Tr. J. of Mathematics 21 (1997), 47 – 53. © TÜBİTAK

# Exotic structures and adjunction inequality

Selman Akbulut and Rostislav Matveyev

# 1. Introduction

Here we want to reprove and strengthen some old difficult theorems of 4 manifolds by the aid of recently proven modern tools. One of the important recent results of smooth 4-manifolds is Eliashberg's topological description of compact Stein manifolds, that is complex manifolds which admit strictly plurisubharmonic Morse function (PC - manifolds):

**Theorem 1.1.** ([E]) Let  $X = B^4 \cup (1\text{-handles}) \cup (2\text{-handles})$  be four-dimensional handlebody with one 0-handle and no 3- or 4-handles. Then

- The standard PC-structure on  $B^4$  can be extended over 1-handles so that manifold  $X_1 = B^4 \cup (1\text{-handles})$  has pseudo-convex boundary.
- If each 2-handle is attached to  $\partial X_1$  along a Legendrian knot with framing one less then Thurston-Bennequin framing of this knot then the symplectic form and complex structure on  $X_1$  can be extended over 2-handles to a symplectic form on X, which makes X a PC manifold.

Lisca and Matić showed that PC manifolds imbed naturally into Kähler surfaces:

**Theorem 1.2.** ([LM]) Every PC manifold X can be holomorphically embedded as a domain into a minimal Kähler surface S with ample canonical bundle and  $b_2^+(S) > 1$ , such that the induced Kähler form on X agrees with the symplectic form of the PC structure.

**Theorem 1.3.** A minimal Kähler surface X, with  $b_2^+(X) > 1$  and an ample canonical bundle, can not contain a smoothly embedded 2-sphere  $\Sigma \subset X$  with  $\Sigma \Sigma \geq -1$ .

This theorem roughly follows from the fact that Kähler surfaces have nonzero Seiberg-Witten invariants (see [B] and [MF] in case  $\Sigma.\Sigma = -1$ , and [FS] in case  $\Sigma.\Sigma \geq 0$ ). Also Kähler surfaces satisfy the adjunction inequality of Kronheimer and Mrowka:

**Theorem 1.4.** ([KM1], [MST]) Let X be a closed smooth 4-manifold with  $b_2^+(X) > 1$ , with a nonzero Seiberg Witten invariant (e.g. X Kähler surface) corresponding to the line bundle  $L \to X$ . Let  $\Sigma \subset X$  be a compact oriented embedded surface with  $\Sigma . \Sigma \geq 0$  when  $\Sigma$  is not a sphere, then

$$2q(\Sigma) - 2 > \Sigma \cdot \Sigma + |c_1(L) \cdot \Sigma|$$

The first author was partially supported by an NSF grant DMS-9626204

After discussing the basics, we will show some 4-manifold theorems can be obtained as easy corollaries of these three basic theorems.

### 2. Definitions

Let us recall some basic facts (e.g. [G], [E]). Any PC-manifold X induces a contact structure on the boundary 3-manifold  $Y=\partial X$ , which is isomorphic to the restriction of the dual  $K^*$  of the canonical line bundle  $K\to X$ . Furthermore if  $\alpha$  is an oriented Legendrian knot in Y (a knot whose tangents lie in the contact planes) bounding an oriented surface F in X, then the "rotational number" is defined to be the relative Chern class  $rot(\alpha, F) = c_1(K^*, v)$  of the induced 2-plane bundle  $K^* \to F$  with respect to the tangent vector field v of  $\alpha$  (i.e. the obstruction to extending v to a section of  $K^*$  over F). Also this contact structure gives the so called Thurston-Bennequin framing  $tb(\alpha)$ .

The simplest example of a PC-manifold is  $B^4 \subset \mathbb{C}^2$  with the induced symplectic structure. We choose coordinates in  $\mathbb{R}^3 \subset S^3 = \partial B^4$ , so that the induced contact structure  $\xi_0$  on  $\mathbb{R}^3$  is the kernel of the form  $\lambda_0 = dz + xdy$ . By Theorem 1.1 this PC-structure extends across 1-handles attached to  $B^4$ ; we draw the attaching balls of each 1-handle on the plane  $\{x=0,z=\text{constant}\}$ . Any link L in  $S^3$  can be isotoped to a Legendrian link, we can achieve this by first isotoping L so that all crossings are left handled as in the first picture of Figure 1. For example, we can turn a right handled crossing to a left handled crossing by the local isotopy as in the second picture of Figure 1.



