byM, that of all groups by G.B denotes the class

of bands, RB all rectangular bands.

If ρ is a congruence of a semigroup S then we say that ρ is a V-congruence if the

factorsemigroup S/ρ is in V.

For a given variety V L(V) is the class of all semigroups such taht the local sub-

semigroups aSa are in V and U L(V) denotes the class of semigroup S
⋃
a∈S aSa is in

V.
On any semigroup S there is an equivalence relation Φ given by

aΦb⇔ aSa = bSb.

Not, that Φ is not a congruence in general.
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In the following ‘RESULT’ marks an outcome which is found in [?].

Semigroups in which Φ is a

Bandcongruence

As we mentioned above, Φ is not a congruence in general. But there are semigroups

where this is the case. By [4] Φ seperates idemponents, teherfore Φ is ε(aεb ⇔ a = b)

on bands and hence a congruence. If we demand Φ to be a bandcongruence (or B-

congruence) on a semigroup S, then a and a2 lie in the same Φ-class and so by [?]

(Fundamental lemma) all local subsemigroups aSa are monoids. As a conclusion we find

that all semigroups in which Φ is a B-congruence are members of L(M). Therefore the

following laws hold in such semigroups:

RESULT 1 A semigroup S is a member of L(M) if and only if there is an unary

operation ’*’ on S, such that the following laws hold in S:

x∗ = x∗xx∗ (1)

xx∗ = x∗x(=: x0) (2)

xyx = x0xyxx0 (3)

The following lemma shows a property of Φ, which holds in semigroups in L(M).

LEMMA 1 Let S be a member of L(M). Then a, a∗ and a◦ are all in one Φ class.

Proof. Let u ∈ aSa. Therefore we find an element s, with u = asa. By (3)

u = asa = a0asaa0 ∈ a0Sa0 . If u ∈ a0Sa0 , then we have u ∈ aa∗Sa0a ⊂ aSa. Be-

cause of (1) and (2) we have a∗Sa∗ = a0Sa0, which completes the proof. 2

Before we state the theorem, which describes the variety of semigroups with Φ as

bandcongruence (Φ − B), we will look for another classs. In this class Φ is the trivial

congruence, that is Φ is a T -congruence, where T = [x = y]. Of course this is the case if

Φ = (aωb∀a, b ∈ S). We have the following results:

RESULT 2 For a semigroup S the following conditions are equivalent:
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1. Φ = ω

2. there is an unary operation ’*’ on S such that

(a) x∗ = x∗xx∗

(b) xx∗ = x∗x(=: x0)

(c) (xyx)∗∗ = xyx

(d) x0 = y0

Now we can reformulate this result. If we denote the class of all semigroups with Φ as

U-congruence by Φ−U , then we have:

COROLLARY 1 UL(G) = Φ− T

Now we return to the main question, namly to describe Φ−B. We know, that this class

is a subclass of L(M). We have the following theorem:

THEOREM 1 A semigroup S is a member of Φ− B if and only if there is an unary

operation ’*’ on S, such that

1. S ∈ L(M)

2. (a0b0) = (ab)0 holds is S.

Proof. [⇒] We saw, that a semigroup in Φ − B must be a member of L(M). So it

remains to show that law (2) holds in S. By lemma 1 we know, that aΦa∗Φa0 holds.

Therefore we have:

(ab)0ΦabΦa0b0Φ(a0b0)0.

Here, we also make use of the condition that Φ is a congruence (aΦa0, bΦb0 ⇒ abΦ, a0b0).

But the elements (ab)0 and (a0b0)0 are idempotent elements; therefore they are equal.

[⇐] If a semigroup S is a member of L(M), then of course all local subsemigroups

are monoids and therefore we have aΦa2. We have to show, that under the assumption of

(2) Φ is a congruence. To do this we choose a, b ∈ S with aΦb. Note that a0 = b0. (Using
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lemma 1 again we have a0ΦaΦbΦb0 and Φ seperates idempotents.) Let c be an arbitrary

elements of S, then we compute:

acSac = (ac)0 · acSac · (ac)0 =

(2)
= (a0c0)0 · acSac · (a0c0)0 =

aΦb)
= (b0c0)0 · acSac · (b0c0)0 =

(2)
= (bc)0 · acSac · (bc)0 ⊂ bcSbc.

If we replace a by b and b by a, we find bcSbc ⊂ acSac. In a similar way, we find

caSca = cbScb. Therefore Φ is a congruence and together with aΦ a2∀a ∈ S we conclude

Φ is a band congruence. 2

3. A copy of L(M)

mmIt is clear that L(B) is a sublattice L(L(M)). We will show that there is a second

sublattice isomorphic to L(B). We already know two members of the sublattice: Φ − T
the smallest and Φ− B. the greatest element. Note that Φ−U is allways larger than U ,

if U ⊂ B. We will define an injective function from L(B) into [Φ− T ,Φ−B], the lattice

intervall between Φ − T and Φ−B.
If V is a variety, let Σ(V) be the set of identities, which are valid in V. Conversly,

if Σ is a set of identities, let [Σ] be the corresponding variety, that is the variety of all

semigroups in which the given identities hold.

