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Abstract

We study 3-dimensional isotropic submanifolds of a space form with low-dimensional

first normal space

1. Introduction

B. O’Neill [3] introduced first the notion of isotropic submanifold of a Riemannian
manifold. Many differential-geometrs have studied isotropic submanifolds of spheres. In

particular, L. Vrancken [10] proved recently the following results.

Proposition 1. Let M be a 3-dimensional constant isotropic submanifold in an n-
dimensional unit sphere S™(1). If the dimension of the first normal space of M is < 3 at
every point, then one of the following holds.

(1) M is totally geodesic in S™(1).

(2) There exists a totally geodesic S*(1) in S™(1) such that the image of M is (a
part of) a small hypersphere of S*(1).

(3) There exists a totally geodesic ST(1) in S™(1) such that the image of M is
congruent to (a part of ) R x S* (3) in S7(1).

* Work done under partial support by the Grant-in-Aid for Scientific Research No. 09440038, Japan
Ministry of Education.
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Proposition 2. A 3-dimensional minimal isotropic submanifold in S™ is of constant

curvature.

In the present paper, we will study a 3-dimensional isotropic submanifolds in an

n-dimensional space form M" (¢) of constant curvature ¢ and at first prove the following.

Theorem 1. Let M be a 3-dimensional isotropic submanifold in an n-dimensional space
form M(c) If the dimension of the first normal space of M is < 3 at every point, then

M is constant isotropic.

By Theorem 1, we have the following result which can be considered as a hyperbolic

version of Proposition 1.

Theorem 2. Let M be a 3-dimensional isotropic submanifold in an n-dimensional
hyperblic space H™. If the dimension of the first normal space of M is < 3 at every
point, then one of the following holds.

(1) M is totally geodesic in H™,

(2) There exists a totally geodesic H* in H™ such that M is a geodesic sphere, a

horosphere or a hypersphere in H* .

Moreover, we have the following generalization of Proposition 2.

Theorem 3. A 3-dimensional minimal isotropic submanifold in a space form is of

constant curvature.

2. Preliminaries

Let M (¢) be an n-dimensional space form of constant curvature ¢, that is, an
n-dimensional Riemannian manifold of cosntant curvature c¢. Let M be a 3-dimensional
submanifold in M (c). We denote by g (resp. §) the Riemannian metric of M (resp.
M"(c)). Let T,(M) be the tangent space of M at p € M and v,(M) be the normal
space to M at p € M. We denote by V (resp. @) the covariant differentiation on M
(resp. M"™(¢)) and V= the covariant differentiation on the normal bumdle v(M). Then,
for vector field X,Y tangent to M and a vector field £ normal to M , the formulas of

Gauss and Weingarten are
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{ VxY = VxY +o(X,Y), @)

Vx€=—Ae¢X + V%,

where o is the second fundamental form and A is the shape operator which are related
by o(X,Y) =g(AX,Y). We define the covariant derivative Vo of o by

(Vx0)(Y, Z) = Vx(o(Y, 2)) = o(VxY, Z) = o(Y,Vx Z).

Since the ambient space is of constant curvature ¢, the equations of Gauss, Codazzi and

Ricci are given respectively by

R(X,Y)Z =c{g(Y,2)X —g(X, 2)Y} + Agiv,2)X — As(x,2)Y, (2.2)
(Vxo)(Y,Z) = (Vyo)(X, Z), (2.3)
Q(RL(X, Y)fﬂ?) :g([Aﬁ’Aﬁ]Xa Y)a (2-4)

for tangent (rep. normal) vector fields X,Y and Z (resp. ¢ and 7)), where R (resp.
R*) denotes the Riemannian (resp. normal) curvature tensor of M .

