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ON THE THEORY OF A CERTAIN CLASS OF
QUADRATIC PENCILS OF MATRICES AND ITS
APPLICATIONS

G.Sh. Guseinov & G. Oturang

Abstract

This paper is devoted to the study of the properties of eigenvalues and eigenvec-
tors of quadratic pencil A2C' — AR — J, where C is a positive diagonal matrix, R is
an arbitrary real diagonal matrix, J is a ”tridiagonal” real symmetric and positive
matrix. The obtained results are then used to solve the corresponding system of
differential equations with boundary and initial conditions.
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1. Introduction

Let us consider the system of linear differential equations

d2'LL t dun t
Cn d:z( ) = Tp —dt( ) + Ap—1Up—1 (t) + bnun (t) + anun+1(t)
n=0,1,...,N—-1; t>0, )

with the boundary conditions

u_1(t) =0, un(t)+huy_1(t)=0, t>0, (2)

and the initial conditions
Un(0) = fn, dugt(o) = gn, n=0,1,...,N =1, (3)
where {u,(t)}Y__, is a desired solution; f,,gn(n = 0,1,...,N — 1) are given complex

numbers; the coefficients ¢y, ry, an, b, of the equation (1), the number % in the boundary
conditions (2} is real, and

an #0, ¢, >0 (4)

*AMS subject classification number: 15A03
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by — |ag| > 0, by_1 —han_1 —lan—2| >0
bp — |an—1| — lan| > 0, n=12...,N—-2 (5)

with strict inequality in at least one relation of (5).
For a possible application of a physical character of problem (1), (2), (3) we refer
to {1, pp.16-21] where the case 7, = 0 is considered.

If {u,(t)}N__, is a solution of the problem (1), (2), (3), then taking the boundary
conditions (2) into account, we have

d2un(t dug(t
‘o dt02( ) _ TO% + bouo(t) + aoui(t),
dzun(t) dun(t)
nm = Ta gt Onatn1 () + bntin(t) + antna (1),
n = 172’...,N_2a
d*un_1(t dun (¢
cN71_2[t21*() = rN—lNd—tl() +ay—zun—2(t) + (by—1 — hay-1)un—1(t). (6)

Consequently, finding a solution {u,(t)}Y__, of the problem (1), (2), (3) is equivalent
to the problem of finding a solution {u,(t)})-; of system (6) that satisfies the initial

conditions (3).

Setting
uo(t) fo go
u1(t) fi g1
u(t) = , f=1 .| 9= :
un-—1(t) fvo1 gN-1
Co 0 0 0 To 0 0 0
0 C1 0 0 0 1 0 0
C=|0 0 e 0 |, R=|0 0 nr 0
0 0 O CN_1 0 0 O TN-1
(b a 0 0 0 0 0 0
ap bl aj 0 0 0 0 0
J= 0 ai bQ (1-2 0 0 0 0 ’ (7)
0 0 0 0 o --- anN_3 bN,Q anN_2
L 0 0 0 0 o --- 0 anN—2 bN—l - haN_l

we can write problem (6), (3) in the form

d?u(t) _ Rdu(t)

¢ dt? dt

+ Ju(t), 0<t< o0, (8)
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ax =Y (9)

Thus the initial boundary value problem (1), (2), (3) is equivalent to the initial
value problem (8), (9), that is, if {u,(t)}__, is a solution of problem (1), (2), (3),
then the vector-function u(t) = {u,(t)}Y-) form a solution of the problem (8), (9),
and, conversely, if u(t) = {un(t)}) =) is a solution of (8), (9) then {u,(t)}N__,, where
u_1(t) =0, un(t) = —hun_1(t), form a solution of the problem (1), (2), (3).

It is well known that the problem of kind (8), (9) which can be written in the form
of a first-order system (see Section 4 of the present paper) has a unique solution (see,
for example, [2, Chapter 1]). Consequently, we can state that the boundary initial value
problem (1), (2), (3) has a unique solution {u,(#)}Y__,. Our main problem in this paper
is to investigate the structure of the solution, that is, to give an effective formula for it.
To this end we shall investigate the solution of the problem (8), (9).

