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Abstract

We have proved that, for the 3-step Fibonacci recurrence and any finite p-group of
exponent p and nilpotency class 3, the length of a fundamental period of any loop
satisfying the recurrence must divide the period of the ordinary 3-step Fibonacci
sequence in the field GF(p).

1. Introduction

We shall be interested in the shortest period of the 3-step Fibonacci sequence the entries of
which are taken in any finite p-group of exponent p and nilpotency class 3. This problem
has already been the subject of investigation. It seems to have first been addressed by
Wall [9] and then Vinson [8] for cyclic groups. This theory has been generalized in 4] to
cover the 3-step Fibonacci case. Campbell, Doostie and Robertson [2] have attacked the
problem of recurrences in the case of non-abelian finite simple groups.Pinch [6] has studied
the relationship between the period of a general linear recurrence modulo a rational prime
p and the period modulo a power of that prime. He does this via examining the algebraic
number theory of certain finite extensions of the p-adic numbers.

Wall distinguishes the special loop s = (s;) defined by the recurrence s;12 = s; + Si41
and the initial data so = 0 and s; =1 in Z/p"Z. Let k(s,p") denote the fundamental
period of s.

Theorem 1.1: (D.D. Wall [9]) The number k(s,p™) divides k(s,p)p™ " ,and the two
quantities are equal provided k(s,p) # k(s,p?).

Wall goes on to conjecture that for all primes p, we always have k(s,p) # k(s,p?). He
announced that he had verified this result for all primes p < 10*. We know by [1] that
this is indeed the case for all primes p < 108. This work has also been a recent one in this
area and proves that short loops must be geometric for the 3-step Fibonacci recurrences
in H, the additive group of the finite field GF(p™).
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Let s = (s;) denote the ordinary 3-step Fibonacci sequence in GF(p) defined by the
recurrence $;,13 = §; + S;4+1 + S;+2 and the initial data s = 0,8, = 0 and s, = 1. This is
a bi-infinite periodic sequence or loop indexed by the integers. The shortest period of this
sequence is called the fundamental period and it will be denoted by k. We sometimes
refer to this quantity as Wall’s number [9].

2. The Main Theorem

We consider a 3-step Fibonacci sequence r = (r;) in a finite p-group G, given some initial
data ro,r; and ry. Such a sequence or loop must be periodic and we denote the shortest
period of this sequence sometimes called the fundamental period by &(r, G). From now on
k denotes the fundamental period of the standard 3- step Fibonacci sequence 0,0,1,1,2...
taken modulo a distinguished prime p.

Theorem 2.1: Let p > 3 be a prime number, then if G is a non-trivial finite p-group
of exponent p and nilpotency class 3 then k(r,G) = k. Of course if G is the trivial group
then k(r,G) = 1.

3. Some Lemmas Concerning 3-Step Fibonacci Sequence

Although the proofs of all the following lemmas are not intricate they are omitted here
and can be found in [4]. The notation }_,_, indicates that we are dealing with a double
sum, taken over all ¢ and j subject to the constraint that 0 <i < j <k -—1.

Lemma 3.1: For oll integers a and 8 we have

Z Sjitadi+g = 0.

i<j
Lemma 3.2: For all integers o, 8 and ¢ we have

Z Sj—i+BSi+cSi+p = 0.
1<J

Lemma 3.3: For all integers o, 8 and v we have
k—1
D SitaSi+as—jty8; = 0.
7=0

Lemma 3.4: For all integers o, 3,c,d, and e we have

E S—j+aSj+8S8j—i—dSiteSite = 0.
i<j
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4. The Proof

We do our preliminary investigations, not with the relatively free group on three genera-
tors, but with a carefully selected group H which we now describe. H has two generators
z and y. A presentation of H is

H =< hl, hz, h3, hy : (h2,h1) = h3, (h3,h1) = h4,ewplaw =p>
where pairs of generators with unspecified commutator are implicitly deemed to commute.
Thus H is a copy of C3 extended by a cyclic group of order p.
Let G be the 3-generator relatively free exponent p class 3 group on g1, g2 and g3. Thus
G has order p'? and a power commutator presentation of G is given by

(92791) = 04
(93,91) =95
(93,92) =e
(94,91) =g7
(94,92) =gs
(94,93) = g9
(g5,91) =410
(g5, 92) =4gn
(95,93) = g2
(96,91) =g ‘911
(g6,92) =913
(96, 93) = g14

