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Abstract

In this work we will construct LUC-compactification of a topological group in
terms of the new concept of near ultrafilters.

Introduction

The purpose of this paper is to describe the compactification of a topological group
in terms of the concept of “right (respectively left) near ultrafilters”. If G is discrete
topological space, the points of its Stone-Cech compactification BG can be regarded as
ultrafilters on G, we were motivated by this in defining the analogous concept of “right
(respectively left) near ultrafilters” to describe the points of an arbitrary compactification.
A uniform space and therefore, a topological group has a compactivation G with the
property that C(G) is isomorphic to the algebra of bounded real-valued right uniformly
continuous functions defined on G (cf. [5]). We believe that right near ultrafilters provide
a natural and usefull method for describing G. k \

1. Preliminaries

We firstly remind the reader of some basic definitions.

Compactifications: Let X be a topological space. By a compactificaiton of
X, we shall mean a pair (C,e), where C is a compact Hausdorff space, e : X — C
is an embedding and e[X] is dence in C. In this case, we may simply refer to C as
being a compactification of X. Two compactifications (C,e) and (C’,€’) are regarded
as equivalent if there is a homeomorphism h: C — C’ for which e = €'h.

Semigroups and Groups: Let (G,e) be a semigroup. For each s € G, we
shall use p, and ), to denote the mapping from G to itself for which ps;(z) =z s and
As(z) = sex. The maps ps and A, are called right and left translations by s respectively.
Suppose that G is also a topological space. G will be called a topological semigroup if
the mapping (s,t) — s et is continuous mapping from G x G to G. It will be called a
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semitopological semigroup if, for every s € G,\; and p, are both continuous. It will be
called a right topological if, for every s € G, p, is continuous.

If G is right topological semigroup, {s € G : A; : G — G is continuous} called the
topological centre of G.

A topological group G is a set which carries a group structure and a topology and
satisfies the following two axioms:

i) The mapping (z,y) — z ey of G x G into G is continuous;

ii) The mapping z — 2z~ ! of G into G (the symmetry of the group) is continuous.

Let (G,e) be a topological group. If X,Y C G, we define X! and X ¢ Y by
stating that {z7! € G: 2z € X} and X oY = {zey € G: 2 € X,y € Y}. We shall
say that X is symmetric if X = X~'. We use B to denote the fundamental system of
neighborhood of the identity e of G.

Let (G,e) and (G', *) be two topological groups. We say a function f : G — G’ is
right (respectively left) uniformly continuous if f is uniformly continuous with respect to
the right (respectively left) uniformities on G and G’. In other words, for each V € B
there exists U € Bg such that z e y=! € G (respectively z™! @y € U) implies that
f(z) e (f(y))™! €V (respectively (f(x))™" * f(y) € V).

It is a well-known fact that the left and right translations are right (respectively
left) uniformly continuous. Furthermore, they are isomorphisms of the right uniformity
onto itself [2].

If G is abelian then left and right uniformities are coincides and hence, a left
uniformy continuous function is also right uniformly continuous and vise-versa.

Suppose that (G,e) is a semitopological semigroup or a group and that (C,e) is a
compactification of G. We shall say that (C,e) is a semigroup compactification of G if G
is a right topological semigroup, e is a homomorphism and e(G) is contained contained
in the topological centre of C'.

Throughout this paper, we shall assume that all the topological groups referred to
are Hausdorff.

Notation: We shall use IN to denote the set of positive integers, Z to denote the
set of all integers and R to denote the set of real numbers.

If X is a topological space, C'(X) will denote the set of continuous bounded real-
valued functions defined on X, and B8X will denote the Stone-Cech compactification of
X.

2 The Space G

Definition 2.1 Suppose that (G,e) is a topological group and that H C P(G). We
shall say that H has the right (respectively left) near finite intersection property if H is
non-empty and if, for every finite subset F of H and every U € B,Nycr(U oY) # 0
(respectively Nycx(Y o U) #0 ).
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Definition 2.2 Let ¢ C P(G). We shall say that £ is a right (respectively left) near ul-
trafilter on G if £ is mazimal subject to being a subset of P(G) with the right (respectively
left) near finite intersection property.