We seek a nontrivial solution of equation (8) which has the form
u(t) = e -y, (10)

where ) is a complex constant, and y is a constant vector (an element of the space CV)
which depends upon A and which we desire to be nontrivial, that is, not equal to 0, the
null vector. Substituting (10) into (8), we obtain

(MC—-AR-J)y=0 (11)

Definition. The complex number Ao is said to be an eigenvalue of equation (11) (or of
quadratic pencil \2C — AR — J) if there exists a nonzero vector y € CN satisfying the
equation (11) for X = Ao. This vector y is called an eigenvector of the equation (11)
corresponding to the eigenvalue \g.

Thus the vector-function (10) is a nontrival solution of the equation (8) if and only
if A is an eigenvalue and y is the corresponding eigenvector of the equation (11).

Let us denote by Ay,..., Ay, all the eigenvalues of equation (11), and by y L ytm)
the corresponding eigenvectors. Then by the linearity of equation (11) the vector-function

m
u(t) = ajedit .yl (12)
j=1
will also be a solution of equation (8), where ay,...,a,, are arbitrary constants (inde-

pendent of ¢). Now we must try to choose the constants «; so that (12) will also satisfy
the initial conditions (9):

Yoy =f Y apy) =g (13)
j=1 =1
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Definition. If for the arbitrary vectors f,g € CN the unique ezpansions (13) hold
with the same coefficients a;(3 = 1,...,m) in both expansions, then we shall say that
the eigenvectors y .. .. y(™) of equation (11) form a two-fold basis in CN . (For a
generalization of this definition see [3, Chapter 5, §9].)

Thus the problem (8), (9) will for Vf, g € CV have a solution of the form (12), where
Aty ..., Am are the eigenvalues and y, ..., y{™) are the corresponding eigenvectors of
equation (11), if the vectors y1,..., 4™ form a two-fold basis in space CN .

In the next section we shall show that the eigenvectors of the equation (11) form a
two-fold basis in CV . We shall also find the formulas for the coefficients a; in (13).

2. Investigation of the Eigenvalue Problem

We consider the eigenvalue problem (11), where the matrices C, R and J have the
form (7) and the conditions (4), (5) are satisfied.
We will investigate the equation (11) in the space

CV={y={w}¥ iymeC, n=0,1,... ,N—1}

with the inner product
N-1

(972) = Z YnZn, (14)

n=0

where the bar over a number denotes complex conjugation.

The matrices C, R and J defined by (7) are selfadjoint, that is each of them satisfies
the relation:

(Ty,2) = (y,Tz), V¥ yzeCV. (15)
Moreover, matrices C and J are positive:
(Cy,y) >0, (Jy,y) >0, VyeCV, y#o. (16)

The positiveness of C is obvious. The positiveness of J follows from the conditions (5)
by virtue of the following relation: for the any real vector y = {y, (])V “LeRN,

(Jy,y) = (bo—laol)ys + (bv—1 — han—1 — lan—2)yx
N-2 N-2
+ (bn — lan—1] = lan|)yn + Z |an—1](Yn-1 £ yn)?,
n=1 n=1

where the & sign in (y,—1 £ yn)2 is taken to be that of a,_;.
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Lemma 1. Each eigenvalue A of the equation (11) is real, non-zero and have the same
sign as

2X(Cy,y) — (Ry,y) # 0, (17)

where y is an eigenvector corresponding to A.

Proof. Let the complex number A be an eigenvalue of the equation (11) and y =
{yn}éV ~1 0 be a corresponding eigenvector. By forming the inner product of both sides
of the equation (11) with the vector y, we get

A (Cy,y) — MRy, y) — (Jy,y) = 0. (18)

The number (Ry, y) is real by virtue of the property (15) of R, and (Cy,y) >0, (Jy,y) >
0 by virtue of the positiveness of matrices C' and J. Therefore, A # 0 and the discrimi-
nant of the quadratic equation (18) with respect to A is positive:

(Ry,y)* + 4(Cy,y)(Jy,y) > 0.