Once again we have the convention that pairs of generators with unspecified commutator
are implicitly deemed to commute.
In GF(p)-vector notation, we put g; = (6;;) € G, where §;; in the Krénecker symbol
and j ranges from 1 to 14.
The group G is relatively free and so admits an automorphism ¢, which we call the 3-step
Fibonacci automorphism, defined by g1¢ = g2,92¢ = g3 and g3¢ = g19293.
We define two maps 7; : G — H via

g1m =1,gom = hy and gzm; = hy

and

9172, = hy1,gams = hy and gsma = 1.

Let g; = (6;;) € G, where §;; in the Kronecker symbol and j ranges from 1 to 14.

Kerm = Kl = (*70’07*7*,0a *, %k, X, %, *,*707*);
K6T7I'2 = K2 = (0707*707*y*yoa*a*7*’*7*a*a*)'
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Let M = Kerm; N Kerny, so that

M= (Oa OaO,O) *a0707 *, %, %, %, % 0, *)a

in the sense that each * can independently be any element of GF(p). Now M is an
elementary abelian group of order p’, and is therefore a GF(p)- space of dimension 7.

A basis of M is (gs, gs, 99, 910, 911, 912, 914) -
Computer aided calculations [3] yield that

M N Mo = (g98911,99, 910911912, 914),

MNMéNMe* = (gogis, g10911,912)

and

MAOMeN M 2N Me® =1.

Thus we have a monomorphism

T:G— G/K1 xG/K2 x G/K1¢ x G/Kz¢ x G/K1¢* x G/ K28* x G/K1¢° x G/K2¢°,

where the codomain is isomorphic to x5_;H. The automorphism ¢~! and its powers
induce isomorphisms G/K;¢’ — G/K; which can be composed co-ordinatewise with 7
to form a group monomorphism

7:G — zj_,(G/K1 x G/K3)
defined by

T — (K2, Koz, K1 (2¢71), Ka(x9 ™), K1(2¢72), Ko (26~ 2) Ky (2972), Ky (zd~2)).

Now let us examine the image of the loop ,r = (r;) beginning ro = g1,71 = ga,72 = g3
under 7. We have

T — (Ti7T1,Ti7r2,Ti—17T1,7‘2‘—17T2,Ti—27T1,Ti—27r2,7"i—37F1,Ti—37T2).

The sequences in the odd positions are just rotations of (r;m;) and the sequences in the
even positions are rotations of (r;my). Thus, if we can show that (r;m) and (r;ms) both
have Wall Number &, it will follow that r has Wall Number % and will be done.

In H the elements can be regarded as vectors and triple multiplication is determined by
the following rules;
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(a0, bo, co,do).(a1, b1, ¢1,d1).(az, by, c2,dz) = (as, bz, c3, d3)

where
asz = ap + a1 + ag,
bz = bg + by + b,
c3 = o+ ¢1 + c2 + arbo + az(bo + b1),
and finally
a
d3s =dop+dy+dy+aico+ a2(60 +c + albo) + ( 22)(b0 + b1) + ((121 ) + bg.

We must consider two types of initial data for loops in H. We have a loop v of type [
with initial data

vo = (0,0,0,0)

v = (1, 0, U, 0)

vz = (0,1,0,0)
and another w of type II with initial data

wo = (1,0,0,0)

w; = (0,1,0,0)

wy = (0,0,0,0).

The analysis of the type 11 loop is entirely similar to that of type I. Thus the type I loop
begins

Vg = (t0780a0’0)
v = (t1)51>070)
U2 (t2a327070)'

We focus on the type I loop (v;) = (t;, si, ¢, d; ), where

(307 S1, 52) = (0, 0’ 1)

and

(to, t1,2) = (0,1,0).

