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AN IMPROPER INTEGRAL REPRESENTATION OF
LINNIK’S PROBABILITY DENSITIES

Azize (Bastıyalı) Hayfavi

Abstract

A representation of Linnik’s Probability Densities by a contour integral distinct

than the one given in [2] is obtained. An Improper integral representation of the

same density functions is derived. An investigation into the exceptional set is

achieved as well.

1. Introduction

In 1953 Linnik introduced the probability densities pα(x) defined in terms of its

characteristic functions

ϕα(t) =
1

1 + |t|α , 0 < α < 2,

that is,

pα(x) =
1
2π

∫ ∞
−∞

e−itxdt

1 + |t|α , 0 < α < 2.

In [1] and [2] the asymptotic behaviour of the density functions at 0 and ∞ was inves-

tigated and the expansions of pα(x) into convergent series were obtained for almost all

α’s. Furthermore, it was proved that the exceptional set is subset of Liouville numbers,
and one counter example was contructed to show that the exceptional set is not emty.

In this work, inspired from the contour representation given in [2], another counter rep-

resentation is given which leads to the representation of pα(x) by an improper integral.

Finally, by using Kronecher’s theorem, a deeper characterization of the exceptional set is
obtained.

Here we have to recall the representation of pα(x) as contour integral given in [2, p.

515] that was the inspiration point of my work. For δ > 0, α ∈ [δ, 2− δ],
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xpα(x) = Iδ(x, α)

=
1
2

∞∑
k=1

(−1)k+1xkα

Γ(kα) cos(π
2
kα)

+
1
α

∞∑
k=0

(−1)kx2k+1

Γ(2k + 1) sin π
α
(2k + 1)

(1.1)

where

Iδ(x, α) =
i

4α

∫
L(δ)

ez log x

Γ(z) sin( παz) cos(π2 z)

and L(δ) is the boundary of the region

G(δ) = {z : |z| > δ

2
and | arg z| < π

4
},

described in the positive direction.

2. Representation of Linnik’s Probability Densities by an Improper Integral

In this section we shall represent pα(x) by an improper integral. This representation

will shed a light to the probability densities pα(x) for irrational α’s and also to the

expectional set described by Theorem 9.5 in [2].

Consider δ > 0 such that α ∈ [δ, 2− δ] and the integral

Jδ(x; a) =
i

4α

∫
∧(δ)

ez log xdz

Γ(z) sin( παz) cos(π2 z)
, x > 0 (2.1)

where ∧(δ) is the boundary of the region

D(δ) = {z : |z| > δ

2
; | arg z| < π

2
}

The transition on the boundary is the usual positive direction.

Theorem 2.1. For any α ∈ (0, 2) we have the following representation:

xpα(x) = Jδ(x;α), x > 0 (2.2)

Here δ is such that α ∈ [δ, 2− δ].

To prove the theorem we need the following lemma.
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Lemma 2.2. For any fixed δ and M, 0 < δ < 1
2 , 1 < M < ∞, the integral Jδ(x;α)

converges absolutely and uniformly with respect to the both α ∈ [δ, 2− δ] and x ∈ [0,M ]

Proof. We know that∣∣∣sin(π
α
z
)∣∣∣ ≥ sinh

(π
α
|Imz|

)
,
∣∣∣cos

(π
2
z
)
≥ sinh

(π
2
|Imz|

)
and on the rays {z : |z| > δ

2
and arg z = ±π

2
} we have |Imz| ≥ δ

2
. Therefore both

functions sin(παz), cos(π2 z) are bounded from below on the contour ∧(δ) by a positive

constant, say C, not depending on α ∈ [δ, 2− δ].
Using the asymptotic expansion of log Γ(z) when | arg z| < π

2 [3, p. 252]

∣∣∣∣logΓ(z) −
(
z − 1

z

)
log z + z − 1

2
log 2π

∣∣∣∣ ≈
∣∣∣∣∣
∞∑
r=1

(−1)r−1Br
2r(2r− 1)z2r−1

∣∣∣∣∣
where Br’s are Bernoulli numbers, we obtain

log |Γ(z)| = (Rez) log |z| + O(|z|) as z → ∞ and z ∈ D(δ). Then the same bounds

used in Lemma 13.1 of [2] can be used here, that is, there are positive constants ε and B

such that

|Γ(z)| ≥ Beε|z| log |z|, z ∈ D(δ).

If x ∈ [0,M ], then integrand in (2.1) can be estimated as follows:∣∣∣∣ ez logx

Γ(z) sin( π
α
z) cos(π

2
z)

∣∣∣∣ ≤ exp(Rez) log x
C2Beε|z| log |z| ≤

exp(Rez) logM
C2Beε|z| log |z| (2.3)

z ∈ ∧(δ). This completes the proof of Lemma. 2

Proof of Theorem 2.1. First we prove the theorem for α = 2`
m . Since these rational

numbers are dense in R and since pα(x) is continuous with respect to α [1], then the

Theorem will follow for all α ∈ (0, 2). To Evaluate the integral Jδ(x;α), by use of the

Cauchy Residue theorem, we choose our contour of integration to be the boundary of the
region

D(δ) ∩ {z| |z| < Xs} denoted by `(δ, Xs).

