Tr. J. of Mathematics 22 (1998), 47 - 52. © TÜBİTAK

A BERRY-ESSEEN BOUND FOR EMPTY BOXES STATISTIC ON THE SCHEME AN ALLOCATIONS OF SEVERAL TYPE BALLS*

S.A. Mirakhmedov & O. Saidova

Abstract

A Berry-Esseen bound for the number of empty cells in the scheme of independent and random allocation of balls of s type into different cells is obtained.

Key words and phrases: Central limit theorem, empty cells, random allocations.

Introduction

Let n_1 balls be of first type and n_2 be balls of a second type, etc., and n_s balls of sTh.type be distributed independently and randomly into N different cells, in such a way that each ball of ith type has probability p_{ik} of landing into kth cell, $p_{i1} + \cdots + p_{iN} = 1$, $i = 1, \ldots, s$. Let $\mu_0(s) = \mu_0(s, N, n_1, \ldots, n_s)$ be a number of empty cells after all n_1, \ldots, n_s losses. If s = 1 we deal with multinomial scheme of an allocation and $\mu_0(1)$ is a well-known empty box test statistic (see, for example, Koichin, Sevastjanov, Chistjacov (1976)). For example, the random variable (r.v.) $\mu_0(s)$ used as test statistic for verification of homogeneity hypothesis.

Here we get a bound for remainder in the central limit theorem for $\mu_0(s)$. Our theorem generalizes the result of Quine and Robinson (1982).

Result. We consider the case that s is fixed and $N = N(n_1, ..., n_s)$ is growing as one of $n_1, ..., n_s$ increases. Suppose that for all j = 1, ..., s and k = 1, ..., N

$$Np_{jk} \le C_0$$
 and $n_i \le \exp\{C_1N\}.$ (1)

Here and in what follows, $C_j, C_j(\cdot)$ are positive constants not dependent on $N, n_1, \ldots, n_{\epsilon}$. Denote

$$\lambda_{jm} = n_j p_{jm}, \ \lambda_m^{(\epsilon)} = \lambda_{1m} + \cdots \lambda_{sm}, \ \alpha_i = n_i/N,$$

^{*} Research supported by TUBITAK, TURKEY. We are grateful to Hacettepe University, whose hospitality we enjoyed while working on part of this paper.

$$A_N(s) = \sum_{m=1}^N \exp\{-\lambda_m\}, \quad a_e = \frac{1}{n_e} \sum_{m=1}^N \lambda_{em} \exp\{-\lambda_m\},$$

$$\sigma_N^2 = \sum_{m=1}^N \left[\exp\{-\lambda_m\} (1 - \exp\{-\lambda_m\}) - \sum_{j=1}^s \alpha_j a_j^2 \right],$$

$$\omega_N^{(s)}(x) = \left| P\left\{ \frac{\mu_0(s) - A_N(s)}{\sigma_N(s)} < x \right\} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\left\{ -\frac{u^2}{2} \right\} \right|.$$

Theorem. Under condition (1) for arbitrary $\nu \geq 0$ there exist $C(s, C_0, \nu)$ such that

$$\omega_N^{(s)}(x) \le \frac{C(s, C_0, \nu)}{1 + |x|^{\nu}} \left[\frac{1}{\sigma_N(s)} + \sum_{j=1}^s \frac{1}{\sqrt{n_j}} \right].$$

Corollary 1. Under condition (1) there exist C(s) > 0 such that

$$\sup_{x} \omega_N^{(s)}(x) \le C(s) \left[\frac{1}{\sigma_N(s)} + \sum_{j=1}^s \frac{1}{\sqrt{n_j}} \right].$$

Corollary 2. Suppose that $N, n_1, \ldots, n_s \to \infty$ in such a way that $\sigma_N(s) \to \infty$ and (1) is hold true. Then $\mu_0(s)$ is asymptotically normal.

