Tr. J. of Mathematics
21 (1997) , 423 — 430.
© TUBITAK

EXTENSION AND SEPARATION OF VECTOR VALUED
FUNCTIONS

Zafer Ercan

Abstract

It is proved that: If X is a paracompact Hausdorff space and E is a Fréchet
lattice then (X, F)} has the separation property. This is employed to extend some

varies of functions that are known for spaces of Banach lattice valued functions.

1. Preliminaries:

For a topological space X and a topological Riesz E, we denote by

C(X,E)={f:f is a continuous function from X into E}

Co(X,E)={f:f € C(K,E) and for a given neighborhoad U of E there exists a
compact subset K of X such that f(X \ K)cC U}

COUX,E)={f:f€C(K,E) and f(X) is order bounded in E}

C"(X,E)=A{f:f€C(X,E) and f(X) is relatively compact in E}.

For a set X, S(X) will denote the non-empty subsets of X. Let X and Y be
topological spaces. A map ¢ : X — S(Y) is called a lower semicontinuous carrier if
{r € X :¢(x)NU # ¢} is an open subset of X for each open subset U of Y.

For a proof of the following Lemma we refer the reader to [2] or [3].

Lemma 1.1. Let X be a topological space, E a topological vector space and U be
a non-empty open subset of E. Let ¢, be lower semicontinuous carriers from X into
S(E) satisfying ¢(z)N(p(z)+U) # ¢ for each x € X. The map ® : X — S(F), defined

by, ®(z) = ¢(z) N (p(x) + U) is also a lower semicontinuous carrier.
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We shall need the following theorem which was proved in [3].

Theorem 1.2. Let X be a paracompact Harsdorff space, E a Fréchet space, and
é: X — 2F with each set ¢(z) being a non-empty closed convez set. Suppose also that for
each € > 0 there is a lower semicontinuous carrier ¢ : X — 2% with each ¢.(x) convez,
and with ¢(x) C ¢.(x) C ¢(z) + B for each x € X, where B, = {e € E,d(e,0) < €}, (d
denoting the metric on E ). There is a continuous function h : X — E with h(z)ep(x)
for each x € X .

For unexplained definitons we refer the reader to [1] and [5].

2. Separation Property

In this section with a suitable modifications of the definitions of upper and lower
semicontinuity we will reprove the Hahn-Tong-Kaketov Theorem for Frechlet lattice val-

ued functions defined on a paracompact Hausdorfl space.

Definition 2.1 ([3]). Let X be a topological space and E a locally solid Riesz space. A
function f: X — FE is called

(i) upper semicontinuous if f~1(U — E.) is open for each open subset U of E

(i) lower semicontinuous if f~1(U + E,) is open for each open subset U of E

It is known that a function f from a compact Hausdorff space X into a Banach
lattice E is continuous if and only if it is both lower and upper semicontinuous (see [3]).

The following is a generalization of that.

Proposition 2.2. If X is any topological space and E a locally solid Riesz space then a
function f: X — E is continuous if and only if it is both lower and upper semicontinuous.
Proof. Since U — E, and U + E, are open subset of E for each open set U C F it
is clear that a continuous function is also lower and upper semicontinuous. Suppose that
f + X — FE is both lower and upper semicontinuous. Let zy € X,0 € V,0 € W and
W + W C U since

2o € £ (f(zo) + W — B4) 0 f 1 (Flwo) + W + By
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and

FUT (o) + W = E) N f7H(f(zo) + W + Ey)) C f(zo) +U

f is continuous at xg. Since zq is an arbitrary element of X, f is continuous. O

Definition 2.3. Let X be a topological space, E a locally solid Riesz space. We shall
say that the pair (X, E) has the separation property if given any upper semicontinuous
Junction f: X — E and lower semicontinuous function g : X — E with f(z) < g(z) for
all x € X there exists a continuous function h : X — E such that f(z) < h(z) < g(z)
forallx € X.

We now prove our main result, which generalise the Hahn-Tong-Kaketov separation
theorem for Banach lattice valued functions on compact Hausdor(f space [3]. See also [8]

for real valued case.

Proposition 2.4: If X is a paracompact Hausdorff space and E is a Frechlet lattice.
Then (X, E) has the separation property.