Consequently, the eigenvalue A as a root of (18) will be real. Besides,

A2A(Cy,y) — (Ry,y)] = A (Cy,y) + (Jy,y) > 0

and hence follows the last statement of the lemma. O

Lemma 2. The eigenvectors y and z of equation (11) corresponding to the distinct
eigenvalues A and p respectively satisfy the ”orthogonality” relations:

(A+u)(Cy,2) — (Ry, 2) = 0, (19)
AM(Cy, 2) + (Jy,z) =0 (20)
AM(Ry, z) + (A + p)(Jy,z) = 0. (21)

Proof. Multiplying in the sense of the inner product the first of equalities
MNCy—ARy—Jy=0, p’Cz—pRz—Jz=0

from the right by z and the second one from the left by y, and using the reality of
eigenvalues and property (15) of the matrices C, R, and J, we get

)‘Z(Cyzz) - /\(Ryvz) - (Jyvz) = 0,
1 (Cy,z) — w(Ry, z) — (Jy, 2)

Eliminating from these two equalities in turn (Jy, z), (Ry, 2), and (Cy, z) we obtain re-
spectively the ”orthogonality” relations indicated in the lemma. |
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To investigate further properties of the eigenvalues and eigenvectors of the equation
(11) we note that the equation (11) is equivalent to the problem of finding a vector
{yn}N__, that satisfies the boundary value problem

(N2 — Mo = bp)Yn — Gp1Yn-1 — GnYne1 =0, n=0,1,...,N—1, (22)

y1=0, yn+hyn—1=0. (23)

We define the solution {¢,(A)}Y__; of the equaticn (22) satisfying the initial conditions
w_1(A) =0, @o(A)=1. (24)

Using (24), we can recursively find ¢,()\), n=1,2,..., N, from the equation (22) and
©n(A) will be a polynomial in A of degree 2n.
N

It is easy to see that every solution {y,(A)}n__; of the equation (22) satisfying
the initial condition y_; = 0 is equal to {¢,(A)})__; up to a constant factor:

Yn(A) = apn (), n=-1,0,1,...,N. (25)
Hence
yn(A) + hyn—1(A) = afen(A) + hon—1(X)].

Consequently setting
X(A) = on(A) + hon-1(}), (26)

we have the following lemma.

Lemma 3. Eigenvalues of the equation (11) are roots of a recursively constructed
polynomial x(A). To each eigenvalue Ag corresponds up to a constant factor, a single

eigenvector, which can be taken to be the vector {©, (o) 5;01.

Lemma 4. There exist 2N distinct eigenvalues.

Proof. Since ¢,(\) for each n is a polynomial of degree 2n, by (26) x(\) will be a
polynomial of degree 2N . Therefore, x(A) has 2N roots. Now we show that the roots
of x()A) are simple. Hence the statement of the lemma will follow.

Differentiating the equation
()‘2Cn = Arn = bn)on(A) = @n10n-1(A) = @npny1(A) =0
with respect to A, we get

(2Acn = T)n(A) + (N2en = Arp = bp)@n(A) — An—1Pn-1(A) = @nPni1(A) =0,
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where the dot over the function indicates the derivative with respect to A. Multiplying
the first equation by ¢,(\) and the second one by ¢, (), and subtracting the left and
right members of the resulting equations, we get

(2Xen — Tn)@i()‘) +an
[Pr—1(N)Fn(A) = Pn—1(N)Pn(A)] = anlon(N)@nt1(A) = @n(AN)pni1(N)] = 0.