We choose a local field of orthonormal frames e, €2, €3, €4, . . ., €, in M (¢) in such
a way that, restricted to M, eq, e2, e3 are tangent to M and consequently, the remaining
vectors are normal to M. Let @', @2, &3, &%, ..., @™ be the field of duat frames. We use
the following convention on the range of indices unless otherwise stated: A, B,C,...=
1,2,...,n0, 5, k,... = 1,2,3;,8,7,... = 4,5,...,n. We agree that repeated indices
under a summation sign without indication are summed over the respective range. Then

the structure equations of M (c) are given by

{ did = —SSoA NGB, oA +aB =0,

diog = =S A NG + ot NP,

Restricting these forms to M , we have the structure equations of M :
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W= 0, we =Y h%wl, h = he,
do' = —Ywirw, witw! =0, 26)
dwli = =YW AWh+Q QL= R WA, .
Ry, = c (64051 — 0105k) + > (h?kh?z - hﬁh}*k)
The last equation of (2.6) is nothing but the Gauss equation (2.2).
W§ = -~ AW}05 05 = I T Ry A .
By = X (hfkhfj - h?khfi) -

Then the second fundamental form ¢ may be expressed by

o(X,Y) = hiw (X)w! (Y)ea,

and the last equation of (2.7) is nothing but the Ricci equation (2.4). Define h{; (i, j, k =
1,2,3) by

D hgwk =dhg = > hpwl = > hGel + > hwh.

Then we have (Vxo)(Y,Z) = Zh%kwi(Y)wj(Z)wk(X) and h = hi 0,5,k =1,2,3,
which is nothing but the Codazzi equation (2.3).

At apoint p € M, let 1/; be the space spanned by all vectors o(u,v),u,v € T,(M),
which is called the first normal space of M at p.

The vector o(X,X) is called the normal curvature vector in the direction of
X € T,(M). M is said to be isotropic at p € M if || o(X,X) || / || X |? is
independent of the choice of X € T,(M) and, in particular, A-isotropic at p € M if
| o(X,X) || /|| X [|?>= X for all X € T,(M). M is said to be isotropic if M is isotropic
at every point. In such a case, \ is considered as a differentiable function on M and M
is said to be constant isotropic if A is constant on M. In particular, M is O-isotropic if
and only if it is totally geodesic.

If M is A-isotropic, then we have the following equations ([9]):

9(c(X, X),0(X,Y)) =0, (2.9)
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N —g(o(X, X),0(Y,Y)) = 2§(c(X,Y),0(X,Y)) =0, (2.10)
90X, X),0(Y,Z) +2§(c(X,Y),0(X, Z) =0, (2.11)
§o(X,Y),0(Z, W)+ g(c(X, Z),c(W,Y) + g(o(X,W),o(Y, Z) =0, (2.12)

for orthnormal X,Y, Z, W.
3. Proof of Theorems.

Let M be a 3-dimensional -isotropic submanifold in a space form M™(c).

Lemma 3.1. If dim 1/; < 3 at a pont p € M, then there exists an orthonormal basis

{e1,e2,e3} of T,(M) with respect to which one of the following holds:

0'(@1, @1) = 0(62; 62) = 0(635 63) = 0) (3 1)
oler,e2) = o(e1,e3) =o(ez,e3) =0,

o(ei,e1) = o(ez, e2) =o(es, e3) = Aey, (3.2)
o(er,ea) = oler,e3) =o(ea,e3) =0,

o(er,e1) = —o(ez,e2) = o(es,e3) = Aey,

oler,e2) = es, (3.3)
o(er,es) = 0,

o(ea,e3) = Aes,

where ey4, e5, e are orthonormal normal vectors at p and X\ # 0.

Proof. In the case dim 1/; =0 M is geodesic at p, hence (3.1) holds for an arbitrary
{e1,e2,e3}.

We next consider the case where dim l/; = 1. Since p is not a geodesic point,
A(p) # 0. For an arbitrary orthonormal basis {e1, ez, es} of T,(M), (2.9) implies that
o(e1, eq) is orthogonal to o(e1,e1) so that it follows from dim 1/; =1 and A(p) # 0 that

o(e1,ez) = 0. We similarly have o(ej,e3) = o(ez,e3) = 0. Then from (2.10) we have
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A2 = g(o(e1,e1),0(ea,e2)), which, together with the Cauchy-Schwarz inequlity, implies
o(e1,e1) = o(ez,e2). By the same way, we have o(e1,e1) = o(esz,e3). Then we have
(3.2).