It can be easily seen that the sequence t; can be written in terms of s; as t; = ;41 — ;.
Now, it follows from [5] that c¢x = cx41 = ck+2 = 0 which correspondes to prove the
similar theorem where the nilpotency class of the group reduces to 2. To conclude, we
must demonstrate dy = dgr1 = dxi2 = 0 and begin with di = 0.
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We shall need a formula for ¢, in order to work out the formula for d,,. By induction it
is

a—1

Ca = Z Sa—i—1(Sitis1 + tiya(si + Sit1))
1=0

for a > 0. This enables us, via a similar process, to describe d, for a > 0 as

a—1 a—1 a—1

t.
dy = Z So—i—1tiy16; + Z Sq—i—1( 2;1 )si + Z Sa—i—1tiva(ci + ciy1 +tiy18:)
i=0 i=0 i=0
a—1 &
+ Z Sa—i—1( 1;1 V(si + Sig1).
=0

We can break up the expression for dy as dr = A; + Ay + Az + Ay, where
Ay = Z Sk—i—1Li+1Cs,
Ay = Z Sk—i—1(2%+)s;,

Az = Z Sk—i—1tiva(CitCiza + tip18i)

and

Aa= 3 skeima (250 (si + siga),

and we shall attempt to show that each of these four expressions A; actually vanishes.
To this end, we break these expressions up still further.
Now we have

k-1
A = E Sk—i—1tip16; = E Sp—j—1tj+1€¢5
—

k—1 -1 j—1
= E Sk—j—ltj+1(§ Sj—i—18iti+1 + E sj—i—1tiza(si + sit1)),
j=0 =0 i=0
and so A = A3 Ajp Aqz, where
k—1j~1
Ay = E E Sk—j1tj+18j—i—15itit1,
7=0 =0
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k—1j-1
Ay = Z Z Sk—j—1tj+15j—i—18i+1tit2
3=0 i=0
and
k—1j-1
Az = Z Z Sk—j—1t54+18j—i—18:tit2.
7=0 =0
Moving to As, we find that
k-1 y =
i+1
Az = sk—j1( Y )si=3 Y sk—joitia(tia—1)s;,
j=0 j=0
so that
= =
2
Az = ) Z Sk—j—1tj1155 — 3 Z Sk—j—1t;+15;5.
j=0 j=0
Next we tackle Az. We have
k—1
Az = Z sk—j—1tj+2(Cj + Cj41 +tj4185),
=0
so that
k—1 j—1
Az = Z Sk—j—ltj+2(z sj—i—1(8itit1 + tixa(si + 5i41)))
j=0 i=0
k—1 7j—1
+ Z Sk—j—ltj+2(z sj—i(sitiv1 + tiya(si + si41)))
§=0 i=0
k-1
+ D Sk-j-1tjratisis;.
=0

Thus Az= A3+ Aszz+ Aszz+ Aszs+ Ass+ Azg+ Agzr, where

Az = Z Sk—j—1tj+28j—i—18itit1,
i<j
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A3y = E Sk—j—1tj+28j—i—18itit2,
i<j

Agz = E Sk—j—1tj128j—i-18it+1tit2,
i<y

Agy = E Sk—j-1tjt25j_iSitit1,
i<j

Ags = E Sk—j—1tj4+28j—i8iti42,
i<j

A36: E Sk_]‘_1tj+23j—isi+1ti+2’

i<j
and
k-1
Azy = Z Sk—j—1tj+2tjt18;.
=0
Also we see that
k—1 ;
42
A= spja( 1; )(55 + sj+41),
j=0
so that
=
Dy=3 D se—joatiyaltive — 1)(s; + sj41);
=0
but Ay = Ay — Ayo, where
=
An =3 D sk-jm1tiiass + 5541)
j=0
and
=
Rz = D se—joatiza(s; + sjt1).
J=0

We want to show all sums of type A actually vanish. In fact, this is simply the upshot
of lemmas given in section 2. Thus we have shown dy = 0 for the type I sequence. It is
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a matter of algebraic manipulation to show that dg+1 = di4+2 = 0. The analysis of the
type II sequence is extremely similar to that of the type I sequence.

We acknowledge the computer algebra systems CAYLEY [3] and AXIOM [7], using

which many of the results in this area were originally discovered as experimental truths.
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Sonlu Nilpotent Gruplarda Fibonacci Dizileri

Ozet

Gozoniine alinan 3-basamak Fibonacci dizisi ve nilpotent sinifi 3, exponenti p
olan herhangi bir sonlu p-grup igin, bu grubun elemanlariyla olugturulan herhangi
bir dongiiniin esas periyodunun uzunlugunun GF(p) cisminde adi 3- basamak Fi-
bonacci dizisinin periyodunu béldiigii ispatlanda.
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