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ON THE ACTION OF STEENROD OPERATIONS ON
POLYNOMIAL ALGEBRAS

Ismet Karaca

Abstract

Let A be the mod-p Steenrod Algebra. Let p be an odd prime number and
Z, = Z/pZ. Let Ps = Zp|z1,22,...,71]. A polynomial N € P, is said to be hit
if it is in the image of the action A ® Ps — Ps. In [10] for p = 2, Wood showed
that if a(d + s) > s then every polynomial of degree d in P; is hit where a(d + s)
denotes the number of ones in the binary expansion of d + s. Latter in [6] Monks
extended a result of Wood to determine a new family of hit polynomials in Ps. In
this paper we are interested in determining the image of the action A ® P; — Ps.
So our results which determine a new family of hit polynomials in Ps for odd prime
numbers generalize cononical antiautaomorphism of formulas of Davis [2], Gallant
[3] and Monks [6].

1. Introduction

Let A be a mod-p Steenrod algebra. Let p be an odd prime number and Z, = Z/pZ.
Let Py = Zp[z1,%2,...,2s]. A polynomial N € Py is said to be hit if it is in the image
of the action A ® P; — Ps, i.e. N € AP, where A is the augmentation ideal of A, i.e.
N =%, P'M; for some M; € P,.

We are interested in determining the image of the aciton A ® Ps — Ps : the space of
elements in P, that are hit by positive dimensional Steenrod operations. In [10], when
p = 2 Wood showed that if a(d 4+ s) > s then every polynomial of degree d in P; is
hit where a(d + s) denotes the number of ones in the binary expansion of d + s. In [9]
Singer generalized Wood’s result conjectured by Peterson and identified a larger class of
hit polynomials. In [8] Silverman generalized a result of Wood and proved a conjecture
of Singer. In [6] Monks extended a result of Wood to determine a new family of hit
polynomials in P;.

In order to state our result we need to introduce some notation. Form > 0and t > 1,

m—1

y(m) = p", (1)

1=
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where v:(0) = 0. A sequence of nonnegative integers L = (I1,la,...,1,) is called a t-
decomposition of a positive integer m if m = Y"1 | v (l;). We define u¢(m) to be the
number of terms in the shortest ¢-decomposition of m, i.e.

p(m) = min{n[m = Z (L)} (2)

The following results are odd-primary analogues of results of Monks [6].

Theorem 1.1.  Let H and K be polynomials of degree 2h, 2k respectively. If h < p(k),
then H P?" is hit.

Let Pi(r1,72,...,7m) be the Milnor basis element P(si, Sa,. .., Stm) where sp; = 74
and s; = 0 if ¢ does not divide j. In particular P;(p®) = P¢ and Pi(n) = P(n).
If R = (r1,72,...,7m) is a sequence of nonnegative integers, we will write P;(R)

for the corresponding Milnor basis element. The degree of P;(R) is 2|R|; where |R|; =
Yoo (" —1)r; and the excess of P,(R) is 2e(R) where e(R) = Y .o, r;. For a fixed ¢ let

B be the vector subspace of A with basis the set of all P,(R). For P§ € B, write T} for
(=1)®*x(P7) where x denotes the canonical antiautomorphism of By.

Theorem 1.2. Fors,t>1,0<k<s, and k <t,
P(p* —p*) = P((p — p* ) Pil(p — 1)p*~2) -+ Pu(p — 1)p") (3)

2. Some Tools

In this section we list some properties of the Steenrod algebra we need to prove
Theorem 1.1 and Theorem 1.2

Lemma 2.1. Form >0,

pe(m) = min{e(P;(R)).
Proof. Theseis a 1 —1 correspondence between Milnor basis elements P;(R) satisfying
|R|: = (p* — 1) and t-representations of m given by

Py(R) «—m = Zﬁ'%(i)-

Under this correspondence, e(P;(R)) corresponds to the number ). r; which is used in
determining p:(m). The lemma follows immediately from this observation. O

Following lemma is analoguos to [6, Lemma 2.1].
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Lemma 2.2. Forallt,m > 1, u(m) < ’;:T_llul(m).

Proof.  There exists positive integers I1,la, ..., [, (m) that such

p1(m)

m= Y m(). (4)

i=1

For each [; let I; = tq; + r; where ¢; and r; are non-negative integers and x < r; < t.