If € is both a right near ultrafilter and left near ultrafilter then we say that £ is a
near ultrafilter. It is clear that a right near ultrafilter is also a left near ultrafilter if and
only if G is abilian. We observe that the concept of right near ultrafilter and left near
ultrafilter generalies the concept of an ultrafilter and so if G is discrete topological group
then a right near ultrafilter and a left near ultrafilter are simply a ultrafilter.

It is immediate from Zorn’s Lemma that every subset of P(G) with the right
(respectively left) near finite intersection property is contained in a right (respectively
left) near ultrafilter.

Notation: We shall use G (respectively G) to denote the set of all right (re-
spectively left) near ultrafilters on G. We may simply denote this set by G (respectively
G).

For each assertion for the right near ultrafilters there is a corresponding assertion for
the left near ultrafilters whose proofs are entirely similar to those corresponding assertions
for right near ultrafilters. Therefore, we shall give the proofs of assertions claimed for the
right near ultrafilters.

Lemma 2.3 Let £ € G and @ be a finite subset of £ and W € B. Then ﬂYeP(WoY) €
.

Proof. Suppose that (), . W(WOY) ¢ ¢ for some finite subset ¢ of £ and W € B. Then
where will be a finite subset ¥ of £ and U € B for which

[Ue((YWeyYNIN[() (Ue2])=0.

Yep Zey

We can choose W' € B such that W' C UNW . This will imply that Ny, (W' eY) =
§— contradicting our assumption that £ has the right near finite intersection property. O

Lemma 2.4 Let £ € G andlet Y C G. The following statements are equivalent:
i) Yeg¢;
ii) For every U € B and every Z € £,(UeY)NZ # 0;
iii) For every U € B and every Z € £,Y N(U e Z) #0;
Proof. i) < ii)
If Y ¢ £ these will be a finite subset F of ¢ and U € B such that

UeY)[) [ (UeY"))=0.

Y'eF
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If Z denotes (y.c (U ®Y’), then Z € £ by Lemma 2.3 and (UeY)NZ = 0.

Conversely, suppose that (U e¢Y)NZ = 0 for some Z € ¢ and some U € B. We
can choose a symmetric neighborhood W € B of e satisfying W2 C U. We claim that
(WeY)N (W eZ)=0. To see this, assume that there is a point z € (W e Y) N (W o Z).
Therefore, 2 = w; e y = wy @ z for some y € Y,z € Z and w,,,w; € W. Hence, we have
z€ (WeWeY)NZ C (UeY)NZ-contradiction. This shows that (W eY)N (W eZ) =0
and hence that Y ¢ £.

ii) & iii)

For every symmetric neighborhood U € B of e and every Y, Z C G,

(UeY)NZ#DYN{UeZ)#0D.

Lemma 2.5 Let £ € G andlet Y CG. Then Y € § if and only if (UeY) € £ for every
U € B. Furthermore, this is the case if and only if Y € €.

Proof. Clearly, if Y € £, then (UeY) € ¢ for every U € B, because Y C (U e Y).
Conversely, if Y € £, then (UeY)NZ =0 for some U € B and some Z € ¢ (by
Lemma 2.4). Let V € B be a symmetric neighborhood of e satisfying V2 C U. Then
(Ve(VeY))C(UeY)andso (Ve(VeY))NZ =0 and so (V oY) ¢ £-contradiction.
Now, for every U € B,Y CY C (U eY). It follows that ¥ € £ if and onlyif Y €¢£. O

Lemma 2.6 Letfeé. For any Y1,Y>, C G, Y1 UY; € £ implies that Y, € € or Yo € €.