Let S, = {(u,v)|u,v € T,(M), g(u,v) =0, || w||=|| v ||= 1} and consider a
function f on S, defined by

Flu,v) =] ou,v) ||*.

Since S is compact, we can choose (e1,e2) € S, at which f takes its maximum. We
choose furthermore eg € T,(M) in such a way that e, ez, e3 are orthonormal. Since f

takes its maximum at (e, ez), we have

d . d .
@f(el,coseeg + sinfez) = @f(cos fer + sinfeg, ez) =0

at # = 0 so that we get

g ) ) ) = 0
?(a(el e2),0(e1,es)) (3.4)

g(a(el’ 62)5 0(625 63)) =0.
We consider the case where dimvzl, = 2. If f = 0 holds identically, then we
easily see that (3.2) holds so that dimvzl, < 1. This contradicts the assumption that

dimv, = 2. Therefore f is not identically zero so that || o(e1,e2) [[# 0. Then
o(er,e1) and o(e1,ez) span v;. On the other hand, it follows from (2.9), (2.11) and
(3.4) that o(e1,e3) and o(ea,e3) are orthogonal to o(ey,e1). Since dimvzl, =2, we get
o(e1,e3) = o(ea, e3) = 0. This, together with (2.10) and the Cauchy-Schawarz inequality,
implies o(e1,e1) = o(ea,e2) = o(es,e3). Thus, using (2.10), we get || o(er,e2) ||= 0.
This is a contradiction so that this case does not occur.

Finnally, we consider the case where dim UII, = 3. It is clear that f is not identically
zero so that || o(e1,e2) ||# 0. It follows from (2.11) and (3.4) that

g(o(er,es),o(ea,e2)) = —2g(o(e1, e2),0(e2,e3)) =0,

which, together with (2.9), (2.11) and (3.4), implies that o(e1,e3) and o(eq,es) are

orthogonal to o(e1,e1), o(ez,ea) and o(er,ez). Suppose that o(er,er), o(ez,e2) and
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o(e1,e2) span l/;. Then o(eq,e3) = o(ea,e3) = 0. Using (2.10) and the Cuchy-Schwarz

inequality, we have

N = g(o(ei,e),o(es, e3)) +2G(o(es, e3), oleq, e3))
= glo(ei,ei),0(es,e3) SN2, (i=1,2),

so that o(ey,e1),0(e2,e2) and o(es,es) are proportional. This contradicts the as-
sumption that o(e1,e1),0(ez,e2) and o(er, e2) span 3-dimensional space l/;. Therefore
o(e1,e1),0(ea, ea) and o(er, e2) must be linearly dependent. Since o(eq, es) is orthogo-
nal to (e, e1) and o(ea, e2), it follows from (2.9) and (2.10) that o(e1,e1) = —o(ea, e2)
and || o(e1,ez) [|= A. Moreover, since dimw} = 3, it follows from (3.4) that there exist
orthonormal normal vectors &1, &s, &3 satisfying

oler,e1) = X, ol(eq,e2) = =N, o(er,e2) = Aa,

oler,e1) = p&s, olex,e3) = pés, oles, e3) = ady + B,

for constants 1, pe, @ and §. It follows from (2.9) ~ (2.11) that

BA+2u1p0 =0, 2u? = X% —a), 2u2 =X\ 4\

From the last two equations, we have p2 + u3 = A2. We may put p; = Asinf and ps =
Acos @ so that we have o = Acos26 and § = —Asin20. Put é; = (cosf)e; — (sinf)ez,
€2 = (sinf)e; +(cos B)ea, eq = (cos 20)&; —(sin 20)Ea, e5 = (sin 26)&1+(cos 20)Es, eg = 3.