With the following theorem we solve two questions. First we introduce the injective

function L(B) into [Φ−T ,Φ−B], which shows, that there is an isomorphic copy of L(B)

in L(L(M)), then we describe how laws for Φ − U can be found for a given bandvariety

U .

THEOREM 2 Let U be a bandvariety with Σ(U) as set of identities. For every identity

u ≈ v in Σ(U) build u0 ≈ v0 and denote by Σ(U)0 the set of all such identities. Then
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[Σ(Φ− B) ∪ Σ(U)0] defines the variety Φ −U . Moreover,

Θ : L(B) 7→ [Φ− T ,Φ−B] : UΘ = [Σ(Φ−B) ∪ Σ(U)0]

defines an injective function of L(B) into [Φ− T ,Φ−B].

Proof. Let U be a variety of bands. S is a member of UΘ. Of course, Φ is a band

congruence and the factor S/Φ satisfies the laws of U , because uΦu0 ≈ v0 Φ v. Therefore

UΦ ⊂ Φ− U .
Let u ≈ v be in Σ(U) and S a member of Φ−U . Then we have uΦ v and with lemma

1 we get u0 ΦuΦvΦ v0. So we find u0 ≈ v0 in Φ−U . That is, Φ−U ⊂ UΘ. We conclude,

that Φ −U = UΘ.
If UΘ = VΘ, then we know that Φ − U = Φ − V. But then every band in U must

also be in V and vice versa. So u = V. This shows that Θ is injective. In addition,

(U ∨ V)Θ = UΘ ∧ VΘ and (U ∧ V)Θ = UΘ ∧ VΘ. This completes the proof. 2

Now we want to apply this result to a special class of bands, the rectangular bands.

They are given by the identity a ≈ aba. They are given by the identity a ≈ aba. With Θ

we get a set of identies for Φ−RB :

[Φ−RB] = Σ(Φ− B] ∪ {a0 ≈ (aba)0}.

It turns out that Φ−RB can be described with other identities as well, which I found in

[4] in a different context.

THEOREM 3 Φ−RB = L(G)

Proof. In [4] we defined the laws for L(G) by

1. x∗ = x∗xx∗

2. xx∗ = x∗x

3. (xyx)∗∗ = xyx

4. x0 = (xyx)0

so these sets of identities differ only in the laws (xyx)∗∗ = xyx and xyx = x0xyxx0.

We show first that L(G) ⊂ Φ−RB:

xyx
(3)
= (xyx)∗∗

(1)
= (xyx)∗∗(xyx)∗(xyx)∗∗

(1)
= xyx(xyx)∗xyx
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Therefore

xyx = (xyx)0xyx(xyx)0 = x0xyxx0

Note that xyx(xyx)∗ = (xyx)∗xyx = (xyx)0

Now we show that Φ−RB ⊂ L(G) : New know that

((xyx)∗)0ΦxyxΦ(xyx)0.

Therefore we get ((xyx)∗)0 = (xyx)0. We conclude:

(xyx)∗∗ = (xyx)∗∗(xyx)∗(xyx)∗∗ =

= (xyx)∗∗(xyx)∗xyx(xyx)∗(xyx)∗∗ =

= ((xyx)∗)0xyx((xyx)∗)0 =

= (xyx)0xyx(xyx)0 = x0xyxx0 =

= xyx

This completes the proof. 2

We finish with some remarks on the Φ-classes of semigroups in Φ− B.)

THEOREM 4 Let S be a member of Φ− B. Then the

Ga := [a]Φ ∩ aSa

is a group and Ga = a[a]Φa.

Proof. Let class [a]Φ and aSa are subsemigroups. Their intersection is not emty

because at least a3 is in it. If b is in this, then b is regular, because b ∈ aSa = bSb.

Moreover, we can find an element x ∈ Ga with b = bxb. This is easy to see recalling

bSb = b2Sb2. Hence Ga is a regular semigroup, which contains only one idempokut, since

Φ seperates idempotents. Therefore Ga is a group.

To prove that a[a]Φa = Ga we have only to show, thatGa is a subset of a[a]Φa because

the converse is obvious. Choose an element from Ga, say u. Since u ∈ aSa too, we can

multiply it with a0 on both sides. We find

u = asa = a0asaa0 = a · a0sa0 · a.
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The element a0sa0isinaSa and

aΦu = asaΦa0sa0.

Hence Ga = a[a]Φa. 2

COROLLARY 2 If S is a member of Φ −B, then the Φ-classes are in Φ − T .

Proof. We know that a[a]Φa = aSa ∩ [a]Φ. Therefore if aΦb we have aSa = bSb and

[a]Φ = [b]Φ and hence a[a]Φb. 2
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