Proof. If Y1,Y; € &, there will be sets Z1,7Z5 € £ and Uy, U, € B for which Y; N (Uy e
Z1) =0 and Yo N (Uz @ Z3) =0 (by Lemma 2.4). We choose a symmetric neighborhood
U € B of the identity e satisfying U? C U; N Uz, and claim that (U e Y;) N (U e Z;) =
(UeYz)N(UeZz) = 0. To see this, suppose that € (UeY;)N (U e Z;), where i € {1,2}.
Then there will be points y € Y;,2 € Z; and uj,uy € U for which £ = u; ey; = us @ 2;.
Hence,

yizul_loquzie(UoUOZi)g(UioZi)ﬂYi.

This is a contradiction. Since (U e (Y;UY5)) = (U eY;)U (U e Y3), we have shown that
(Ue(Y1UY2))N(U e Z)N(U ®Zy) =0 and hence that Y1 UY, ¢ €. O

Definition 2.7 For each Y C G, we put Cy = {£ € G:Ye £}.
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Lemma 2.8 For every Y1,Ys C G,Cy,uy, = Cy, UCy,. Furthermore, Cp = 0 and
Cc=G.

Proof. The first statement follows from Lemma 2.6, and the second is immediate from
the definition. Q0

3. The Topological Space G

Definition 3.1 We define the topology of G by choosing the sets of the form Cy , where
Y € P(G), as a base for the closed sets.

Theorem 3.2 G isa compact Hausdorff space.

Proof. Let (Cy,)aca be a family of basic closed subsets of G with the finite intersection
property. We shall show that (), 4 Cy, # 0. It will follow that G is compact.

For any finite FF C A and any U € B, there will be a right near ultrafilter
£r € NacrCr. and so, since Y, € &p for every a € F,Noep(U oYy) # 0. This
shows that the family (Y, )aca has the right near finite intersection property and hence
that it is contained in a right near ultrafilter £. Since ¢ € ﬂae 4Cy,, it follows that
naeA CYm ?é 0.

The see that G is Hausdorff, suppose that £;,&2 are distinct elements of G. Choose
any Y] € & \ & . There will be a set Y2 € & and U € B for which Y1 N (U eY;) =0
(by Lemma 2.4). We choose a neighborhood V' € B of the identity e satisfying V2 C U
and put Z = G\ (V e Y3). It is easy to check that Y1 N (V e (V eY3)) = 0 and hence
that & € é\Cv.y2 (by Lemma 2.4). Also, since ZN(VeYy) =10, & € é\CZ. Now
Cvey, UCz = G (by Lemma 2.8), and so G\ Cvey;) N (G\Cz) =0. Thus G is indeed
Hausdorff. O

Definition 3.3 We define a mapping e on G by stating that, for each z € G,e(z) =
{YeP(G):zeY}.

It is easy to verify that e(z) € G.

Theorem 3.4 The mapping e embeds G as a dense subspace in G.

Proof. We first remark that e is injective. To see this, suppose that z;,zs are distinct
points of G. Then {z;} € e(z1) \ e(z2) and so e(z1) # e(z2).
Now, for any Y C G and any z € G,

reY &Y ce(z) & e(z) €Cy.
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This shows that e~!(Cy) = Y and hence that e is continuous.

It also shows that, for any closed subset Y of G,e[Y] = Cy Ne[G]. Since this is
a closed subset of e[G],e is a closed mapping from G to e[G] and therefore defines a
homeomorphism from G to €[G].

Finally, suppose that Cy # G. If £ € C~1'\Cy, then YN(UeZ) =0 for some Z € ¢
and some symmetric neighborhood U € B of e. This implies that (UeY)NZ = @ and
hence that Y # G, because Y C (U o Y). Thus we can choose z € G\ Y. This implies
that e(z) € G\ Cy and shows that e[G] is dense in G, because every non-empty open
subset of G will contain a non- -empty set of the form G \Cy. O

Let (X,U) be a Hausdorff uniform space. Then for each Y C X and each U € U,
the set {z € X : (y,2) € U for some y € Y} is denoted by U(Y). If £ C P(X) and £ is
maximal subject to being a subset of P{X) with the near finite intersection property, that
is £ is non-empty and for every finite subset ¢ of ¢ and every U € U, Nyey ( ) £ 0,
then ¢ is called a near ultrafilter. The set of near ultrafilters on X is denoted by X and
the topology of X is defined by choosing the sets of the form Cy, where ¥ € P(X), as
a base for the closed sets. This space is a compactification of X (cf. [6]).