Then &1, és, €3, €4, €5 and & satisfy (3.3). O

We see in the proof of Lemma 3.1 that if dimv, < 3, then dimw} = 0,1 or 3. Let

K denote the sectional curvature of M. Then we have

Lemma 3.2. (1) If dimv, =0, then K = c.
(2) If dimvy =1, then K =c+ \*.

(3) Ifdimyéz?), then ¢ — 222 S K S e+ A2,
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Proof. (1) is clear.

If dimv} = 1, then it follows from the equation of Gauss and (3.2) that

J(R(X, Y)Y, X) = c+ N

for an arbitrary orthnormal X and Y in T,(M).
If dimv, = 3, then it follows from the equation of gauss and (3.3) that, for an

arbitrary orthonormal X = Zf z;e; and Y = Zf Yi€i

g(R(X,Y)Y, X) = c — 2X% + 3X2(21y3 — w31)°-

Since 0 < (2193 — z3y1)? < 1, we have

c—2X2 < g(R(X, Y)Y, X) < c+ A2

Proof of Theorem 1. Let M, = {p € M|dimv, = k}. Then Lemma 3.1 implies that
k=0,1 or 3. It is clear that M3 is an open subset of M .

We first consider the case M3 # ¢. There exists a neighborhood U of a point
p € Mz such that U C M3 and we can take a local field of orthonormal frames
{e1,e2,€3,€4,€5,€6,...,en}t on U satisfing (3.3) in Lemma 3.1. With respect to such

a frame field, we have

T PR N T )
hly = A B3 =0 ({i.j} #{1.2}), (3.5)
My = A KG =0 ({0} £ {2.3))
hg = 0(a=Ti,j=1,2,3)
or equivalently
wi = Ml Wy = A, wy =’
W= W Wl = 2wl Wl =0, (3.5)
wi = 0, w§ =t Wi =,
Wi = wi=wi=0(=17).

It follows from (2.8) and (3.5)’ that
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4_ 1 4_ 2 5 _ 1
Wy = Wy, Wg = —Ws, Wg = W3- (3.6)

It follows from (3.5)’ that, for a 2 7,

0 = dwf=-ANw§ Aw! +wg Aw?)
0 = aw§=ANw§Aw? —wd Aw! —w§ Aw?)
0 = dw§=-Aw§ Aw?+wd Aw?),
which implies,
a 2 o 1 a 3
LU4 —faw ) w5 —faw ) wﬁ —faw 3 (37)
fala=1,8,...,n) are differentiable functions on U.

Using (2.6), (2.7), (3.5), (3.6) and (3.7), we have

2 p—
Lla=c (3.8)
Y f2+e—4x =0.
Therefore we have
222 = ¢, (3.9)

which implies that A = /¢/2 on U. Since M is connected, A = /¢/2 on M and
M3z = M. We have proved that if M3 # ¢, then dim 1/; = 3 every where on M and M

is constant isotropic.

We must now remark the following.

Remark. The case M3 # ¢ does not occur when ¢ < 0 by (3.9).

We next consider the case where Ms = ¢ and M; # ¢. Since My = ¢, M, is open
in M. (3.2) of Lemma 3.1 implies that M is umbilic on My so that My = M by the
connectedness of M, that is, M is a totally umbilic submanifold of M ™(c), and hence
M is constant isotropic.

We finally consider the case where My = M3 = ¢ and My # ¢, that is, My = M .
If this is the case, M is totally geodesic in M™(c) so that M is clearly constant isotropic.
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Thus we have proved Theorem 1. O

Now we review a hyperbolic space H™ and totally umbilic hypersurfaces of H™.
An n-dimensional hyperbolic space H" is an n-dimensional complete, connected and
simply connected Riemannian manifold of constant curvature -1. A model space of H"
is the half-space of an R™ given by H" = {z1,22,...,2,) € R"|z, > 0} with metric
g =2 dai/x;.

