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ON HILL’S EQUATION WITH PIECEWISE CONSTANT
COEFFICIENT

1. Yaslan & G.Sh. Guseinov

Abstract

In this paper the eigenvalues of the periodic and the semi-periodic boundary value
problems associated with Hill’s equation are investigated in the case of piecewise
constant coefficient. As a corollary the asymptotic formula for the lengths of the
instability intervals of Hill’s equation is derived and it is shown that they increase
beyond all bounds. Also, the conditions for coexistence of periodic and semi-periodic
solutions are indicated.

1. Introduction

Following [1], [2] and [4] we first present some needed facts about Hill’s equation.
We consider the second-order differential equation

-y =Xp(2)y (—00 <z < 00), (1.1)

where X is a complex parameter and p(x) is a real-valued function defined on the axis
—00 < z < oo and periodic with period w > 0:

plo +w) = pla).
In addition we assume that

p(x) > pg > 0, / p(z)dz < oo.
0

Further, we consider the, so-called periodic

—y" = Ap(x)y (0<z<w)
y(0) = y(w), y'(0) =y (w) (1.2)

*AMS (MOS) subject class: 34120, 47E05
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and the semi-periodic (or anti-periodic)

—y" = Mp(z)y (0<z<w)

y(0) = y(w), y'(0) = =y (w) (1.3)

boundary value problems associated with equation (1.1).

Those values of complex parameter A for which problem (1.2) or (1.3) has a non-
trivial solution y(z,\) are called eigenvalues.

Let 6(x,\) and ¢(z, ) denote the solutions of the equation (1.1) satisfying the
initial conditions

0(0,\) =1, 0(0,\) =0;  ©(0,A\) =0, ¢'(0,A)=1. (1.4)

Define the function
F(X) =0(w,\) + ¢'(w, A), (1.5)

as the Hill discriminant of equation (1.1). Then the eigenvalues of the periodic problem
(1.2) coincide with the roots A of F(\) — 2 = 0 (characteristic equation of the periodic
problem) and the eigenvalues of the semi-periodic problem (1.3) coincide with the roots
of F(A\)+2=0.

Each of the problems (1.2) and (1.3) has a countably infinity real eigenvalues with
the accumulation point at +occ. It is clear that A = 0 is a simple eigenvalue with
eigenfunction y =1 for the periodic problem (1.2). Denote by

0=po <py <py <ppg Spg <+ < pgy < gy <o
the eigenvalues of periodic problem (1.2}, and by
pr Spy <py Spg < < gy S gy <o

the eigenvalues of semi-periodic problem (1.3) (the equality holds in the case of double
eigenvalue). These values occur in the order

0=ypo <py Spf <py Spg <pg <pd <pg <pfoe- (1.6)

If A lies in any of the open intervals (—o0,0) and (p,,p}) (n=1,2,3,...), then
all non-trivial solutions of (1.1) are unbounded in (—oo, c0). These intervals are called the
instability intervals of the equation (1.1). Apart from (—o0,0), some or all the instability
intervals will be absent in the case of double eigenvalues. If A lies in any of the open
complementary intervals (u} 1, pun) (n=1,2,3,...,ud = 0), then all solutions of (1.1)
are bounded in (—00,00), and these intervals are called the stability intervals of (1.1).

In general, when A is an eigenvalue of the periodic problem (1.2) only one of
the two independent solutions of the differential equation (1.1) is periodic (the other
linearly independent solution may grow only as a linear function), but if )\ is a double
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eigenvalue (it is all the same that A is a double root of the characteristic equation) two
and therefore all solutions will be periodic. In this case two periodic solutions are said to
coexist. Similarly for semi-periodic solutions. The coexistence problem is the problem of
finding a condition for such coexistence.

It is of considerable interest to study the asymptotic behaviour of the lengths
I, =p) — (n=1,2,3,...) (1.7)

of the instability intervals (u;, ) as n — co. For this purpose the eigenvalues u of the
periodic and semi-periodic boundary value problems (1.2) and (1.3) must be investigated.