Theorem 3.5 Suppose that (G,e) is a topological group, (G',U) is Hausdorff uniform
space and that f : G — G’ is uniformly continuous function with respect to the right
uniformity on G and U on G’. Then there is a continuous function f G — G' which
is an extension of f in the sense that feG = eq f, where eg,eq denote the natural
embeddings of G,G’, in G G respectively.

Proof. Given ¢ € é, we deﬁne
n={Y € P(G"): f~H(V(Y)) € £ for every V € U}

We shall show that n € G”.

We first show that 7 has the near finite intersection property. To see this, suppose
that F is a finite subset of  and that W € Y. We choose V € U satisfying V2 =VV =
{(z,y) : (z,2) € V and (z,y) € V for some z € G'} C W. Then, since f is uniformly
continuous with respect to right uniformity on G and U on G’, there exists U € Bg such
that (f(z), f(y)) € V whenever zey ! € U. It follows that ﬂTeF(UO(f‘l(XN/(T)))) #0
If zis in this set, then, for each T € F, there will be a point 7 € f~1(V(T)) for which
zez,' € U. This implies that (f(z), f(z )) € V and hence, since f(zr) € V(T), that
f(z) € (V(V(T))) € W(T). Thus NresW W(T) = 0 and 5 does have the near finite
intersection property.

We now show that 7 is a near ultrafilter. If T & 7, f_l(V(T)) & ¢ for some V € U.
This implies that ~1(V(T)) NS = § for some S € £, and hence that V(T) N f[S] = 0.
Now f[S] € 7, because, for every W € U, f=H(W(f[S])) 2 FYHfIS]) 2 S. Tt follows
that n is maximal subject to heaving the near finite intersection property.
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_We can thus define a mapping f:G - G’ by stating that f(£) = 5. It is immediate
that f is continuous, because, if T C &', (f)"(Cr) = Ny ey Cf—l(ﬁT))'
Finally, let = € G. It is obvious that {f(z)} € f(ec(z)) and hence that f(eg(z))

e (f(z)). o

Lemma 3.6 Let £ €G and let Y C G. Then §€clzelY] if and only if Y € €.

Proof. Clearly, clze[Y] = N{Cz : Cz D e[Y]}. Now y € Y = Y € e(y) = e(y) €
Cy 2 e[Y]. On the other hand, suppose that Z € P(G) satisfies Cz O e[Y]. Then
YyeEY = e(y) €Cz=>Z€e(y) =y € clzZ SoY C Z and hence Cy C Cz =Cz (by
Lemma 2.5). Thus clze[Y] = Cy. O

Corollary 3.7 For any Y1,Y2 € P(G), clz(Y1) N cl5(Yz2) # 0 if and only if (U oY1) N
(UeY2)=0 for every U € B.

Proof. The condition that (U ¢ Y1) N (U e Y2) # 0 for every U € B is equivalent to the
condition that Cy, NCy, # 0. O

Remark 3.8 We shall henceforward regard G as being a subspace G by identifying the
point x € G with the point e(z) € G.

The following Lemma is elementary and obviously well-known. We include it for
the sake of completeness.

Lemma 3.9 Let (f,) be a sequence of right uniformly continuous real-valued functions
defined on a topological group (G,e). If (f,) converges uniformly on G to a function f,
then f is right uniformly continuous.

Proof. Let € > 0. We can choose n € N so that |f(x) — fn(x)| < § for every z € G.
We can then choose U € B so that |fu(x) ~ fr(y)| < § whenever zey™! € U. It follows
that |f(z) — f(y)| < € whenever z ey~ ! € U. a

Theorem 3.10 A bounded continuous function f : G — IR has a continuous extension
f : G — R if and only if it is right uniformly continuous.