Hu(m) pi(m) pi(m) tgi+ri—1 u1(m)
m = Z ,71([1) = Z ’71(tq1 +Ti) = Z Z p — Z q15(17—i-r7 _
=t i=1 i=1 i=1
p1(m) 1
= Z — ( tqi+mi 1)
i=1 p o 1 - 1)
_ ltf) pt — pri pli — 1 N P — 1 pt(q“"l) 1
p—1 pt -1 p—1 pt -1
i=1
ptz;—pl pa(m) p;lzl p1(m)
- Z 7e(gi) + Z Ye(gi +1)
j=1 =1 j=1 i=1

This yields a t-decomposition of m Wlth — ul( ) terms. This completes the proof. O

Lemma 2.3. If m < p' then pui(m) =m.

Proof. Let m < p'. Then m < p' < p'+1 = (2). The only possible t-decomposition
of m is a sequence of m ones because ; is strictly increasing O

Let L = (I3,lz,...,1,) be any sequence of nonnegative integers. Define
n
L=l (5)
i=1

v(L) = max l; (6)

and
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Yi(L) =Y ylli). (7)

Suppose that Iy > Iy > --- > [, and that |L| > 1. For this sequence, we can define

6([’) = (lllalIQa"'al;L)a (8)

where

l{: li—l iflizlland(li+17éllori=n)
? l; if otherwise.
It is easy to verify that

Ll > >l

6(L)| = |Z] ~ 1
v(8(L)) = v(L)

and

Yi(8(L)) = (L) — p (D),

We can define 6" to be the r-fold composition of § with itself (6° is the identity function)
for 0 <r < |L|. Let Fr = (f1, f2,--., fjz|) be the sequence given by

fi = Yi(6 (L)) = Yy (6'(L)). 9)

Since 0IL1(L) = (0,0,...,0) and Y;(§/£I(L)) =0,

L]
|[Fol =Y IYa(8 (L) = Ya(8'(L))] = Ye(6°(L)) — Yo (6'F(L)) (10)

i=1

=Yi(L)

Lemma 2.4. Ifm < (p— 1)p®, then p(m) < pe(m+ (p — 1)p®).

Proof.  Assume that L = (I1,ls,...,1,) is a t-decomposition of m + (p — 1)p*. Without
lass of generality we can also assume that I; > lo > ---[,. By definiton we have
Y:(L) = m+ (p — 1)p®, and so by (10)
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||

D o fi=m+(p—1)p°.
=0

So Fi is a non-increasing sequence whose power is m+ (p—1)p®. Hence we need following
lemma: O

Lemma 2.5. If (p— 1)p® < a < p**1, Y0 p% = a, and p® > p*2 > - > p® then

1=

there is a q € {1,...,7} such that > 1_, p® = (p— 1)p°.

Proof. Ifa = (p-— 1)p® then we can take ¢ = 7 and we are done. Assume that
(p — 1)p® < a. Since p**! > a, we have p® > p™ > p”2 ... > pXat1. Let g be the largest
integer such that Z;}:l p” < (p—1)p®. Then (p — 1)p’ — 3=1 p® = 0 mod pXett and

(p—1)p° < 23:11 p® and hence >°7_, p% = (p — 1)p°. O
For Lemma 2.5 there exists ¢ € {1,...,|L[} such that >-7_, fi = (p — 1)p®. Thus

> ML) = Yi(6'(L))] = Ya(L) + Yr(59(L))

=m+ (p— 1)p° —Yi(54(L)) = (p — 1)p°

and hence Y;(07(L)) = m. Therefore pi(m) < ps(m + (p — 1)p*) 0
Using this result we can prove the following lemma:

Lemma 2.6. we(p® — pF) > (p — 1)p* where s, t, and k are any integers such that
s;,t>1,0<k<s, and k <t.