Let (R",g) be an n-dimensional Euclidean space with the Euclidean metric § and
its Riemannian connection V. A hypersurface M in (R"™,g) is said to be umbilic if, at
each point p € M,

9(Va€,Y) = rg(X,Y)
holds for all X,Y € T,(M) and a unit normal vector field ¢ where s is a constant on
M.
Consider a conformal change g = pg of metric and denote the Riemannian con-

nection of § by V. Then we have

ViV =VsV +5X,Y) (3.10)

for al X and Y, where S(X,Y) = QLM (Xpu)Y + (Yu)X —g(X,Y) grad p} and grad p
is calcuated with respect to the metric g, that is, X (u) = g(X, grad p). If M is umbilic
in (R",g), that is, §(Vx¢&,Y) = kg(X,Y), using (3.10), then at each point p € M we
have
AVx().Y) = 2"%\%‘%(){, Y), for all X,Y € T, (M),
which implies that M is also umbilic in (R"™,g).

The hyperbolic space H™ is considered an open submanifold of R™ with the metric
g of R".

Since umbilic hypersurface in (R", §) are (n—1)-planes or (n—1)-spheres, umbilic

hypersurfaces of H™ are therefore the intersections with H™ of (n—1)-planes or (n—1)-
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spheres of R™, and so totally umbilic hypersurfaces of H™ are the geodesic spheres, the
horospheres and the hyperspheres.
Proof of Theorem 2. Since H" is of negative curvature -1, as stated in Remark above,

Ms3 = ¢ so that the dimension of the first normal space of M is everywhere 0 or 1. Since

M is constant isotropic by Theorem 1, My =M or M1 =M.
If My = M is the case, then M is totally geodesic in H".

We consider next the case M; = M, as stated in the proof of Theorem 1, M is
totally umbilic in H™ | and hence M is a totally umbilic hypersurface in a 4-dimensional
hyperbolic space H*, which is totally geodesic in H™. Therefore, as stated above, M is
a geodesic sphere, a horosphere or a hypersphere of H*.

Proof of Theorem 3. We may assume that M has no geodesic points. It follows from
Lemma 3.1 and the minimality of M that the dimension of the first normal space of M
is 4 or 5.

Let {e1,e2,e3} be an orthonormal basis of T,(M) which satisfies (3.4). Since
o(e1, e3) is orthogonal to o(eq,e1,) and o(es,e3) from (2.9), o(eq, e3) is also orthogonal
to o(ea,e2) by the minimality of M. By (3.4), furthermore, o(e1,es3) is orthogonal to
o(e1, ez), too. By the same reason as above, o(es, e3) is orthogonal to o(e1,e1), o(ez, e1),

o(e1,ez) and o(es, ez). It follows from (2.9), (2.11) and the minimality that

2@(0’(61,63),0(62,63)) = —9(0'(61,62),0'(63,63))
= g(o(er,e2),0(e1,e1) + o(ea, e2))

= 0.

On the other hand, we see from (2.10) and the minimality of M that o(e1,e3) # 0 and
o(es,e3) #0.

Therefore we have orthonormal normal vector fields ey, e5, eg, e7, eg satisfing
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oler,er) = ey,
0(61,62) = M1€s,
o(e,e3) = pzes, (3.11)
0(62’ 63) = /’1/367)
olez,e2) = paes + pses,
Then we have
i+ pE =A% (3.12)
Moreover it follows from the minimality that o(es, e3) = —(A+p4)es — uses which implies
QMg + p2 4 p = 0. (3.13)

On the other hand, we see from (2.10) and (3.11) that

A2 — Ay — 22 =0, (3.14)
A% o Mg — 202 =0, (3.15)
N2 Ny ol A —2p2 = 0. (3.16)

It follows from (3.12), (3.13), (3.14), (3.15) and (3.16) that

A
M4 = —5 (317)
and
2 2 2 2 _ 32
W= pp = g = fi5 = A
We may assume without loss of generality that
V3
M1 = p2 = pi3 = fi5 = 7)\- (3.18)
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Using (2.2), (3.11), (3.17) and (3.18), we have

5
g(R(e1,e2)ez, e1) = g(R(e1,e3)ez)es, e1) = g(R(ez, e3)es, e2) = ¢ — ZAQ,

which implies that M is of constant curvature.
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