Proof. Let C (é) denote the set of all continuous real-valued functions defined on G.
We know from Theorem 3.5 that a bounded uniformy continuous function f: G — R
does have a continuous extension f: G — R. The set of all functions f which arise in
this way will be a uniformly closed subalgebra of C(G) by Lemma 3.9 and will contain
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the constant functions. By the Stone-Weierstrass Theorem, it will be the whole of C’(é)
if it separates the points of G.

To see that it does, let £1,&2 be distinct points of G. By Lemma 2.4, we can choose
Y1 €&1,Y2 €& and U € B for which (U Y1) NY; = 0. There will be a right uniformly
continuous function f: G — [0, 1] for which Y[Y7] = {0} and f[Y2] = {1} (Cf.[4]). Since
§1 € clzYy and & € clzY2 by Lemma 3.6, it follows that f(&1) =0 and f(&) =1. Thus

the functions of the form f do separate the points of G. O

Corallary 3.11 C(G) can be identified with the algebra of right uniformly continuous
bounded real-valued functions defined on G.

Theorem 3.12 Suppose that the topological group (G,e) is not totally bounded. Then
G contains a topological copy of BIN.

Proof. We can choose a symmetric neighborhood U € B of the identity e for which the
covering {U ez : z € G} of G has no finite subcovering. We can then choose a sequence
(zn) C G with the property that, for each n € N, z, & Ul (U o z,,).

We then choose V' € B to be a symmetric neighborhood of the identity e satisfying
V2 C U. This implies that the sets (V e x,) will be pairwise disjoint.

Let D denote the discrete subspace {z, : n € N} of G. We shall show that
cl 5D ~ BN.

The mapping f : N — G, defined by stating that f(n) = z,, has a continuous
extension f7: N — G. Tt will be sufficient to show that f? is injective. Suppose then
that u; and wp are distinct elements of SN, and that G; and G. are disjoint open
subsets of BN containing p; and pe respectively. Let M; = NN G;(i = 1,2). Since
(Ve fIMi])N(V e f[Ms] =@, cl5(f[Mi]) N cl5(f[Mz]) = 0, by the Corallary to Lemma
3.6 Now f8(u;) € clz(f[M;]) for i = 1,2, and so Pur) # FP(us). |

Remark 3.13 It follows from Theorem 3.12 that G has a least 2€ points if (G,e) is
not totally bounded, because it is well known that |SIN] = 2¢ (cf. [9]).

Definition 3.14 Suppose that S is a subgroup of a topological group (G,e). Then S
15 also a topological group with the group structure induced by that of G. Hence, Bg =
{UNS :U € B} is the neighborhood system of the identity in S.

Theorem 3.15 Suppose that S is a subgroup of a topological group (G, e) and that S has
the induced neighborhood system Bs ={UNS:U € B}. Then S ~ clsS.

Proof. The inclusion map 7 : S — G is right uniformly continuous and therefore has a
continuous extension i : S — G by Theorem 3.5. We shall show that ¢ is injective.
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Suppose that u, s are distinct points in S. There will then be sets Z1,2, C S
and a neighborhood U € B of the identity for which (Ug ® Z1) N Z; = @, where Usg
denotes U N'S. Now (Us @ Z1) N Zy = 0 implies that (U e Z;) NZ; = ¢ and hence
that cl5(Z1) N Cla’(Zz)~: 0, by~the Corollary to Lemma 3.6. Since i(u;) € clxz(Z;) for
1 =1,2, it follows that i(u1) # i(u2). m

Remark 3.16 For any assertion we made in this section for the space G there are
similar assertions for the space G. Hence, G isa topological compactzﬁcazton of G.

The Semigroup Compactification of a Topological Group

We shall now show that the group operation G can extended to a semigroup
operation on G giving G the structure of a compact right topological semigroup.

Theorem 4.1 The group operation on G extends to a semigroup operation on G ina
such a way that G becomes a compact right topological semigroup.

Proof. Clearly for each s € G, the mapping As : G — G is rightuniformly continuous
and hence, it extends to a continuous mapping A, from G into itself (by Theorem 3.5).
If n € G, we shall denote A(n) by sen.

We shall show that for each n € G , the mapping s +— sey from G to G is uniformly
continuous with respect to the right uniformity on G and the unique uniformity ¥ on
G.