Here the radius of the circle |z| = Xs choosen exactly like in [2 p. 514], that is, it contains

none of the zeros of sin(παz) and cos(π2 z).
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Now, we consider the integral

Jδ(x; a,Xs) =
i

4α

∮
`(δ,Xs)

ez logxdz

Γ(z) sin( π
α
z) cos(π

2
z)

=
i

4α
2πi

 ∑
α≤kα<Xs

(−1)kxkα

Γ(kα) cos(π2 kα)
+

2
π

∑
1≤2k+1<Xs

(−1)kX2k+1

Γ(2k + 1) sin π
α (2k + 1)


=

1
2

 ∑
α≤kα<Xs

(−1)k+1xkα

Γ(kα) cos(π2 kα)
+

1
α

∑
1≤2k+1<Xs

(−1)kX2k+1

Γ(2k + 1) sin π
α(2k + 1)

 (2.4)

On the other hand, let ∧(δ;Xs) = γ1 + γ2 + γ3 where γ1 = {z : z = ir, δ
2 ≤ r ≤ Xs},

γ2 = {z : |z| = δ
2 , | arg z| ≤ π

2 }, γ3 = {z : z = −ir, δ2 ≤ r ≤ Xs} and C(Xs) = {|z| =
Xs; | arg z| < π

2 }
Then we have

Jδ(x;α,Xs) =
i

4α

{∫
∧(δ;Xs )

+
∫
C(Xs)

}
ez log xdz

Γ(z) sin( παz) cos(π2 z)
. (2.5)

Using the inequality (2.3), we have∣∣∣∣ ez logx

Γ(z) sin( παz) cos(πz z)

∣∣∣∣ ≤ eXs logx

C2BeεXs logXs

and hence the integral along C(Xs) tends to zero as |z| → ∞.

Therefore

lim
|z|→∞

Jδ(x > α,Xs) = Jδ(x, α). (2.6)

So, we obtain

Jδ(x, α) =
1
2

∞∑
k=1

(−1)k+1xkα

Γ(kα) cos(π2 kα)
+

1
α

∞∑
k=0

(−1)kx2k+1

Γ(2k + 1) sin π
α (2k + 1)

, (2.7)

and by (1.1) is follows that

Jδ(x, α) = xpα(x) , x > 0
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Theorem 2.3. For any α ∈ (0, 2) we have the formula:

xpα(x) =
−i
4α

∫ ∞
−∞

eir logx

Γ(ir) sinh(παr) cosh(π2 r)
, x > 0

and the improper integral given above is absolutely convergent for all α ∈ (0, 2).

Proof. In (2.1) we replace ∧(δ) by its components: Let γ′1 = {z : |z| ≥ δ
2 , arg z =

π
2
}, γ2 = {z : |z| = δ

2
, | arg z| < π

2
}, γ′3 = {z : |z| ≥ δ

2
, arg z = −π

2
}. Then we have:

∫
∧(δ)

ez log xdz

Γ(z) sin( π
α
z) cos(π

2
z)

=

{∫
γ′1

+
∫
γ2

+
∫
γ′3

}
ez log xdz

Γ(z) sin( π
α
z) cos(π

2
z)

=
∫ δ

2

∞

eir log xidr

Γ(ir) sin( π
α
ir) cos(π

2
ir)

+
∫
γ2

ez logxdz

Γ(z) sin( π
α
z) cos(π

2
z)

+
∫ ∞
δ
2

e−ir log x(−idr)
Γ(−ir) sin(−π

α ir) cos(π2 ir)
(2.8)

Easily can be seen that lim
δ→0

∫
γ2

= 0. Therefore we have:

i

4α

{∫ 0

∞

eir log xdr

Γ(ir) sin( πα ir) cos(π2 ir)
+
∫ ∞

0

e−ir log x(−idr)
Γ(−ir) sin(−π

α ir) cos(π2 ir)

}
= pα(x)

Replace r by −r in the second integral to have

i

4α

{
−
∫ ∞

0

eir log xidr

Γ(ir) sin( πα ir) cos(π2 ir)
+
∫ −∞

0

eir log xidr

Γ(ir) sin( πα ir) cos(π2 ir)

}
= xpα(x)

and combining these two integrals we obtain

−i
4α

∫ ∞
−∞

eir logxdr

Γ(ir) sinh(παr) cosh(π2 r)
= xpα(x)

which proves the first part of the theorem.
To prove that the improper integral obtained is absolutely convergent, it is enough to

prove that
∫ ∞

0

eir logxdr

Γ(ir) sinh(παr) cosh(πg r)
is absolutely convergent
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We prove it into two steps. First for α ∈ (0, 1] and then for α ∈ (1, 2).