It is known that I, — 0 as n — oo if p(z) is twise differentiable function and
p"(z) € L'[0,w]. Besides, the velocity of I,, tending to zero grows as the differentiability
condition on p(z) grows. However, if p(x) is a discontinuous function, then I, may
increase beyond all bounds as n — co.

In this paper we study the case in which the coefficient p(x) of (1.1) is a discon-
tinuous but piecewise constant function (a step-function):

a?, 0<z<a,
oo ={ G LTIl (1.9

a >0, 8> 0 are constants and a is a fixed point between 0 and w. Over the whole axis
—00 < x < 00, p(z) is to be continued as a periodic function of period w.

In the case of an even piecewise constant function p(z) the equation (1.1) was
studied earlier in [3]. In our case the function p(z) is not even. Besides, our method
of investigation in this paper is different from that applied in [3], and is based on using
Rouche theorem about the roots of the analytical functions.

2. Hill’s Discriminant

has the form

In equation (1.1) we put A = s? and assume that the coefficient p(z)
f (1.1) satisfying

(1.8). Then it is easy to show that the solutions 6(z,\) and @(z,A) o
the initial conditions (1.4) have the form

0(z,2) = COS saux, 0<z<a,
&A= cossa acossf(z —a) — Fsinsa asinsf(z —a), a<z<w,

sin sax
SO(CE)\): s 0 . Oszs<a
’ sin2ad o5 s3(x — a) + cos saas—m—sg%”'—a), a<z<w.

Therefore, according to (1.5) we find the following explicit formula for the Hill discrimi-
nant:

F(X\) = Acossd + Bcos s, (2.1)
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where

_ 1/« é 1
A_1+§<B+a>, B=1

d=oaa+ B(w—a), y=aa—Bw—a

|
TN

@l e
+
T ol
——

(2.2)

3. Some Particular Cases

In this section we point out some particular cases in which the eigenvalues of the
periodic and the semi-periodic boundary value problems can be found explicitly.

1. If o = 8, then according to (2.2) and (2.1) wehave A =2, B=10, § = aw, v =
a(2a —w), and F(X\) = 2cos saw. Therefore,

2
FOO) -2 = 4sin? 2 0o s="T 5 —=0,41,42,...;
2 aw

saw 2n+ 1w

F(\)+2 46052?:0<:>s:

ll

n=0,+1,42,....
ow

Besides, each A-root, except for A = 0, is double. Consequently,

nm\ 2
:0, = +:<—> , :1,2,37...,
Ho Hn 2% aw n
and by (1.7) I, =0, n=1,2,3,.... The single instability interval is (-0, 0).
2. Let us now set o # #. Then from (2.2) it follows that

B
A>2 B<0, A+ B=2 §>0, —00 <7< oo, \Z’<1’ ‘%*<1. (3.1)

(i) Let v =0, that is a = 3¢=2 (and a # ¥, since a # 8). According to (2.1) in

a

this case F'(\) = Acossd + B and therefore

5 2
F(A)—2:—2Asin2%=0@s:—gf, n=0+1,42,. ..

1 A—4
FAM)4+2=Acossd+4—-—A=0& 5= 5 (:i:cos—l—A—+2mr> , n=0,+£1,£2,....
Consequently, taking into account the inequalities (1.6), we have

- onr\ 2
Ho =0, HQnZM;—n:<T> , n=123,...;

_ 2nm + ¢\ ° @2n+2)r —c\’
“2n+1:< 5 >’ N;n+1:<46—— , n=0,1,2,...,
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where ¢ = cos™! 45—4- and 0 < ¢ < w. Hence

4(m —c)

Ign:O, n=1,2,3,...; I2n+1: 52

-2n+Um, n=0,1,2,....

We see that Is,+1 — 00 as n — co.