Let ¢ : G — R be continuous. Then, by Theorem 3.10, ¢\ is right uniformly
continuous. Thus, if € > 0, there will be a neighborhood U € B of the identity e such that
|¢(s) — @(s')| < € if se(s’)~! € U. There will be a neighborhood V' € B of the identity e
such that, whenever se(s')~1 € V,(set)e(s'et)"1 € U forevery t € G. So, if se(s')"! €
V,|p(st) — ¢(s't)| < € for every t € G. Now |¢(sn) — ¢(s'n) = lim;_,,, |$(st) — ¢(s't)|, and
so |p(sm) —@(s'n)| < e if se(s NTlev. Using the fact that the unique uniform structure
on G can be defined by the functions in C (G) we have shown that the mapping s — sen
from G to G is right uniformly continuous.

It now follows from Theorem 3.5 that the mapping s — s e 7 can be extended
to a continuous mapping from G to itself. The image of the element £ € G under this
extension will be denoted by £ e 7.

Thus we have defined a binary operation on G by a double limit process. If
&nea,

en=limlimset.

s—) t—-’

We observe that our definitions ensure that, for each s € G, the mapping 7+ sen
is a continuous mapping from G to itself. Furthermore, for each n € G, the mapping
& +— £ ey is also a continuous mapping from G to itself.
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The associativity of the operation defined on G is immediate from the following
equations: For every &,n,( € G,

£e(ne()lim lim lim s e ( @ k);

s—=f{t—nk—(

= lim lim ki t)ek
(Eem)e( lim Jim lim (s o t) o

Remark 4.2 Suppose that S is a subgroup of G. We have seen in Theorem 3.15 that S
can be regarded as topologically embedded in G, if S is assumed to have the topological
group structure induced by that of G. The embedding is also algebraic, because the inclusion
map i : S — G has an extension i:8S—-G which is readily seen to be a homomorphism.
Thus S can be regarded as a subsemigroup of G .

Lemma 4.3 Let s€ G and{eé. Then, if Y € {,s0Y € sef.

Proof. This follows from Lemma 3.6, since the mapping A, : G — G is continuous. So,
if £ e claY, s§ € clzsY. a

Lemma 4.4 For each s € G and eachfeé,sogz{soY:Yef}.

Proof. This is immediate from Lemma 4.3 O

Lemma 4.5 Let § € G. For each Y € & and each U € B,Cyey is a neighborhood of £
in G. Furthermore, the sets of this form provide a basis for the neighborhoods of ¢ in G.

Proof. Since £ € GCq/wey) C Cuey,Cuey is a neighborhood of £.

On the other hand, suppose that T C G and that ¢ € é/CT. Then T ¢ ¢ and
so TN(VeY) =0 for some Y € £ and some V € B (by Lemma 1.4). Let U € B
be a symmetric neighborhood of the identity e satisfying U2 C V. Then ¢ € Cy.y and
Cuey € G/Cr because (UeY)N (U eT) = (. Thus the sets of the form Cy,y do provide
a basis for the neighborhoods of £. ]

Theorem 4.6 Then the mapping (s,£€) +— se & continuous mapping from G x G to G.

Proof. Let s € G, € G and U € B. Then Cuey is a basic neighborhood of s¢ for each
Y € s ¢ (by Lemma 2.5). Suppose that V € B satisfies V2 C U and let W € B such
that s e Ws™! C V. We claim that, if tes™! € V and 7 € Cjy;-14y, then t e N € Cuey-

222



KOCAK & ARVASI

Since Wes leY Cs leVeY and Wes leY €n,s eV eY €7 which implies that
t7le(tesTleVeY)en. Hence, tes eV eY € ten and therefore, VeV eY cten
since t e s™! € V. Hence, UeY € ten. Thus the mapping (s,&) — s e £ continuous, as
claimed. O

In the next theorem, we show that there is a sense in which G is the largest
semigroup compactification of G in which the continuity condition of Theorem 4.6 is
satisfied.