Summing the last equation for the values n = 0,1,..., K (K < N — 1) and using the
initial condition (24), we get

K
ax[pr(Ner1(N) = e (Ner 1 (V)] = D (2Xen — 10) 0% (V). (27)

n=0

Let us set x(Ag) = 0. In particular, setting in (27), K = N —1 and A = )y, and using
the equality ¢n(Ag) = —hepn_1(Xo), which follows from the condition x(Ag) = 0, we

have
N-1

an—1X(Xo)en—1(Xo) = Z (2X0cn — Tn) @2 (Xo)- (28)

n=0

The right-hand side of (28) is not zero by virtue of Lemma 1. Consequently x(\g) # 0,
that is the root Ag of the function x(\) is simple. O

Lemma 5. Half of the eigenvalues are positive and the other half negative.

Proof. By Lemma 3 the eigenvalues of equation (11) coincide with the roots of the
function x(A). On the other hand the eigenvalues of the equation (11) coincide with the
roots of the polynomial det(A\2C — AR — J). Since both x(\) and det(A\2C — AR — J)
are the polynomials in A of degree 2N, hence it follows that they differ by at most a
constant factor from each other. This factor is easily found. To this end it suffices to
compare the coefficients of A2V in these polynomials. This yields

det(\2C — AR — J) = agay ---an—1 - X(\).
Now we consider the auxiliary eigenvalue problem
[NC — XeR — J(e)]y =0 (29)

depending on parameter € € [0,1], where the matrix J(¢) is obtained from the matrix
J by means of multiplication its all nondiagonal elements by €. It is obvious that the
analog of the conditions (4) and (5) is fulfilled for all € € (0,1].
The eigenvalues of the equation (29) are nonzero for all € € [0, 1] and coincide with
the roots of the polynomial
det[A\2C — XeR — J(¢)]. (30)
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For each € € (0,1] the roots of the polynomial (30) are distinct by virtue of Lemma 4,
being applicable to the equation (29). Denote them by

Ar(e) < Ag(e) < -+ < Aan(€)-

Since Aj(e) (j =1,...,2N) are the eigenvalues of a matrix of order 2V being continuous
in € € [0,1] (see Section 4 of the present paper) they will be continuous functions
of € (see [4, Chapter 2, §5]). Note that at the point ¢ = 0 we do not state that
A1(€), Aa(e), ..., Aan(e) are distinct.

Now we show that for all values of € € (0,1] half of \;j(e)(j = 1,...,2N) are
negative and the other half positive:

Aj(€) <0 (G=1,...,N), X(e)>0 (j=N+1,...,2N).

Hence, in particular, for ¢ = 1 the statement of the lemma will follow.
Assume the contrary. Let for some value of € € (0, 1]

A(€) <0 (j=1,...,K), X(e)>0 (j=K+1,...,2N) (31)

where 0 < K <2N and K # N (for K =0 all the eigenvalues \j(¢) are understood to
be positive, and for K = 2N negative). Since A;j(e) (5 =1,...,2N) are different from
zero and are distinct and continuous functions for all values of € € (0, 1], the inequalities
(31) will be valid for all values of € € (0,1]. Passing in (31) to the limit as € — 0, we get

A(0)<0 (=1,...,K), X(0)>0 (j=K+1,...,2N).

But this is contradiction, since for € = 0 the roots of the polynomial (30) are the numbers

b; by_1 — han_
£,/2 (j=0,1,...,N—2), +,[N-t7haN-1
Cj CN-1
half of which are negative and the other half positive. Thus the lemma is proved. O

We can summarize the results obtained above in the following theorem:

Theorem 1. The equation (11) has precisely 2N real distinct eigenvalues \; (j =
1,...,2N). These eigenvalues are different from zero; half of them are negative and the
other half positive. To each eigenvalue X\; corresponds, up to constant factor, a single
eigenvector which can be taken to be o) = {p,(\)}NZL, where {pa( NI, is a
solution of the equation (22) satisfying the initial conditions (24).

Now we discuss the basisness of the eigenvectors of equation (11).
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Theorem 2. FEigenvectors of the equation (11) form a two-fold basis in CN , that is if
oW, oN) are eigenvectors, then the vectors P; = [cp(j),/\jap(j)] e CN x CN form a
basis for CV x CN .