Proof. Let f : X — E be an upper semicontinuous function and ¢ : X — E a
lower semicontinuous function with f(z) < g(x) for all z € X. Let G : X — 2F be
defined by G(x) = (f(z) + E+) N (g(z) — E4). G(z) is a non-empty convex set for each
z € X. For € > 0 choose an open convex solid set V. with 0V, C V. + V. C B, where
B. = {e € E : d(e,0) < ¢}. Since for each € >0 the maps f+ E,,g— E, +V,: X — 2F
with (f+ E ) (z) = f(2)+E4,(g— E+,Vi)(z) = g(xz) — EL +V, are lower semicontinuous
carriers, the map G, : X — 2% defined by G.(z) = (f(z) + E+ + V.) N (g9(x) — E, + V)
is, by Lemma 1.1, also a lower semicontinuous carrier and its values are convex sets. If

yeG (z) then there are si,s2€V, such that
f(@) +s1 <y <g(x) + 52

If we set s = (—s1) V 82 VO then |s| <|s1]|+ |s2]|eV. + V. so seV. + V. and that

f(x),y —s < g{x),y+s.
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If weset u = f(z)V(y—s), it follows from f(z),y—s < u < g(z), y+s that u € G(¢). Since
[yl < I8l < lssl +IsaleVe + Ve, u—yeVo+Ve y = u—(u—)eGlz) + Vot Vi C Glz)+ B
We have now established that G(z) C G¢(z) C G(z) + B., so we may apply Theorem 1.2
to find a continuous selection h: X — E to G which will satisfy our requirements, i.e.,

f(z) < h(z) < g(z) for all z € X. Hence (X, E) has the separation property. a

We do not know whether the paracompactness of X can be replaced with normality

of X in the above proposition. It is affimative if E = R.

3. Extention of Functions

The following theorem is a generalization of Tietze’s extension Theorem.

Proposition 3.1: Let A be a closed subset of a topological space X and E a locally
solid Riesz space such that (X, E) has the separation property. If f: X — E is an upper
semicontinuous function, g : X — E is a lower semicontinuous functionand h: A — E a
continuous function with f(x) < g(z) for all x € X and f(y) < h(y) < g(y) for all yeA.
Then there is a continuous extension of h to h: X — E such that f(z) < h(z) < g(z)
forall x € X.

Proof. Define f',¢': X - E by

vy ) —f(@) if zeX\ A N ) — glz) if zeX\A
f(ﬂi)—{ —h(z) if  zeA and gie) {h(fﬂ) if  xed

It is easy to see that —f’, ¢’ are lower semicontinuous functions, so —f’ is upper semicon-
tinuous and (—f")(z) < ¢'(z) for all z € X. Since (X, E) has the separation property
there exists a continuous function h: X — E such that (—f')(z) < h(z) < ¢/(z) for all
z € X. Obviously h is an extension of h and f(z) < h(z) < g(z) for all z € X. a

Another class of extension results are of importance in the study of C(K) spaces
from an order theoretic viewpoint. These are those which involve the continuous extension
of functions defined on open subsets of spaces with some strong disconnectedness property.

For real case the proof of the following theorem can be found in [9].
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Theorem 3.2. Let X be a nondiscrete locally compact extremally disconnected Hausdorff

space, E a Fréchet lattice. The following are equivalent:
(i) E has compact order intervals.
(ii) Co(X,E) is Dedekind complete.

(iii) If U is an open subset of X, feC(U, E) and g, heCy(X, E) with h(z) < f(z) < g(x)
for all x € U then f has a continuous extension feCo(X,E).

Proof. (i) = (ii) Co(X) is an ideal in C(BX) where 8X is the stone-Cech compact-
ifaction of X. Since C(8X) is Dedekind complete Co(X) is also Dedekind complete.
Hence Theorem 3.2.6. of [2] implies that Cy(X, E) is Dedekind complete.

(ii) = (iii)) We may suppose that 0 < f in C(U,E) and 0 < g in Co(X,E). The
set A= {B < S(U) : B is a family of disjoint open-closed subsets of U} is partially
ordered under the ordering By < By < By C B,. Clearly {¢} € A and every chain in A
has an upper bound, so by Zorn’s lemma 4 has a maximal element, say (W),cr and
for each v € I define

fv(x)={ flz) if weWy
0 if z¢W,

then {f, : v € I} is a subset of Cy(X,E) which is bonuded above by g. By (ii),

Supf,y = ? exists in CO(X, E) . Note that U C U’yEI Wy
yel

Let v € I be fixed. If zo € W, then f(xo) = fy(xo) < f(xo). We wish
to show f(zo) = F(zo). Suppose f(zo) < F(zo). Let a = Ld(F(xo), f(z0)) and
A={r € X :a<df(z),f(x)}NnW, which is open. Choose an open set V with
20V <V < AC W, and define

) — f(x), if zeV
) {ﬂx), if ©¢V

f" is an upper bound of the set {f, : v € I} so we must have f < f’. Since

f(zo) < f'(zo) = f(zo) < f(zo), the assumption implies a contradiction. Hence

fiw, = f‘wv for all v € I. If z € U then there is a net {z,} in U,c; W, such that
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z, — x. Since U is open we may suppose that z., € U for all v, so f(z,) — f(x) and
f(z4) = f(z4) = f(z) which shows that f is a continuous extension of f in Cy(X, E).