Theorem 4.7 Let (G,e) be a topological group. Suppose that (T,*) is a compact right
topological semigroup and that h : G — T is a continuous homomorphism. Suppose also
that the mapping (s,n) — h(s )07] is_a continuous mapping from G x T to T. Then there
is a continuous homomorphism h : G-T for which h = h|G

Proof. We shall first show that h right uniformly continuous. Let ¢ : T — [0,1] be a
continuous function and let € > 0. For each n € T there will be a neighborhood N(7n) of
n in T, and a neighborhood U(n) of the identity in G, for which |¢(h(s) *€) — ¢(n)| < £
whenever s € U(n) and & € N(n). Now T will be covered by a finite number of
neighborhoods of the form N(n), corresponding to points 71,72,...,7, in T. Let U =

Suppose that s1,s; € G satisfy s; e s;' € U. If h(s2) € N(7;), then

B(h(s1 @ 537)  h(s2)) — 9m0)| < 5

and

lp(h(s2)) — d(m:)] < 5

and so
|p(h(51)) — ¢(h(s2))| < .

Thus h is right uniformly continuous.

It follows from Theorem 3.5 that there is a continuous function A : G — T for which
h = h[G That & is a homomorphism, this can be seen as follows: For any &;,&; € G

h(€;0&) = lim lim h(s e t)

s—&1 s—&2

= lim lim h(s) * h(¢)

s—€1 s—&2

= h(&1) * h(&2).
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Corollary 4.8 If G is a topological group G can be wdentified with the compactification
GLUC | since GEUC is known to be the largest semigroup compactification of G in which
the continuity condition of Theorem 4.6 is satisfied (cf. [1]).

Theorem 4.9 Let 0, € G. Then Z € £ o if and only if
Xw={z€G:z'eWeZecn}let

for every W € B.

Proof. Suppose that Z € £ e and that Xy & & for some W € B. Then there exists
Y € { and V € B for which XwwN(VeY) =10 and hence Xy NY =0. Ify € Y,y & Xw
and so y~! e W e Z ¢ 1. Therefore, y=' o (W @ Z)* € 7, where (W e Z2)* =G\ (W e Z).
Hence, (W e Z)* € y en which implies that y e € clz(W ¢ Z)*. We can choose a
net (yo) C Y converging £. Thus, (y, ®n) converges to £ e n because for each 7 € G
the right translation p, is continuous. Hence, £ e € cla(W e Z)* which implies that
(WeZ) c&en. Since (WeZ)N(W e Z)* =(— contradiction.

Conversely, suppose that for every W € B,

Xw={zcG:z'eWeZcn}et

Let € Xy andlet y € 2 ' e W e Z. Then z ey € W e Z. We can choose a net
(yo) in 27! @ W o Z converging to n because n € clg(z™! e W e Z). Therefore,
zen € clz(W e Z). Now we can choose a net (z,) in Xw converging to ¢ since
Xw € &. Therefore, £ o € cla(W ¢ Z) because the right translation p, is continuous.
Hence, (We Z)c£er. O

Theorem 4.10 If G is commutative, then G is commutative.

Proof. Since G is commutative, G = G and As = ps and therefore s = ps- From
the fact A,(s) = ps(n) = As(n) = py(s), we obtain A, = p, which implies that G is
commutative. m|

Theorem 4.11 Let n,£ € G and let z,y €G.
a) cen=zxef implies that n = £.
b) nexr =, ex impliesn=¢.

Proof. a) Since zen=ze{,z 'ezen=1"1eze¢ and therefore, n = ¢.

b) Since £ ez =nez, ez ez ! =nexez~! which implies that n = ¢. O
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Remark 4.12 [t is clear that for each assertion we made for G in this section we can
write similar assertion for G. Therefore, G is a compact left topological compactification

of G.
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Near Ultrafilterler ve Topolojik Gruplarin Kompaklagtirilmasi

Ozet

Bu ¢alismada yeni bir kavram olan near ultrafiltirlar tanmimlanarak bir topolojik
grubun LUC-kompaktlagtirilmasi elde edilmistir.
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