Proof. Consider the space CN x CN of vectors denoted by [y, 2], where y,z € CN .
Define on this space the bilinear form by the formula

([ya Z]v [U, U]> = (Cya 'U) + (sz u) - (Ryv u)v (32)

where (-, -) in the right-hand side denotes the inner product in CV defined by the formula
(14).

Note that the formula (32) does not define an inner product in the space CN x CV |
since for the nonzero vector [y, z] the number ([y, 2], [y, 2]) is not necessarily positive (it
may also be zero or negative).

In view of Lemma 2 the vectors

¢; = [V, NeP],  j=1,...,2N

are orthogonal with respect to bilinear form (-,-):

Further, it is remarkable that, by virtue of Lemma 1,
pi = (85, 85) = 2X5(Co™, 00)) — (RpY), D)) 3£ 0 (34)

and the sign of p; coincide with the sign of A;,
Sign p; = Sign ;. (35)

From (33) and (34) it follows that the vectors @1, ..., @2 are linearly independent
in space CV x CV . Since the number of them is equal to 2N and dim(CN x CV) = 2N,
they form a basis for the space CV x CV. The theorem is proved. O

By Theorem 2, for the arbitrary vector [f, g] belonging to CN x CN we have the
unique expansion

2N 2N . 2N )
[fvg] = Zaj¢j7 i'e-7 f = Zaj(p(J)7 g = ZajAjSO(J)a (36)
Cj=1 j=1 j=1
and 1 1
o = —(If,9).¢5) = — {N(CL oY) + (Ca, ) - (RE 6D}, (37)
Pj Pj

where p; is defined by formula (34).
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Remark. To prove Theorem 2 we could also use the orthogonality relation (20) or (21).
In the case of (20) we must use on CV x CV the bilinear form

([, 2, [w, v}) = (Jy,u) + (Cz,v), (38)
and in the case of (21)
(v, 2], [u, v]) = (Jy, v) + (J2,u) + (Rz,v). (39)

The bilinear form (38), in contrast to the bilinear form (32), is an inner product in
CN x CN. But in connection with the formulas (34) and (37) for p; and a; the bilinear
form (32) is more advantages, since both the matrices C and R presented in it are
diagonal.

Theorem 3. Eigenvectors corresponding to negative (or positive) eigenvalues form a
basis for CV .

Proof. We may assume that
A< <AN<O< AN < - <‘/\2N.
Let z = {z,}5' ' € CN and
(z,¥)=0, j=1,...,N. (40)

It suffices for us to establish that then z = 0.
Applying (36) and (37) to the vectors f =0 and g = C~1z we have

ON 2N
0= e, Cle=3 vre?, (41)
j=1 Jj=1
where 1
v = p—(z,w(”% j=1,...,2N. (42)
J

From (42), in view of (40), we have v; =0, j=1,..., N, and therefore, (41) takes the
form:

2N 2N
0= Z th(ah C 1y = Z ’Yj)\j<,0(])~
Jj=N+1 j=N+1

Multiplying the last equalities by z in the sense of inner product in CV , we get

2N 2N
0=> %eW,2)= > oyl (43)
J=N+1 J=N+1
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2N 2N
(C'z2) = Y uNeD )= Y il (44)
j=N+1 j=N+1

By virtue of (35) we have p; >0, j=N+1,...,2N. Consequently from (43) it follows
that v; =0, j =N +1,...,2N, and from (44) we get (C~'2,2) = 0. Hence z = 0,

since
N-1

-1 _ i 2
(C'z,2) = ; cn|zn| .

The theorem is proved. : O

3. Application

Here we give some applications of the results obtained above.

Theorem 4. The boundary initial value problem (1), (2), (3) has a unique solution
{un(£)}N__, that is representable in the form

Za] onl( n=-1,0,1,...,N, (45)

in which A1,...,Asn are the eigenvalues of the equation (11), and {pn(N)}IN__, is the

solution of equation (22) satisfying the initial conditions (24). Further, the coeﬂiczents
a1,...,aan are defined by formulae (37), (34).