The result of Quine and Robinson (1982) is $\omega_N^{(1)}(x) \leq C\sigma_N^{-1}(1)$, which also follows from our theorem since $\sigma_N^2(1) \leq n_1$: but in the general case we have $\sigma_N^2(s) \leq n_1 + \cdots + n_s$. **Proof.** It is clear that

$$\mu_0(s) = \sum_{m=1}^{N} f(\eta_{1m}, \dots, \eta_{sm}),$$

where η_{ik} is a number of balls of *i*th type in *m*th cell after $n_1, \ldots, n_{\epsilon}$ tosses, and $f(0, \ldots, 0) = 1$ and $f(y_1, \ldots, y_s) = 0$ if $y_i > 0$ for some $i = 1, \ldots, s$.

Let ζ_{jm} be a Poisson with parameter $\lambda_{jm}, \zeta_m^{(s)} = (\zeta_{1m}, \dots, \zeta_{sm})$, then

$$g_m(\zeta_m^{(s)}) = f(\zeta_m^{(s)}) - \exp\{-\lambda_m\} + \sum_{i=1}^s a_i(\zeta_{im} - \lambda_{im}).$$

From Corollary 2 of Mirakhmedov (1987) we get

$$\omega_N^{(s)}(x) \le \frac{C(s,k)}{1+|x|^k} \left[\beta_{3N} + \beta_{k+2,N} + \sum_{i=1}^s \frac{1}{\sqrt{n_i}} \right]$$
 (2)

for any integer k > 0, where

$$\beta_{kN} = \frac{1}{\sigma_N^k(s)} \sum_{m=1}^N E|g_m(\zeta_m^{(s)})|^k.$$

We remark that

$$\sigma_N^2(s) = \sum_{m=1}^N Dg_m(\zeta_m^{(s)}).$$

We rewrite $\sigma_N^2(s)$ and $g_m(\zeta_m^{(s)})$ as follows:

$$\sigma_N^2(s) = \sum_{m=1}^N \left[1 - (1 + \lambda_m) \exp\{-\lambda_m\}\right] \exp\{-\lambda_m\} + \sum_{m=1}^N \sum_{j=1}^s \lambda_{jm} (\exp\{-\lambda_m\} - a_j)^2, \quad (3)$$

$$g_m(\zeta_m^{(s)}) = f(\zeta_m^{(s)}) + \exp\{-\lambda_m\} \sum_{i=1}^s \zeta_{im} - (1+\lambda_m) \exp\{-\lambda_m\} + \sum_{i=1}^s (a_i - \exp\{-\lambda_m\})(\zeta_{im} - \lambda_{im}).$$

Then for arbitrary b > 1 we get

$$E|g_{m}(\zeta_{m}^{(s)})|^{b} \leq 2^{b-1}E \left| f(\zeta_{m}^{(s)}) + \exp\{-\lambda_{m}\} \sum_{i=1}^{s} \zeta_{im} - (1+\lambda_{m}) \exp\{-\lambda_{m}\} \right|^{b}$$

$$+(2s)^{b-1} \sum_{i=1}^{s} |a_{i} - \exp\{-\lambda_{m}\}|^{b} E|\zeta_{im} - \lambda_{m}|^{b}$$

$$\equiv 2^{b-1}\Delta_{1m} + (2s)^{b-1}\Delta_{2m}. \tag{4}$$

The r.v. $f(\zeta_m^{(s)})$ has the same distribution as r.v. $\varphi(\zeta_{1m} + \cdots + \zeta_{sm})$ where $\varphi(0) = 1$ and $\varphi(x) = 0$ if x > 0. Thus

$$\Delta_{1m} = E \left| \varphi(\zeta_{1m} + \dots + \zeta_{sm}) + \exp\{-\lambda_m\} \sum_{i=1}^{s} -(1 + \lambda_m) \exp\{-\lambda_m\} \right|^{b} \\
\leq \exp\{-\lambda_m\} (1 - \exp\{-\lambda_m\} (1 + \lambda_m))^{b} + \lambda_m^{b+1} \exp\{-(b-1)\lambda_m\} \\
+ \sum_{i=2}^{\infty} |j - 1 - \lambda_m|^{b} \exp\{-(b+1)\lambda_m\} \frac{\lambda_m^{j}}{j!} \equiv \Delta'_{1m} + \Delta''_{1m} + \Delta'''_{1m} \tag{5}$$

