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THE SPECTRA AND FINE SPECTRA FOR P-CESARO
OPERATORS
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Abstract

In [6], Rhaly computed the spctrum of p-Cesaro operator on the Hilbert space
b ={z = (z&) : ), |zx|?> < oo}. In the present paper, we study the spectrum
and fine spectrum for p-Cesaro operators acting on cp, the space of null sequences.

1. Introduction

Let = = (zx) be a sequence of complex numbers. Following Rhaly [6], we define
Cp, the Cesaro operator by

n

1
n = 7 a\a :0717 19y "ty 1
(Cp) TP kgzo Tp N 2,3 (1)

where p is a real number. The case p = 1 is the Cesaro operator. We note that the
spectrum of C; acting on £ and ¢y was studied respectively in [1] and [5]. Also the fine
spectrum of C; on c, the space of convergent sequences, was computed in [7].

The matrix corresponding to (1) C = (cpk) is given by

1
Cok 1= (n+1)? 0 S k S n (2)
0 n <k

If 1 < p, then an application of Theorem 1 in [4,p.163] shows that C, € B(co)
and | Cp ||=1.
If p <1, then C, does not map ¢ into co. We assume throughout the paper that p > 1.
On the other hand, using the idea of [3,p.407 —408] one can see that C, is compact
operator on cgp.
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2. The Spectra

In this section we compute the spectrum and the point spectrum of Cp, on ¢o. By
m(Cp,co) and o(Cp,co) we respectively denote the point spectrum and spectrum of C,
on c¢g. With this notation we have

Theorem 2.1. 7(Cp,co) = {# cm = 1’2,...}_

Proof. Let Cox = Az for « # 6 = (0,0,---) in ¢g. By (2) we get o = Azy and for
n>1

1
@t et = Az (3)

If m is the smallest integer for which z,, # 0, then we have \ =
(3) that

(7117' It follows by

Jj=m+1

where n > m + 1. The sequence defined by (4) is in #>(see[6]). Since £ C cy we get
that z = (z,) is in ¢g, this proves the theorem.

It should be noted that the adjoint oprerator C; of C, is an operator on the dual space of
co which is isometrically isomorphic to Banach space ¢; of absolutely summable sequences
normed by

Iz l=" lexl < co.
k

The matrix of C; is transpose of the matrix of C;,.

The next theorem shows that m(Cp,co) = m(Cy,41). o

Theorem 2.2. 7(C;,4;) = {# ‘m = 1,27...}.
Proof. Let Cjz = Az, for z # 6 in {;. Hence we have

o0

> Gy = e (5)

k=n

If A =0, then it follows from (5) that = = 6, so A = 0 is not eigenvalue. Now, by (5),
for A # 0, we have

zn =An+ 1Pz, —Tpy1), n >0
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or

1
Tpy1 = (1 - ——)\(n n 1)p) ZTn

- 1
Ty = 1 (1 — m) o (6)

If e {# :m =1,2,---} then (6) yields that, for n > m, z,, = 0 wihch implies
that z = (z,) € 1. If A # -5, then by (6)

mp

thus, for n > 1

ol _ L _Pet1r-y
|Zn ] A(n +1)P [A(n +1)?

Hence the ratio test fails. We now turn to Raabe’s test. Since

—1,n— o0

2
20l sl -1}
lim (—"—1)71 =lim-—
n A\ |Tnt1] n Zn |41
Tn+1

_ llimn{ A+ N(n+1)P -1 }
T 2n A2(n+1)2? — (A+X)(n+1)P +1
0

the series Z |z | is divergent, i.e.,z & £; m|

n

Theorem 2.3. 0(Cyp,c) = {=2

=5 :m=12---} U{0}.
Proof. By the Theorem 2.1.

1
{EI—’ :m=1,2,---} C 0(Cyp, o).

Since ¢ is a Banach space o(Cp,co) is closed. Thus

(o5 im = 123U {0} € o(Cyc0).

On the other hand, since C), is a compact operator on cg, every spectral value
A # 0 is an eigenvalue [1,p.420]. This completes the proof. O
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3. The Fine Spectra

Let X be a Banach space and T' € B(X). Then there are three possibilities
for R(T"), the range of T':

(I) R(T) =X
(II) R(T) = X, but R(T) # X
(1) R(T) # X

and there are three possibilities for 77!, the inverse of T':
(1) T_1 exists and is continuous.

(2) T~1, exists but is discontinuous.

(3) T— 1 , does not exist.

(See,e.g.[2.p.66]).

If these possibilities are combined in all possible ways, nine different states are
created. These are written as: Iy, Iy, I3, Iy, 115,113, 1111,II1;, and I113. For example,
if T € Il3, then R(T) = X, but R(T) # X and T~! does not exist. Similarly we write
T € 2if T™" exists but is discontinuonus. Also we write T € ITI if R(T) # X .

If X is a complex number such that A\ —T € I; or II;, then ) is in the resolvent
set of T'. The further classification of o(T, X) gives rise to the fine spectrum of T on
X. If A\l =T € II3, then we write A € II30(T, X). With this terminology we have

Theorem 3.1. If\=0, then X € II,0(Cp,co).
Proof. By the Theorem 2.1, A = 0 is not in 7(Cp,co). Hence Cp‘l exists, therefore
CpoelU2.

To verify that C, € 2, from [2,p.60] it is enough to slow that C, is not onto. Now
consider Cp. If Cpz =y, then we have for n > 0,

Yn = kz:; (k+1)p

A few calculation yield that O
Zo = Yo— W
T = 2P(y1 — y2)
T2 = 3P (y2 — y3)
Tn = (n + 1)p(yn - yn+1) (7)

If we defined the sequence y = (y,,) by
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then, y € £ for (p > 1). On the other hand, it follows from (7) and (8) that

RGP
z, =(n+1) CFEE (n+1) (27

_ n (n+1)P

= (1+ ()

Hence we have

lim|z,| =2 # 0.
n

this yields that x ¢ £,,4.e.,C, is not onto. So, C, 1 is not bounded.
We can get from (5) that Cyz = 6 if and only if z = 6. Hence C, is one to one.

From (2, p.59], we have R(Cp) =cp. So, C, € TUII.
We now complete the proof by showing that C), is not onto. If Cpz =y, then, by
(1) zo = yo and for n > 1

Tpn = (TL + l)pyn Ut
The sequence (y,) defined by (8) is in ¢o. But the sequence
-1
(D
(n+1)p np
is not in ¢o which implies that R(C}) # co,%.e.,Cp € IT. Hence the proof is completed.

zn = (n+1)P

= (-1)"2

Theorem 3.2. If A € {51; im=1,2,---}, then X € I1I30(Cp,co).

Proof. If A e {# :m=1,2,-- } by consulting Theorem 2.1, we deduce that

A — C, € 3. From [2,p.59] it is sufficient to show that (A — Cp)* is not one to one.
Now consider the operator (\I — Cp)* = AI — C;; where A = -1 (m=1,2,--) If

we define

1 k=0
m(-5) o<
1—— O0<k<m
g =0 LT
0 m<k
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then for each m,z(™ = (z\™) € ¢y. Observe that

Lrocr)am=0
mP P ’

#I—C; is not one to one. This proves that #I—C’p € II1, whence the result. O
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P-Cesaro Operatoriiniin Spektrumu ve Fine Spektrumu
Ozet
Bu gahsmada p-Cesaro operatdriiniin, ¢o izerindeki spektrumu ve fine spek-

trumu incelenmistir.
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