(ii) Let v = g, that is a = 3 - @ (and @ =# 3w, since & # 3). In this case
we have, from (2.1),

F(\) = 2A cos® %é + Bcos% — A

Therefore,
) - 2+ A
F(/\)—2=0<:>cos% =1 or cos% = —;_—A.
Hence 5 5
% = 2nm or % =dd+ (2n+ D1 (n=0,+1,+2,...),
where d = cos™! 22 and 0 < d < Z. Consequently,
— + 4TL7T 2
H():O? Hap = Hgpn = T ) TL:1,2,3,.‘., (32)
~ an + 2)7 +2d\* 4n 4 2)m —2d\°
/u’4n+2:<( (5) > ’ Nz_n+2:<( 5) _> N n:0,1,2,.... (33)

Further,

FO) 42206 cos®d = AZ2-V(A-27+84(4 - 2)
% -

4A
or
Cosg_A—2+\/(14—2)2+8A(A—2)
2 4A )
Hence
sé )
?:j:d1+(2n+1)7r or ?zidz—k?mr (n=0,%£1,%2,...),
where
A—2—/(A—-2)24+8A(A -2
dy = cos™! (— \/( 4A) +84( )), 0<d1<g,

A—-2 A—2)2+8A(A-2
dg:COS_1< +\/( 4A)+ ( )>, 0<d2<f.
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We note that dy < d; and d < d;. Thus, taking into account (3.2), (3.3), and the
inequalities (1.6), we find

~ Anm +2dy\° (4n+2)m — 2d1 \*
u4n+1:<T) v a1 = — 5 ) n=0,1,2..., (3.4)
_ [(4n + 2)7 + 2d;)? [(4n + 4)7 — 2d5)?
Bangs = 82 7#Zn+3 = 52 y N= Oa 1’ 27 e (35)
In view of (3.2), (3.3), (3.4), and (3.5), we have
16d
Iin, =0, n=1,2,3,...; Ijpo= 5—2~(2n+1), n=0,1,2,...,
4(71' - d1 - dg)
L1 = s (dnm + 7 — dy + da),
4m—dy — d
I4n+3:£621—2)-(4mr+37r—d2+d1), ’I’L:O,I,Q,....

We see that 14,11 — 00, Iypnia — 00, Igpy3 — 00 as n — 00.
(iii) Finally, let v = %, thatis a =3 - @ (and a # 2w, since a # (). In this
case we have, by (2.1),

F(\) = 4Acos® —83—6 + (B —3A)cos %:E

Therefore,
s6 0  —A—+/A(A-2)
F()\)*Q—O@COSE—I or cos o = oA
or
s6 —A+JAA-2)
cos — = .
3 2A
Hence 5 5
%:m or %::td3+(2n+1)7r or %::td4+(2n+1)7r,
where n =0,£1,42,... and
A+ JA(A-2 A—/JAA-2
ds zcos‘lL(—), dy :cos_l—(-—),
2A 2A
T T
0<d3<§<d4<§.
Further, F(A\)+2=0¢&
—A+/A(A-2 A—\/A(A-2
cos%éz—l or cos%?: + 2A( ) or cos%éz-#.
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Hence 5 5 5
% =2n+ 7 or % =+d3 + 2nw or % = &d4 + 2nm,
where n =0,+1,+2,....

From these results it follows that

— 2
/'LOZOa Uﬁn:/‘gn2: (GHTW) l n:172’§’7"';
— 7+3d3 d
l’l’ﬁn+1 = (6n ;_3 ) 9 #g_n+1 = (6'"«77}‘3 4) ] n = 0, 17 2, ey

2 2
- 6n+3)7r—3d 6n+3)mr—3d.
/"l’6n+2:(( +¢)S 4) ) ,Ugn_;_z:(( +)5_3) y 71207172,...;

2
— 6n+3)m .
M6n+3::u’gn+3:(( 5 ) ) ) n2071527"'7

2 2
— 3d 3 d
gnia = ((6n+33s7r+ 3) g = ((6"+)++34) . n=0,1,2,...;
2 2
— —3d. —3d,
Hgnas = ((6n+62;7r 3 4) , ug‘n+5: ((6”+6)+33) , n=0,1,2,....
Therefore, IGTL = 0, n = 1,2,3,. ..y IGn+3 = 07 n = 071,2, e and IGTH—j — 00 as

n—o00, j=1,2,4,5.