because $\zeta_{1m} + \cdots + \zeta_{sm}$ is Poisson with parameter λ_m . Since $(1+u)e^{-u} < 1$ for u > 0 and (3), we have

$$\sum_{m=1}^{N} \Delta'_{1m} \le \sum \exp\{-\lambda_m\} (1 - \exp\{-\lambda_m\} (1 + \lambda_m)) \le \sigma_N^2(s).$$
 (6)

From $u^2 e^{-2u} \le 1$ and $\frac{1}{2}u^2 e^{-u} \le 1 - (1+u)e^{-u}$, we get

$$\sum_{m=1}^{N} \Delta_{1m}^{"} \le \sum_{m=1}^{N} \lambda_{m}^{2} \exp\{-2\lambda_{m}\} \le 2 \sum_{m=1}^{N} (1 - (1 + \lambda_{m})) \exp\{-\lambda_{m}\} \le 2\sigma_{N}^{2}(s).$$
 (7)

Let b be odd, $\sum_{\lambda_m \leq 1}$ and $\sum_{\lambda_m \geq 1}$ be a sum on m such that $\lambda_m \leq 1$ and $\lambda_m \geq 1$, correspondingly. We have

$$\sum_{\lambda_{m} \leq 1} \Delta_{1m}^{""} = \sum_{\lambda_{m} \leq 1} \exp\{-b\lambda_{m}\} [E(\zeta_{1m} + \dots + \zeta_{sm} - 1 - \lambda_{m})^{b} + (-1)^{b} (1 + \lambda_{m})^{b} \exp\{-\lambda_{m}\}] + (-1)^{b+1}_{m} \exp\{-\lambda_{m}\},$$

if $\lambda_m \leq 1$ then

$$E(\zeta_{1m} + \dots + \zeta_{sm} - 1 - \lambda_m)^b = \sum_{i=1}^b C_b^i (-1)^i E(\zeta_{1m} + \dots + \zeta_{sm})^{b-1} \le C(b) \lambda_m^2 - 1 - (b-1) \lambda_m.$$

Therefore we get

$$\sum_{\lambda_{m} \leq 1} \Delta_{1m}^{""} \leq \sum_{\lambda_{m} \leq 1} \exp\{-b\lambda_{m}\} (C(b)\lambda_{m}^{2} - (1 + (b - 1)\lambda_{m})) (1 - (1 + \lambda_{m}) \exp\{-\lambda_{m}\})$$

$$\leq C(b) \sum_{m=1}^{N} \lambda_{m}^{2} \exp\{-2\lambda_{m}\} \leq C(b)\sigma_{N}^{2}(s). \tag{8}$$

Since $(1 + \lambda_m)^b \le 1 + (b-1)\lambda_m + C(b)\lambda_m^2$, if $\lambda_m \le 1$. Using well known inequality between moments of r.v., we obtain:

$$\sum_{\lambda_m \ge 1} \Delta_{1m}^{\prime\prime\prime} \le \sum_{\lambda_m \ge 1} \exp\{-b\lambda_m\} E |\zeta_{1m} + \dots + \zeta_{sm}|^b$$

$$\le \sum_{\lambda_m \ge 1} (E(\zeta_{1m} + \dots + \zeta_{sm} - 1 - \lambda_m)^{b+1})^{b/b+1} \exp\{-b\lambda_m\}$$

$$\le C(b) \sum_{\lambda_m \ge 1} \lambda_m^{b/2} \exp\{-b\lambda_m\} \le C(b) \sum_{\lambda_m \ge 1} \lambda_m^2 \exp\{-2\lambda_m\} \le C(b)\sigma_N^2(s).(9)$$