Proof. We will prove this by induction on s. If s = k + 1 then u(p® — p*) =
we((p — 1)p*) = (p — 1)p* by Lemma 2.3 Assume that it is true for s — 1. Then by
Lemma 2.4, puy(p® — p*) = pu((p — 1)p*~ " + p*~1 + pF) > e (p*~! — p*). By inductive
hypothesis, p;(p*~" —p*) > (p — 1)p". Hence p,(p* — p*) > (p — 1)p*. O

The Proof of the Main results

The key idea in Wood’s argument is that for any u,w € P; and any 6 € A, we have

u - w = Bu - m module hit elements. In particular if e(f) > deg(u), then u - w is hit.
Using this We will prove Theorem 1.1. We accomplish this with the aid of the following
lemma.
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Lemma 3.7. If N € P is any element of degree 2k, then for any t > 1,

P,(k)-N = N?' (11)

Proof. We will prove this by induction on the number of variables in N. Suppose

N = qﬁlx}” gl

i2 in

Let n = 1. Then

Py(k)a* = (XF)pt. (12)
So the result holds for n = 1. Assume that the result holds for all monomials comprised of
less than n variables. Let Ny = x?ll x:-f .- -x?:j so that N = le?;'. Letyp: A— AR A

be the diagonal map of A. Then ¥(P;(k)) = S-F_ P(k — i) ® P,(i). So

k
Pu(k)-N = Z Py(k —i)Ny - Py(i)a)"
1=0
hn

= Py(k — i)Ny - Py(i)2}™ + Py(k — hyy )Ny - Py(hn)zlm

’L.W,

<.

-1
i=0
k
+ Y Pk —i)Ny - Poi)al.

i=h,+1

Since e(P;(k—i)) > 1 deg(N1), X1 ! Pi(k—i)Ny-Py(i)afn = 0. Similarly 5, | Pi(k—

7

i) Ny - Pt(i)x?: = 0 because e(P;(i)) > %deg(x?:). By induction, we have

— ; Nl = NP (2P )pt
Pi(k) - N = Pi(hn — )Ny - Py(i)x/" = Ny (x;")p"

’L.W,

Hence we obtain P(k) - N = NPt, O

Wood’s argument shows that HKP* = ISt(k)H - K module hit elements. Hence if
e(P;(k)) > h, then P,(k)H = 0 and hence HK?" is hit. Therefore it remains to show that
e(P;(k)) = pe(k). The following limma was prowed by Gallant [3, Proposition 1].
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Lemma 3.8.

Py(k) = ZPt(R),
R
where |R|; = (p' — 1)k.
By Lemma 2.1, p; (k) is exactly the minimum excess of the element P;(R) where |R|; =
(p* — 1)k. On the other hand, P;(k) is the summand of all P,(R) where |R|; = (p' — 1)k,
By Lemma 3.8. Hence e(P;(k)) = p1;(k). This completes the proof of Theorem 1.1

Proof of Theorem 1.2. We will prove this by induction on s. Suppose that s = k+1.
Then since for k < ¢ the only nonzero element P;(R) of B; with |R|; = (p* —1)(p—1) - p*

is P((p — 1)p*), ﬁt(ps —pF) = ﬁt((p —1)p*) = P((P — 1) - p*). This proves theorem for
s=k+1.

Assume that it is true for s — 1. Using induction hypothesis and [3, Corollary 1.a], we
have

Pi((p— Dp* HP((p— 1)p*~2) - P((p — 1)p* = Po((p — Dp* M P(p* ™" — p)

_Z< Z ptié ) >Pt(R).

where the sum is taken over all R such that |R|; = (p — 1)(p® — p¥). Since P,(p* — p*) is
the sum of all P;(R) where |R|; = (p' — 1)(p® — pY), it is sufficient to show that

ity
( (p—zi)];)t"‘zs_l > =1 mod p.

By Lemma 2.1 and Lemma 2.6, Y, r; > p(p® — p*) > (p — 1)p*. For s > k and t > 1 we
have

(p—1)E"—p )+ -1 ") =" - 1) >0.

Hence

> Pt =Y " —1)r Zm_ PP =D =)+ (=1t = (p - )ptH!

i i

On the other hand,
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B =D ri <3 0" = Dri= (" = D0" ).

So >, 7 < p* — p*. Using this inequality, we have

S optri= Y (@ m+z7n_ Pt =1 —p") +p° - p*
i

i
<pstt

it
Hence ( 2P > = 1 mod p by Lucas’s theorem [4]. This completes the proof.

(p— Dpttet
|
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