4. General Case

Now we consider the case of arbitrary values of «,3,a and w under the only
condition o # 3. We investigate the roots of the functions F(\)—2 and F()\) + 2.
From (2.1), we have

ot (\) Y F()) - 2 = —24in? % — 2Bsin? ? (4.1)
where \ = s%. Setting
s0 27 o (2n ? 9
G =TI s =2 and /\——8—<7> 24, (4.2)
we get
ot = o+ (1 2) _ gt 43
W=e () =t (e) (43)
where
@ (2) = —2A4sin® 7z — 2B sin® T e, (4.4)

]

Further, for any natural number n define the square contour
1 1
r,= ZG(C:|Rez|:n+§, |Imz|=n+§ .
We will use the following well-known theorem (see, for example, [5, p.116]).
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Rouché’s Theorem. If f(z) and g(z) are analytic functions inside and on a closed
contour T', and |g(z)| < |f(2)| on T, then f(z) and f(z) + g(z) have the same number
of zeros inside T".

We apply the Rouché theorem putting
I'=T,, f(z)=—-24sin’7z, g(z)= —2Bsin? %ﬂz.
Thus & (z) = f(2)+g(z) and the inequality |g(z)| < |f(2)] is equivalent to the inequality
Al
A

Lemma 4.1. There exists a natural number ng such that

2

in X
eTEL . (4.5)

sinmz

inX
sin 67TZ

<1 (¥ z€Tl,, ¥ n>no). (4.6)

sinmz

Proof. On the vertical sides of I';, we have z =0 + i1, 0 =% (n + %) and so

|sin7z| = coshwr, |[sin %Wz‘ < cosh ’%’ 77 < cosh 7,
since |%| <1 in view of (3.1). Therefore, the inequality (4.6} holds on the vertical sides
of I'y, for all n.

Now we consider the horizontal sides of I';,. Since, for each z = o + i,

1
|sinmz|> = = (7% + €™ — 2cos 207) > Z(e‘” —e™)?

e

and hence
: 1 7| 7| —27|7]
|sm7rz|2§e (1—6 ),
we have for 7 = i(n—}— %),
7|

|sinmz| > -
sSimmmwz —€
4

Therefore for 7 = + (n + %) ,

. v Tl 3T
sin 37z 8e™ 37l — ge—m(1-13DI7l 5 (4.7)
sin 7z erlr!

as n — 00, since |}| < 1. Consequently, there exists a natural number ng such that the
inequality (4.6) holds for each z = o + 47 if 7 = £(n+ 1) and n > ng. The lemma is
proved. a
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Remark 4.2. It follows from (4.7) that as ng in Lemma 4.1 we can take

_ 3log 2
0——[-—71_(1_1%')]4-1, (4.8)

where [-] denotes the integral part.

Since |Z| < 1 in view of (3.1), it follows from Lemma 4.1 that (4.5) holds for
z €'y, n>ng. Applying the Rouché theorem we conclude that for n > ng the number
of roots of ®7 (z) lying inside ', is the same as that for sin? 7z. The latter function has
roots inside T',, at the points z = 0,+1,+2,...,+n and each of them is a double root.
Therefore, ] (z) must have 4n + 2 roots inside I', (n > ng). Since, by (4.4), ®7(2)
is an even function and z = 0 is a double root, we can denote the roots of ®}(2) lying
inside T',, by

+ - v - — = ~
—Zzn,—ZQR,...,—ZQ,—zz,0,0,22,22,24,2:4,..,,22”,22".

We note that the roots of ®(2) are real in virtue of (4.2) and (4.3), since the eigenvalues
of the periodic boundary value problem (1.2) are non-negative.

Lemma 4.3. For n > ng + 1 the function ®(z) has exactly two roots in the region

1 1 1
Dn:{ze(C:n—§< Rez<n+§, |Imz|<n+§}.