FIGURE 1

Projection of a Legendrian link to the yz-plane has intersections only coming from left handed crossing, no vertical tangencies and all minima and maxima in y-direction are cusps (as the projection of the knot in Figure 3 to the yz-plane). Moreover, every projection with these properties is a projection of some Legendrian link. Rotational number of an oriented Legendrian knot  $\alpha$  in  $S^3$  does not depend the surface  $F \subset S^3$  it bounds. Invariants rot(K) and tb(K) can be calculated by:

$$rot(\alpha) = 1/2$$
 (Number of "downward" cusps – Number of "upward" cusps )

$$tb(\alpha) = bb(\alpha) - c(\alpha)$$

where  $bb(\alpha)$  is the blackboard (yz-plane) framing of the projection of  $\alpha$ ,  $c(\alpha)$  is the number of right cusps, and "downward" and "upward" cusps are calculated in the obvious way. Because the local isotopy in Figure 1 introduces one right cusp (hence a -1 contribution to calculation of tb(K)) we can incorporate this to "self crossing number" calculation by reading the crossings numbers in a modified way as in Figure 2. For example in the

knot of Figure 3 we can calculate tb(K) = 5 - 4 = 1 and rot(K) = 0. A useful corollary to these theorems is the following generalization of the Bennequin inequality:



FIGURE 2



FIGURE 3

Corollary 2.1. Let X be a PC manifold,  $F \subset X$  be a two-dimensional submanifold of X, such that  $\alpha = \partial F \subset \partial X$  is Legendrian with respect to induced contact structure and f is framing on  $\alpha$  induced by a trivialization of the normal bundle of F in X, then

$$-\chi(F) \ge [tb(\alpha) - f] + |rot(\alpha)|$$

where  $tb(\alpha)$  and  $rot(\alpha)$  are the Thurston-Bennequin framing and rotational number of  $\alpha$ 

To prove this we attach a 2- handle to X along  $\alpha$  with the framing  $tb(\alpha)-1$ , and apply Theorems 1.1, 1.2, and 1.3 to the resulting manifold and closed surface  $F'=F\cup_{\partial} D$ , where D is the core 2-disc of the 2-handle.

# 3. Applications

**Theorem 3.1.** ([A1]) Let W be the contractible manifold of Figure 4. Let  $f: \partial W \to \partial W$ , be the involution induced by an involution of  $S^3$  (as described in [A1]) with  $f(\gamma) = \gamma'$ , where  $\gamma$  and  $\gamma'$  are circles in  $\partial W$  shown on Figure 4. Then  $f: \partial W \to \partial W$  does not extend to a diffeomorphism  $F: W \to W$  (but it extends to a homeomorphism)

*Proof.* By applying Theorem 1.1 to W (the second picture of W in Figure 4) we see that W has a PC structure. Also since  $\gamma$  is slice in W if f extended to a diffeomorphism  $F:W\to W$ , then  $\gamma'$  would be slice also. But this contradicts the inequality of Theorem 2.1 (here  $F=D^2$ , f=0, and  $tb(\gamma')=0$ ).



FIGURE 4

**Theorem 3.2.** ([A2]) Let  $Q_1$  and  $Q_2$  be the manifolds obtained by attaching 2-handles to  $B^4$  along the knots  $K_1$  and  $K_2$  with -1 framings as in Figure 5, then  $Q_1$  and  $Q_2$  are homeomorphic but not diffeomorphic to each other, even interiors are not diffeomorphic to each other.



FIGURE 5

*Proof.* By Theorem 1.1  $Q_1$  has a PC structure, by Theorem 1.2  $Q_1$  is a domain in a minimal Kähler surface S with  $b_2^+(S) > 1$ . If  $Q_1$  were diffeomorphic to  $Q_2$ , the generator of  $H_2(Q_1; \mathbf{Z})$  would be represented by a smooth embedded sphere (since  $K_2$  is a slice knot the generator of  $H_2(Q_1; \mathbf{Z})$  represented by a smooth sphere) with -1 self intersection, violating Theorem 1.3.

Let  $K \subset S^3$  be a Legendrian knot, and  $K_0'$  be a 0-push off of K (the zero framing is the framing induced from the normal vector field of K in the oriented surface in  $S^3$  bounding K).

**Proposition 3.3.** We can move  $K'_0$  to a Legendrian knot  $K_0$  by an isotopy which fixes K, such that  $tb(K_0) = -|tb(K)|$ .

*Proof.* tb(K) = bb(K) - c(K). If  $bb(K) \le 0$  then  $K'_0$  is just the blackboard push-off of K with -2bb(K) right half twist, but this is a projection of a Legendrian link and  $bb(K_0) = bb(K)$  and  $c(K_0) = c(K)$  hence  $tb(K_0) = tb(K)$  If  $tb(K) \le 0$  and bb(K) > 0,



FIGURE 6

then  $K_0'$  is the blackboard push-off with 2bb(K) left handed half twist. Knot K has 2c(K) cusps, and  $2c(K) \geq 2bb(K)$ . We can produce a Legendrian picture by placing all half twists near cusps as in Figure 7. Thus  $bb(K_0) = bb(K)$ .