From (5), (6), (7), (8) and (9) follows

$$\sum_{m=1}^{N} \Delta_{1m} \le C(b)\sigma_N^2(s). \tag{10}$$

Let us estimate $\sum_{m=1}^{N} \Delta_{2m}$. We have

$$\sum_{m=1}^{N} |a_k| - \exp\{-\lambda_m\}|^b E|\zeta_{km} - \lambda_{km}|^b \le \sum_{\lambda_{km} < 1} (a_k - \exp\{-\lambda_m\})^b E|\zeta_{km} - \lambda_m|^b + \sum_{m=1}^{N} |a_k|^m + \sum_{k=1}^{N} |a_k|^m + \sum$$

$$\sum_{\lambda_{km} \geq 1} (a_k - \lambda_{km})^b E[\zeta_{km} - \lambda_{km})^{b+1}]^{b/b+1} \leq C(b) \left[\sum_{\lambda_{km} \leq 1} (a_k - \exp\{-\lambda_m\})^2 \lambda_{km} + \sum_{\lambda_{km} > 1, \alpha_k < 1} (a_k - \exp\{-\lambda_m\})^2 \lambda_{km}^{b/2} + \sum_{\lambda_{km} > 1, \alpha_k \geq 1} |a_k - \exp\{-\lambda_m\}|^b \lambda_{km}^{b/2} \right] \leq C(b) \sigma_N^2(s) + \sum_{\lambda_{km} > 1, \alpha_k > 1} |a_k - \exp\{-\lambda_m\}|^b \lambda_{km}^{b/2}.$$
(11)

Here, we used that $\lambda_{km} \leq C_0 \alpha_k, \ldots, a_k \leq 1$ and $\lambda_{km} \leq C_0$ if $\alpha_k \leq 1$, $E|\zeta_{km} - \lambda_{km}|^i \leq C(i)\lambda_{km}$.

Let $\lambda_{km} > 1$, $\alpha_k > 1$. Since $a_k \leq \alpha_k^{-1}$ we have

$$|a_k - \exp\{-\lambda_m\}|\lambda_m^{1/2} \le a_k \lambda_m^{1/2} + 1 \le \sqrt{C_0/\alpha_k} + 1 \le \sqrt{C_0} + 1.$$

Therefore

$$\sum_{\substack{\lambda_{km} > 1, \alpha_k > 1 \\ \leq (\sqrt{C_0} + 1)^{b-2} \sigma_N^2(s)}} (|a_k - \exp\{-\lambda_m\}| \lambda_{km}^{1/2})^b \leq (\sqrt{C_0} + 1)^{b-2} \Sigma (a_k - \exp\{-\lambda_m\})^2 \lambda_{km}$$

From this and (11)

$$\sum_{m=1}^{N} \Delta_{2m} \le C(b)\sigma_N^2(s). \tag{12}$$

Thus if b is odd, then by (4), (10), (11) it follows that

$$\sum_{m=1}^{N} E|g_m(\zeta_m^{(s)})|^b \le C(b)\sigma_N^2(s).$$
 (13)

If b is odd then the theorem follows from (2) and (13). If b is even then the theorem follows from the well-known inequality between Ljapunov's ratio and (2), (13). Proof of theorem is complete.

References

- [1] Mirakhmedov, S.A., An approximations of multiple randomized divisible statistics by means of Normal distribution, *Theory Probabl. and Appl.*, **32** 761-771 (1987).
- [2] Quine, M.P., Robinson, J., A Berry-Esseen bound for an occupancy problem, $Ann.\ Probabl.,\ {\bf 10},\ 663-671,\ 1982.$
- [3] Kolchin, V.F., Sevastjanov, B.V., Chistjakov, V.P., Random allocations, Nauka, Moskov, 1976.

Serzod A. MIRAKHMEDOV & Odila SAIDOVA Department of Mathematics Tashkent State University 700095, Tashkent - UZBEKISTAN Received 13.05.1996