Therefore, the roots z;, and z, of ®f(2) lie in the interval (n — 3, n+3):
n—§<z2n<n—|—§ (n>ng+1). (4.9)

Proof. It is evident from the proof of Lemma 4.1 that the inequality (4.5) holds also on
the boundary of the region D,, if n > ng+ 1. Consequently, by the Rouché theorem the
function @] (z) has in the D, as many roots as the function sin®7z, i.e. exactly two
roots (the function sin® 72 has a double root inside D,, at the point z = n). The lemma
is proved. O

— 27

Putting s, = 2% - zi£ we have, by (4.9),

onm + 2hE T T
Szin:%a —§<h§n<§ (n>ng+1).

To analyze the quantities h3, we note that the numbers s3., are the roots of the function
(4.1). Therefore, h,, and hj, are the roots of the equation

Asin®t + Bsin? %(nw+t) =0,
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lying in the interval —5 <t < 7. Since B =2 — A and A > 2, the latter equation is
equivalent to the union of equations

R ( JA=2
sint = ‘sm 5 (nm+1t) 7 (4.10)
and
int = — |sin 2 | A2
sint = — |sin 6(n7r+t)‘ T (4.11)
It is clear that each root of (4.10) lying in (=%, %) is non-negative and each root of (4.11)

lying in (—7%, %) is non-positive.
Lemma 4.4. For each n > ng+1 the equation (4.10) has exactly one root in [0, T) and
the equation (4.11) has exactly one root in (—%,0].

Proof. The function

f(t) =sint — [sin %(mr + t)’ - %
is continuous on the segment 0 <t < 7 and besides f(0) <0, f(5) > 0. Therefore,
f(t) vanishes at least at one point in [0, F).
Similarly it follows that the equation (4.11) has at least one root in (—7,0].
In order that one of the equations (4.10) and (4.11) have more than one root, it is
necessary that the function ®,(z) have more than two roots in the region D, . But the
latter is impossible in view of Lemma 4.3. The lemma is proved. a

Denote the root of the equation (4.10) in [0, 3) by r3,, and the root of the equation
(4.11) in (=%,0] by —r,,. Then 0 <73, < Z and h3, =73, hy, = —75,. Thus, the
eigenvalues of the periodic problem have the form

2
o2nm + 2r
lj‘OZOa /.Léhn:(sg:n)2:<——5—i> ) n:132337~-'7

where 0 <1y, < I (n>mng+1) and

éiﬁ, n=1,23,.... (4.12)

sinry, = |sin %(mr +ri)-

We can analogously investigate the eigenvalues of the semi-periodic problem, that
is the roots of the function

§
d(N) = F(\) + 2 = 2Acos? % + 2B cos® %,
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where \ = s2. Setting s§ = 2wz we get

2
4re 4

o0 () ~aro)

where

P (2) =24 cos?® 7z + 2B cos?® %Wz.

Applying the Rouché theorem to the function ®7 (z) = f(z2) + g(z) and the contour
I, ={2€C:|Rez|=n+1, |Imz|=n+1},

setting f(z) = 2Acos? Tz, g(z) = 2Bcos® nz, we conclude that ®7(z) and cos® 7z
have the same number of zeros inside I', if n > ng, where ng is a sufficiently large
number (as ng we can take the integer defined by (4.8)). Since the function cos® 7z has
double roots inside I',, at the points z = % +m, where m =0,+1,£2,...,+n,—n—1
the function ®] (z) will have 4n + 4 zeros inside I';;. Denote them by

)

+ - + s — +
“Zopt1 TR2n410c 0 T R1y TR19%1921 5233230+ X415 Z2n 41
Further, setting s3,,,, = 2 - 23, ., we can for the eigenvalues it = (S3p11)?, n =
0,1,2,... of the semi-periodic problem obtain the formula
i 2
i 2n+ )m £ 235,
HBani1 = 5 , n=0,1,2,...,

where 0 < r;th <% (n>2no+1) and

A-2
sinrétn+1 = ‘cos% (n7T+ g :trzin+1)}~ — n=20,1,2,.... (4.13)

Thus, we have proved the following theorem:

Theorem 4.5. The eigenvalues {uo, pa,} of the periodic and the eigenvalues {N2in+1}
of the semi-periodic boundary value problems have the form

+2rE\?
Lo =0, 'Uft = (%) s n=1,2,3,..., (414)

where 0 <rE < Z (n>ng+1) and the equations (4.12) and (4.13) hold.