FIGURE 7

If tb(K) > 0, then bb(K) > 0 and again  $K'_0$  is the blackboard push-off with 2bb(K) left half twist. By above trick of placing half left twist near cusps, we can get rid of 2c(K) left twist, and we are left with 2bb(K) - 2c(K) left twist each of which contributes -1 to  $tb(K_0)$  as in Figure 8. Hence  $tb(K_0) = tb(K) - [2bb(K) - 2c(K)] = tb(K) - 2tb(K) = -tb(K)$ 



FIGURE 8

By Proposition 3.3 we can produce many 0-push offs  $K_0^i$ , i=1,2,..k such that  $tb(K_0^i)=-|tb(K)|$ . So if  $tb(K)\leq 0$  then all  $K_0^i$  have same tb, if tb(K)>0 then all  $K_0^i$  but the original knot K has the same tb.

**Theorem 3.4.** If  $K \subset S^3$  a Legendrian knot with  $tb(K) \geq 0$ , then all iterated positive Whitehead doubles of  $Wh_n(K)$  are not slice. In fact if  $Q_n^r(K)$  is the manifold obtained by attaching a 2-handle to  $B^4$  along  $Wh_n(K)$  with a framing  $-1 \leq r \leq 0$ , then there is no smoothly embedded 2-sphere in  $Q_n^r(K)$  representing the generator of  $H_2(Q_n^r(K); \mathbf{Z})$ .

*Proof.* The first positive Whitehead double is obtained by connecting K and  $K_0$  by a left handed cusp as in Figure 9 which contributes +1 to tb, hence

$$tb(Wh(K)) = tb(K) + tb(K_0) + 1 = tb(K) - tb(K) + 1 = 1.$$

So by iteration we get  $tb(Wh_n(K)) = 1$ . But Corollary 2.1 says that any slice knot L must have  $tb(L) \leq -1$ .



FIGURE 9

For the second part, observe that since  $r \leq 0 = tb(Wh_n(K)) - 1$ , by Theorem 1.1  $Q_n^r(K)$  is PC. By Theorem 1.2 we can imbed  $Q_n^r(K)$  into Kähler surface S. Then by Theorem 1.3 we can not have a smoothly embedded 2-sphere  $\Sigma \subset Q_n^r(K) \subset S$  representing  $H_2(Q_n^r(K); \mathbf{Z})$ , since  $\Sigma \cdot \Sigma = r \geq -1$ .

Remark 3.1. L.Rudolf has previously shown that  $Wh_n(K)$  are not slice if  $tb(K) \geq 0$  ([R]).

Remark 3.2. Proof of Proposition 3.2 gives: If  $K'_r$  is the r-framing push off of a knot K, then  $K'_r$  can be isotoped to a Legendrian knot  $K_r$  fixing K with  $(tb(K_r)-r)=-|tb(K)-r|$ 

Remark 3.3. If  $\xi$  is the contact structure on  $\Sigma = \partial W$  induced by the PC manifold W of Theorem 3.1, and  $f^*(\xi)$  is the "pull-back" contact structure on  $\Sigma$ , then it follows that the contact structures  $\xi$  and  $f^*(\xi)$  are homotopic through 2-plane fields but not isotopic through contact structures ([AM]).

## References

[A1] S. Akbulut, A Fake compact contractible 4-manifold. J. Diff. Geom Vol. 33 (1991) pp. 335-356.

[A2] S. Akbulut, An exotic 4-manifold J. Diff. Geom Vol. 33 (1991) pp. 357-361.

[AM] S. Akbulut and R. Matveyev, A note on Contact Structures (to appear Pac. Jour. of Math).

- [B] R. Brussee, The Kähler class and the  $C^{\infty}$  properties of Kähler surfaces, New York Journal of Mathematics volume 2 1996 (also in alg-geom 9503004).
- [G] R.Gompf, Handlebody construction of Stein surfaces (preprint).
- E] Y. Eliashberg, Topological characterization of Stain manifolds of dimension > 2. International J. of Math. Vol. 1, No 1 (1990) pp.29-46.
- [FS] R. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the immersed Thom Conjecture, Proceedings of the  $3^{rd}$  Gokova Geometry-Topology Conference, 27-39 (1994).
- [KM1] P. Kronheimer and T. Mrowka, On genus of embedded surfaces in the projective plane, Math. Res. Letters 1 (1994), 797-808.
- [KM2] P. Kronheimer and T. Mrowka, Monopoles and contact structures (to appear).
- [LM] P. Lisca and G. Matić, Tight contact structures and Seiberg Witten invariants.
- [MF] J. Morgan and R. Friedman, Algebraic surfaces and Seiberg-Witten invariants (preprint).
- [MST] J. Morgan, Z.Szabo, C.H. Taubes, The generalized Thom conjecture (to appear).
- [R] L. Rudolf, An obstruction to sliceness via contact geometry and "classical" gauge theory, Invent.math. 119, 155-163 (1995).

MICHIGAN STATE UNIVERSITY, DEPT OF MATHEMATICS, E. LANSING MI 48824, USA *E-mail address*: akbulut@math.msu.edu, matveyev@math.msu.edu