(iii) = (i) If (i) does not hold then choose eeE, such that the order interval [0, €]
is not compact and let {e, : n = 1,2,---} C [0,€] not be totally bounded. Since X is
nondiscrete there exists a compact subset A of X and sequence {U,} of disjoint non-

empty open and closed sets U, with U, C A for all n. Define f on U = U,U, by
, ev

f(z) =e, if £ € U, and define g : X = F by g(z) = ¢ if @ _ Then 0<g
0, if z¢U

and 0 < f(z) < g(x) for all z € U. By (iii) f has a continuous extension f € Co(X, E).

Since, {e, : n € N} C f(A) = f(A) C f(A) it implies that {e, : n € N} is totally

bounded. This contradiction shows that (iii) = (i}, completing the proof o

Similar argument yield the following theorem. We note that for the real case the

proof can be found in [9]. See also [3] for Banach lattice case.

Theorem 3.3. Let X be a non-discrete, locally compact, quasi-extremally disconnected
Hausdorff space, E a Fréchet lattice such that (X, E) has the separation property. The

following conditions are equivalent:

(i) E has compact order intervals.
(ii) Co(X,E) is Dedekind o -complete

(ii1) if U is an open F, subset of X, f € C(U,E) and g,h € Co(X, E) such that h(z) <
g(z) < g(z) for all x € U then f has a continuous extension f~ € Co(X, E).

We do not know whether the condition (X, E) has the separation property is dis-
pensable in the above theorem. The answer is affirmative if X is extremally disconnected
by Theorem 3.2.

We shall say that a topological space is non-anticompact if there is no infinity

compact subset of X .

Theorem 3.4. Let X be a non-anticompact completely regular, extremally disconnected,

Hausdorff space and E a Fréchet lattice. Then the following conditions are equivalent:
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(i) E has compact order intervals.
(ii) CY(X, E) is Dedekind complete.

(i) C™(X,E) is Dedekind complete.

(iv) If U is an open subset of X, f € C™(U,E),g,h € C"(X,E) such that h(z) <
f(z) < glz) for all x € U then f has an continuous extension f~ € C"(X,E).
(v) If U is an open subset of X, f € CYU,E), g,h € C%X,E) such that h(zx) <

f(z) < g(x) for all z € U then f has a continuous extension f~C°(X,E)

Proof. We refer [4] for equivalence of (i) to (iii). Rest of the proof is very similar to the

proof of Theorem 3.2. |

References

[1] C.D.Aliprantis and O.Burkinshaew, Locally solid Riesz spaces, Academic Press, New York-

San Francisco-London, 1978.

[2] Z.Ercan, Riesz spaces of Riesz space valued functions, Ph.D. thesis, The Quenns University
of Belfast, 1993.

[3] Z.Ercan and A.W.Wickstead, Banach lattices of continuous Banach lattice-valued func-
tions, J.Math.Anal. and App., 121-136, 1996.

[4] Z.Ercan, A characterization of Dedekind a-completeness of two Riesz subspaces of C'(X, E)
VII. Ulusal Matematik Sempozyumu, Bilkent Universitesi, 122-124, 1994.

[5] L.Gillman and M.Jerison, Rings of continuous functions, Graduate texts in Math, Springer-

Verlag, Berlin-Heidelberg-New York, 1976.
[6] M.Kaketov, On real-valued functions in topological spaces, Fund.Math., (38) 1951, 85-91.
[7] E.M.Michael, Continuous selections 1, Ann.Math. (63), 1959, 361-382.

[8] H.Tong, Some characterizations of normal and perfectly normal spaces, Duke Math. (19),
1952, 289-292.

429



ERCAN

[9] H.H.Schafer, Banach lattices and positive operators, Springer-Verlag, Berlin-Heidelberg-
New York, 1974.

Zafer ERCAN Received 13.06.1996

Middle East Technical University,
Department of Mathematics,
06531 Ankara-TURKEY

430