Corollary 4.6. For the length I, = ut — u; of the instability interval (p,,,p\) the

formula

dnm _ 4

is the same as in Theorem 4.5.

r? _r?) (4.15)
+

holds, where r
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Theorem 4.7. If a # (3, then the length I, (if in addition v # 0, then, what is more,
the lengths Io, and the lengths I, 1) are unbounded as n — oo .

Proof. In Section 3 had been shown the unboundedness of I5,,1 in the case of v = 0.
Let now v # 0. In view of (4.15) it will be sufficient to show that the sequencies {rJ }
and {r;'n_H} do not tend to zero as n — 0o. Let us assume the contrary: let 75, — 0 as
n — 0co. Then the equation

A—-2

A b

. . Y 0
sinry, = [sin S cos 2rd + cos Lnsin Lry,

5 5 PR

arising from (4.12), gives lim,,_,, sin inm = 0. Using this we obtain from the identity

sin z(n +1)m = sin %nﬂ' cos Lo + cos Tnmsin L

4 é 0 ]

also lim,, o cos ¥nm = 0. Thus, we arrive at a contradiction, since sin® %mr-{—cos2 Inm =
1, Vn.

Similarly, with the help of equation (4.13), it can be shown that the sequence
{r3,.1} does not tend to zero as n — co. The theorem is proved. O

5. Coexistence

Let § be a rational number: 1 = %, where p and ¢ are relatively prime integers,
and g > 0. Since |¥| <1 we can assume that 0 < [p| < q.

Theorem 5.1. (i) If p=0 (i.e., if v =0), then
Hon = Han, n=1,2,3,....
(i) If p # 0, then |
Hakg = Hakgr k=1,2,3,.... (5.1)
(i13) If both p and q are odd, then, in addition to (5.1),

- _ -
Bk = Horeng k=012,
Proof. Statement (i) has been proved in Section 3. Notice that it follows also from
(4.12): if ¥ =0, we have sinry, = 0, and hence r5, =75, =0 (n=1,2,3,...).

To prove (ii) we put in (4.12) n = kg (k=1,2,...). Then we get

A-2

A

o+ .. D 4
smr%q— SlIla’l‘qu

472



YASLAN & GUSEINOV

Hence ry,, = r;kq =0 and (5.1) follows from (4.14).
Let us now to prove (iii). Setting g=2m+1 and n=kq+m (k=0,1,2,...) we
get, from (4.13),

SINTop 41y, = (COS [p(2k + 1)5 + Er(zkﬂ)q] N
Hence (since p is odd)
. T A-2
SINThp 41y, = [SID ET(2k+1)q N
and therefore, T(ok+1)q = 7'(+2k+1)q = 0. The theorem is proved. |

Theorem 5.2. If the periodic problem has at least one double eigenvalue, then  is
rational. If the semi-periodic problem has at least one double eigenvalue, then % is a

ratio of two odd integers.

Proof. Let the periodic problem have at least one double eigenvalue. Then for some
n e {1,2,...} we will have ry, =rj, =0 and from (4.12) we will then get sin Inm = 0.
Hence, {nm = mn for some integer m. Therefore, I = 7 is rational.

Let us now assume the semi-periodic problem has at least one double eigenvalue.
Then for some n € {1,2,...} we will have r;,;, =r3, ., = 0 and from (4.13) we will
then get cos¥(2n+1)- 5 =0. Hence F(2n+1)- 5 = (2m+ 1) - 5 for some integer m.

Therefore T = 2273—111 is a ratio of the two odd integers. The theorem is proved. O

Comparing of Theorem 5.1 and Theorem 5.2 gives the following corollary.

Corollary 5.3. In the case of p(x) of the form (1.8), if the periodic or the semi-periodic
problem has at least one double eigenvalue, then this problem has infinitely many double
etgenvalues.
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