Proof of the theorem follows from the explanation given in the Introduction and
from the Theorem 2.

Theorem 5. For an arbitrary vector f = {fn év 1 e CV the boundary value problem
(1), (2) has a unique solution {u,(t)}N__, that satisfies conditions

un(0) = fo, tlim u,(t) =0, n=0,1,...,N—1. (46)
—00
This solution has the form

= Bierteo,(N\), n=-1,0,1,...,N, 47
J J

where A1, ..., AN are the negative eigenvalues of equation (11), and coefficients B1,. .., BN
are defined with the help of expansion

N
= 8o", (48)
j=1 -
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in which ©9) = {p,(\) )
Proof. By Theorem 3 the vectors o1, ... o) form a basis in CV. Therefore, for a
given vector f = {fn év 1 € CN there exist the numbers Gy, ..., 3y uniquely determined
by the expansion formula (48). Hence we define u,(¢) by the formula (47). Then
{un(t)})__; will be a solution of the problem (1), (2) satisfying the first condition of
(46) in view of (48), and the second one in view of that Aj,...,An are negative.

For proof of uniqueness of solution we note that by virtue of Theorem 4 the general
solution of problem (1), (2) has the representation

2N
un(t) = Z’yje)‘jtgon(Aj), n=-1,0,1,...,N, (49)

j=1
where ~;,...,v2n are arbitrary constant numbers. Let (49) satisfies conditions (46).
Then from the second condition of (46) it follows that it must be yy41 =+ =y2n =0,

since A; >0 for j = N +1,...,2N and are distinct. Further, setting ¢ = 0 in (49) and
using the first condition of (46) and (48) we get v; = 5;, j=1,...,N. The theorem is
proved. O

Remark. As it follows from (47), for the solution of problem (1), (2), (46) we have
un (t) = 0(e %), n=-1,01,...,N

as t — oo, where 6 = min{|A1],...,|An]|}-

4. Appendix

The equation (11) is equivalent to the pair of equations

z = Ay,
C iRz +C 'Jy = Az
Therefore, the eigenvalues of the equation (11) coincide with the eigenvalues of the matrix
, 0 I
4=ty i)
acting in the space CV x CV . Moreover, the vector
o= V] reem

is an eigenvector of the matrix A (Az = Az) if and only if z = Ay and y is an
eigenvector of the equation (11) corresponding to the eigenvalue A. Consequently, the
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two-fold basisness in CV of the eigenvectors of the equation (11) coincides with the
ordinary basisness of the eigenvectors of the matrix A in CV x CN .

Thus the analysis given in Section 2 is, in fact, the analysis of the matrix A.

If we define on CV x CN the bilinear form by the formula

z v

(2] )= cvor+ o - @, (50)

where (-, ) denotes the inner product in C¥ defined by the formula (14), then A becomes
a selfadjoint with respect to this bilinear form:

o[ [2h =2 o] v 2] (e

The bilinear form (50) defines on C¥ x CN only an indefinite inner product: the

value <[1Z/}7 [‘ZP

is not in general positive. But this value is real, and nonzero if is an eigenvector of

Y
z
the matrix A, the sign of this number coincide with the sign of eigenvalue A (see (35)).

Y

Ay and

Therefore, using (51) we can in the standard way show that the eigenvectors

[ :Z of the matrix A corresponding to the eigenvalues A\ # pu are orthogonal with

15 ] L=

It is easily seen that this relation coincide with the relation (19).
Finally, we note that the problem (8), (9) is equivalent to the problem
dw(t)

—L = Aw(t < 2
o w(t), 0<t< oo, (52)

respect to bilinear form (-,-):

where
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is a solution of the problem (52), (53), and, conversely, if w(t) =
of (52), (53) then v(t) = «'(t) and u(t) is a solution of (8), (9).

u(t)
v(t)

] is a solution
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