On the imaginary axis, i.e., if z = ir, r ∈ R, then |Γ(z)| =
√

π
sinh πr , see [3].

(i) Let α ∈ (0, 1], for such α’s

√
sinhπr
sinh π

αr
≤ 1. Then

∣∣∣∣ eir log x

Γ(ir) sinh(παr) cosh(π2 r)

∣∣∣∣ = 1√
π

∣∣∣∣∣
√
r
√

sinhπr√
sinh(π

α
r)
√

sin( π
α
r) sinh(π

2
r)

∣∣∣∣∣ ≥ C sech (
π

2
r)

since
∫ ∞

0

sech (
π

2
r)dr is convergent, means that the improper integral for α ∈ (0, 1] is

absolutely convergent.

(ii) Now we consider α ∈ (1, 2). Here π
2 <

π
α so this time: sinh(π2 r)

sinh(πα r)
< 1 and we have:

∣∣∣∣ eir log x

Γ(ir) sinh(παr) cosh π
2 r

∣∣∣∣ =

∣∣∣∣∣
√
r
√

sinπr√
π sinh π

αr cosh π
2 r

∣∣∣∣∣
<

√
2
√
r√

sinh(παr)
√

sinh(π2 r
< C

1√
cosh π

2 r
< C1e

−π4 r

which implies that the improper integral is convergent also for α ∈ (1, 2), and this com-

pleter the proof of the theorem 2

Corollary 2.4. If ε = arg Γ(z) for {z : arg z = ±π2 } and if z = ir where r is a non

zero real number, then for α ∈ (0, 2) the following formulae hold:

1
4α
√
π

∫ ∞
−∞

sin[r logx− ε]
√
r sinhπr

sinh π
αr cosh π

2 r
dr = xpα(x)

and ∫ ∞
−∞

cos[r logx− ε]
√
r sinhπr

sinh π
αr cosh π

2 r
dr = 0

Proof. For the branch of Γ(z) we consider, on the imaginery axis we have Γ(z) =√
π

r sinh πr e
iε. Replacing Γ(z), by its value on the imaginary axis in the formula given by

240



(BASTIYALI) HAYFAVI

theorem 2.3 and then separating the real and imaginary parts the results of the corollary
follow. 2

Remark: To prove the Theorem 9.5. in [2], we had constructed a transcendental

number α to show that the exceptional set that both series in (2.7) diverge is not empty.

Now ve give another result about this exceptional set:

Theorem 2.5. The transcendental numbers β ∈ (0, 2) that the series on the right hand

side of (2.7) are divergent are dense in the interval (0,1).

Proof. As a consequence of Theorem 2.3 we have for x > 0 and α ∈ (0, 2) :

−i
4α

∫ ∞
−∞

eir log xdr

Γ(ir) sinh(παr) cosh(π2 r)
=

1
2

∞∑
k=1

(−1)k+1xkα

Γ(kα) cos(π2 kα)

+
1
α

∞∑
k=0

(−1)kx2k+1

Γ(2k + 1) sin π
α (2k + i)

(2.9)

Using Kronecker’s Theorem [4, p. 375], if α is an irrational number, then the numbers

αn + m where m, n ∈ Z are dense in R. We know that the improper integral in (2.9)

is absolutely convergent for all α ∈ (0, 2). Let α be the same transcendental number of

theorem 9.5 in [2, p. 520], i.e., α =
∑∞

j=1
1
qj

where q1 = 2 and qs+1 = (qs!)2qs, s = 1, 2, . . .

We define ps such that ps
qs

=
∑s
j=1

1
qj

.

Then we have 0 < α− ps
qs
< 2

(qs!)2qs
or

0 < αqs − ps <
2

(qs!)2
(2.10)

Using again the Kronecker’s Theorem [4, p. 376], numbers of the form {αn} where α

is an irrational number is dense in (0,1). Let β = αn, n ∈ Z. Using the inequality (2.10)

we have

βqs − nps <
2n

(qs!)2

We can choose n to be an odd integer, ps also is an odd integer so that∣∣∣cos(
π

2
βqs)

∣∣∣ = ∣∣∣sin π
2

(βqs − nps)
∣∣∣ ≤ nπ

(qs!)2
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Consider the general term of the first series on the right hand side of (2.9) with index

k = qs and parameter β:

∣∣∣∣ xβqs

Γ(βqs) cos(π
2
βqs)

∣∣∣∣ > |x|βqs(qs!)2

Γ(qs + 1)nπ
=
|x|βqs(qs!)

nπ
→∞

as s→∞. Therefore the set of all α’s that the first series on the right hand side of (2.8)

is divergent is a dense subset of (0,1). Since the improper integral on the left hand side of

(2.9) is absolutely convergent, the second series must be divergent for the same irrational

numbers. This completes the proof of the theorem. 2
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